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Phylogenetics can be used to elucidate the movement of genes
between populations of organisms, using phylogeographic methods.
This has been widely done to quantify pathogen movement between
different host populations, the migration history of humans, and the
geographic spread of languages or the gene flow between species us-
ing the location or state of samples alongside sequence data. Phy-
logenies therefore offer insights into migration processes not avail-
able from classic epidemiological or occurrence data alone. Phylo-
geographic methods have however several known shortcomings. In
particular, one of the most widely used methods treats migration the
same as mutation, and therefore does not incorporate information
about population demography. This may lead to severe biases in es-
timated migration rates for datasets where sampling is biased across
populations. The structured coalescent on the other hand allows us
to coherently model the migration and coalescent process, but cur-
rent implementations struggle with complex datasets due to the need
to infer ancestral migration histories. Thus, approximations to the
structured coalescent, which integrate over all ancestral migration
histories, have been developed. However, the validity and robustness
of these approximations remain unclear. We present an exact numer-
ical solution to the structured coalescent that does not require the
inference of migration histories. While this solution is computation-
ally unfeasible for large datasets, it clarifies the assumptions of pre-
viously developed approximate methods and allows us to provide an
improved approximation to the structured coalescent. We have imple-
mented these methods in BEAST2, and we show how these methods
compare under different scenarios.
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1 Introduction

The relatedness of samples of homologous genetic sequences assuming asex-
ual reproduction are the result of a past branching process. The same applies
to other sources of data, such as languages or phenotypic markers. This past
branching process contains information about ancestral population histories and
can be inferred from data using phylogenetic trees. One of the information en-
coded in such trees is the structure of a population and the movement of infor-
mation (e.g. genes or words) between subpopulations. Phylogeographic methods
allow to elucidate such information given the state or location of samples. Phy-
logeographic methods have been used to analyze the global spread of influenza
viruses (Bedford et al., 2010; Bahl et al., 2011; Lemey et al., 2014; Bedford
et al., 2015), the origins of HIV-1 (Faria et al., 2014) and various other dis-
eases (Bourhy et al., 2008; Raghwani et al., 2011). Analogously to the analysis
of epidemics, such methods have been used to study the geographic origin of
brown and polar bears (Edwards et al., 2011). Related methods have been used
to study the evolutionary history of humans (Gronau et al., 2011) and great
apes (Mailund et al., 2012). The same methods have also been applied to study
the origin of the Indo-European language family (Bouckaert et al., 2012).

A range of phylogeographic methods for inferring population structure from
phylogenies have been proposed. The mugration method (Lemey et al., 2009)
treats migration as a continuous time Markov chain, such as used to model mu-
tation, and assumes the migration process to be independent of the tree gener-
ating process. This assumption can lead to biases in estimates of migration rates
when sampling is biased (De Maio et al., 2015). Other methods, such as those
based on the structured coalescent (Takahata, 1988; Hudson, 1990; Notohara,
1990) and the related isolation-with-migration models (Wakeley, 2000; Nielsen
and Wakeley, 2001; Hey, 2010), do not make this independence assumption. In
contrast to the mugration-based methods, they require the state (or location)
of any ancestral lineage in the phylogeny at any time to be inferred (Beerli and
Felsenstein, 2001; Ewing et al., 2004; Vaughan et al., 2014). Inferring lineage
states is computationally expensive, as it normally requires Markov chain Monte
Carlo (MCMC) based sampling, and limits the complexity of scenarios that can
be analyzed.

Other approaches (Volz, 2012; Palczewski and Beerli, 2013) seek to marginal-
ize over all possible migration histories by treating lineage states probabilisti-
cally instead of using MCMC based sampling. Rather than assigning lineages
to particular states, the probability of each lineage being in each state is calcu-
lated at all times using a set of previously described differential equations (Volz,
2012). Such a marginalization approach (rather than explicit sampling of states)
allows for the analysis of larger datasets (De Maio et al., 2015). While this ap-
proach appears to only make the assumption of lineage independence, i.e. that
the state or location of one lineage does not depend on any other lineage (De
Maio et al., 2015), it remains unclear if there are additional assumptions not
being accounted for.

In this paper, we derive an exact numerical solution of the structured co-
alescent with discrete states for neutrally evolving asexual populations. This
solution is based on the joint probabilities of lineages being in any possible
configuration. However, it quickly becomes computationally unfeasible for more
than a few lineages and states. It allows us however to clarify the assumptions
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used in previous approaches (Volz, 2012; De Maio et al., 2015) and to develop a
more refined approximation to the structured coalescent. We then show how the
different approximations compare in terms of tree, parameter and root state in-
ference under both biased and unbiased sampling conditions. Simulations reveal
that our new approximation outperforms previous approximations at compa-
rable computational cost. We then apply these different approximations to a
previously described avian influenza virus dataset (Lu et al., 2014) sampled
from different regions of North America to show that the choice of method
influences the interpretation of data in practice.

2 New Approaches

Approaches that calculate the probability density of a phylogeny under the
structured coalescent given a set of coalescent and migration rates typically use
MCMC to integrate over possible migration histories. Using this Monte Carlo
integration however heavily limits the size of datasets that can be analyzed.
Already at a small number of different states, efficiently exploring the space of
all possible migration histories becomes unfeasible. Methods that are able to
integrate over these migration histories but avoid MCMC sampling hold great
promise in their ability to analyse larger datasets. We therefore derive an exact
solution to the structured coalescent process with discrete states for neutrally
evolving asexual populations that integrates over all possible migration histories
using ordinary differential equations. We refer to this approach as ESCO, the
exact structured coalescent.

While ESCO is exact, it requires solving a number of differential equations
that is proportional to the “number of different states” to the power of the
“number of co-existing lineages”. This originates from the need to calculate
the probability of every possible configurations of a set of co-existing lineages
and states using migration and coalescent rates. We therefore develop a lower-
dimensional approximation that is based on keeping track of the marginal lin-
eage state probabilities instead. We call this approach the marginal lineage
states approximation of the structured coalescent (MASCO). This approach al-
lows us to reduce the number of differential equations that have to be solved
between events to “number of states” times “number of lineages”, but ignores
any correlations between lineages. Using this approach, the state of a lineage is
calculated backwards through time, integrating over potential migration events
and incorporating the probability of no coalescences between branching events
in the phylogeny. This means that the state or location of a lineage is directly
dependent on the coalescent process. In particular, the observation that two
lineages that do not coalesce for a longer time are unlikely to be in the same
state is incorporated in this approach.

In comparison to MASCO, we show that the approach of (Volz, 2012) re-
quires the additional assumption that the state of a lineage evolves indepen-
dently of the coalescent process between events. This means that changes in the
probabilities of lineages being in a certain state are only dependent on the mi-
gration rates, and are completely independent of other lineages in the phylogeny.
We refer to this approach as SISCO, the state independence approximation of
the structured coalescent. The differential equations describing how lineages
evolve between events for ESCO and MASCO are both derived in the Materials
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and Methods section. Whereas the differential equations for SISCO have been
derived previously (Volz, 2012).

3 Results

3.1 Tree height distributions under the structured coales-
cent and its approximations
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Figure S1: Comparison of MCMC sampled to simulated tree heights
using the different structured coalescent methods. Sampled tree heights
when the rates of migration are fast, i.e. in the same order of magnitude as
coalescence. When the rates of migration are medium, i.e. one order of magin-
tude lower than coalescence and slow, i.e. two orders of magnitude lower than
coalescence. The trees were sampled using MCMC for one million iterations,
storing every thousandth step, after a burnin of 20%.

The structured coalescent and its approximations describe different proba-
bility distributions over trees. To see how these distributions compare, we per-
formed direct backwards-in-time simulations under the structured coalescent us-
ing MASTER (Vaughan and Drummond, 2013), analogously to Vaughan et al.
(2014). These trees were compared to trees sampled under ESCO, MASCO,
SISCO, as well as BASTA (De Maio et al., 2015), a numerical approximation
of SISCO. Under these latter four models, trees were sampled from their re-
spective probability distributions using MCMC in BEAST2 (Bouckaert et al.,
2014). Since it is difficult to directly compare distributions of trees, we instead
compared the distribution of tree heights.

For each of the five scenarios (direct, ESCO, MASCO, SISCO, BASTA)
and three different overall migration rates, we obtained 8000 trees. We used
a model with three different states, sampling three, two and one individu-
als from each state, respectively. Coalescent rates were different in each state
(M = 1,A2 = 2,23 = 4) and migration rates were different between states
(m1’2 = 1,m1,3 = 2,m2,1 = 0.1,m273 = 0.3,m3,1 = 1,m372 = 1) To show how
the different methods perform under different overall migration rates, the rates
between states were scaled with 1 (fast migration), 0.1 (medium migration) and
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0.01 (slow migration).

Figure S1 shows the distribution of tree heights sampled using MCMC and
compares them to the distribution of tree heights obtained by directly simulating
trees under the structured coalescent. Of the different methods, only the distri-
bution of ESCO is consistent with direct simulation. Only keeping track of the
marginal lineage states (MASCO) leads to slightly shorter tree heights. Further
assuming lineage states to be independent of the coalescent process (SISCO)
results in greatly underestimated tree heights. BASTA (De Maio et al., 2015),
being an approximation of SISCO, performs very similar to SISCO. The shorter
tree heights under SISCO compared to MASCO can be explained in the follow-
ing way. Not taking into account how the coalescent process influences lineage
states leads to an overestimation of the probability of two lineages being in the
same state if no coalescent event is observed by SISCO compared to MASCO.
Overestimating the probability of two lineages being in the same state then also
leads to a higher probability of them coalescing. This in turn results in shorter
trees since lineages are expected to coalesce at a faster rate. SISCO and BASTA
in general perform worse at slower migration rates than at rates in the same
order of magnitude as the rates of coalescence.

3.2 Root state probabilities
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Figure S2: Inferred location of the root for different migration rates
and structured coalescent approaches. The plot shows the probability of
the root being in the blue state (y-axis) depending on the migration rate from
blue to brown (x-axis), for the given tree and sampling states. The migration
rate from brown to blue was held constant at 0.01.
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The ancestral state or location of lineages back in time is often of interest
for biological questions. For example, in a pathogen phylogeny the root location
is informative of the geographic origin of an epidemic. Here we show on one
fixed tree how the exact structured coalescent compares in the inference of the
root state to its approximations. We additionally inferred the root state using
MultiTypeTree (Vaughan et al., 2014), which uses MCMC to sample lineage
states and does not rely on approximations, to obtain a reference root state
probability (Vaughan et al., 2014). We inferred the probability of the root being
in either state for different migration rates in one direction while holding the
rate in the other direction constant.

The exact structured coalescent and the one only keeping track of the
marginal lineage states (MASCO) agree well with the inferred posterior mean
using MultiTypeTree (Figure S2). The inferred state probabilities using SISCO
on the other hand do not, showing that the assumption of independence be-
tween the lineage states and the coalescent process does not only describe a
wrong probability distribution over trees but can also leads to biased inference
of ancestral states.

3.3 Estimation of migration rates

Coalescent methods are often used to infer population and migration param-
eters from trees. To show how the inference of the migration rates compares
to the true rate, we simulated 1000 trees under the structured coalescent with
symmetric migration rates from 107® to 1 and pairwise coalescent rates of 2
using MASTER. Hence, we consider a range of cases from very strong to very
weak population structure, where the probability of migration is in the same
order as coalescence. Each tree consisted of 4 contemporaneously sampled leafs
from each of the two states. We fixed the coalescent rates to the truth, assumed
symmetric migration rates and then inferred the maximum likelihood estimate
of the migration rate using the exact structured coalescent (ESCO) and its
approximations MASCO and SISCO.

The results are summarized in Figure S3. When only keeping track of the
marginal lineage states (MASCO), the migration rates are estimated well. Mak-
ing the further assumption of independence of the lineage states and the coales-
cent process (SISCO) leads to strong biases in estimates of the migration rates.
The lower the migration rates are compared to the coalescent rates, the greater
the underestimation of the migration rates becomes.

3.4 Estimation of rate asymmetries

In the previous section, we inferred the rate of migration given (or conditional
on) the true coalescent rate and the information that the migration rates were
the same in both directions. In reality, these rates can greatly vary across states
or locations. It is therefore important for methods to be able to perform well in
situations where rates are asymmetric. Previous work showed that the ability to
infer migration rate asymmetries greatly depends on the method used (De Maio
et al., 2015). Here we compare inferences of rate asymmetries under MASCO
and SISCO. Applying ESCO to the same trees would not be computationally
feasible, due to the larger number of lineages existing in parallel.
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Figure S3: Maximum likelihood estimates of migration rates using the
exact structured coalescent and its approximations. Here we compare
simulated migration rates (x-axis) to the maximum likelihood estimates of the
migration rate (y-axis), estimated using the exact structured coalescent ESCO
and its approximations MASCO and SISCO. The coalescent rates are fixed to
the truth, and the migration rates are assumed to be symmetric. The red line
indicates where the true values should lie.

Figure S4 shows the median ratios of inferred coalescent and migration rates
using MASCO and SISCO. The estimates of coalescent rate ratios (Figure S4 top
row) are accurate under both simulation scenarios and methods. Estimates of the
migration rate ratios are biased in the presence of asymmetric coalescent rates
(Figure S4 bottom left) using SISCO, but not MASCO. SISCO overestimates
the backwards in time migration out of the state with a faster coalescent rates
and into the state with a slower coalescent rate. An underestimation of the
rate in the other direction was observed as well. When the coalescent rates
are symmetric, both methods are unable to capture very strong asymmeries in
the migration rate ratios (Figure S4 bottom right). However, when taking into
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Figure S4: Inferred asymmetry of migration and coalescent rates. Here
we show the inferred median coalescent (upper row) and migration (lower row)
rate ratios under different conditions. In the first column, the coalescent rate
ratios (x-axis) are varied while the migration rates ratios are kept constant.
In the second column, the migration rate ratios (x-axis) are varied, while the
coalescent rate ratios are kept constant. We simulated a total of 2000 trees using
MASTER with 100 tips from each of the two different states sampled uniformly
between times t=0 and t=10. Of these trees, 1000 were simulated with pairwise
coalescent rate ratios A;/Ag from 0.01 to 1, A\;+X2=4 and migration rates in
both directions equal to 1. The other 1000 trees were simulated with migration
rate ratios from mjs/moy from 0.01 to 1, mya+ms; = 2 and pairwise coalescent
rates in both states equal to 2, using exponential priors with mean 2 for the
coalescent rates and mean 1 for the migration rates Both coalescent rates and
both migration rates are estimated. The red line indicates where the estimates
should lie.

account the highest posterior density (HPD) intervals of the estimates, most
estimates contain the true rate ratio (see figures S1 and S2). MASCO is overall
better at infering those migration rate asymmetries than SISCO.

3.5 Sampling bias

Previous work showed that the approximate structured coalescent is able to
accurately infer migration rates even when sampling fractions are biased, given
samples are taken contemporaneously (De Maio et al., 2015). Here we explore
the effect of biased sampling fractions in the presence of serial sampling. We
compare the exact structured coalescent ESCO to its approximations MASCO
and SISCO.

Figure S5 reveals that ESCO is able to unbiasedly infer the migration rates
in both directions, independent of sampling biases or migration rates. The same
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Figure S5: Inferred migration rates under different sampling condi-
tions. The plot shows the distribution of mean inferred migration rates using
ESCO, MASCO and SISCO. From the left, the first distribution of a color (in-
dicating the different methods) always shows the distribution of mean inferred
migration rates from state 1 to state 2. The second distribution from the same
color shows the rates from state 2 to 1. From left to right the number of sam-
ples from state 1 and state 2 are changed, while from top to bottom the true
symmetric migration rates are going from 1 to 0.01. The lines within the violin
plots indicate the 256%, 50% and 75% quantiles. The coalescent rates were 2 in
both states and the migration rates ranged from 0.01 to 1. The migration rates
were always symmetric, i.e. the same in both directions. The lefs we sampled
uniformly between ¢t = 0 and ¢t = 25. Each simulation was repeated 100 times
and each inference was run with 3 parallel MCMC chains, each with different
initial values. An exponential prior distribution with the mean = 1 was used on
the migration and coalescent rates.

applies to MASCO. For SISCO however, biased sampling leads to an under-
estimation of the backwards migration rate into the oversampled state and an
overestimation of the rates into the undersampled state for intermediate and
high migration rates. At low migration rates, both rates are underestimated.

3.6 Application to Avian Influenza Virus

To show how the inference of the origin of an epidemic varies with the method
used, we applied the two approximations of the structured coalescent (MASCO
and SISCO) to a previously described avian influenza dataset (Lu et al., 2014;
De Maio et al., 2015) to infer the geographic location of the root.

In Figure S6, we show the inferred region of the root using MASCO and
SISCO. Despite the fact that almost all samples from the central US were col-
lected after 2009 and that samples from the East Coast and the North West
fall closer to the root, SISCO places the root with over 80% probability in the
central US. MASCO on the other hand places the root to be most likely at the
East Coast, one of the least likely root locations according to SISCO. Also, in
contrast to SISCO it doesn’t exclude most regions from being the location of
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Figure S6: Inference of the root regions of AIV sampled from different
places in North America. A Maximum clade credebility tree inferred from
ATV sequences sampled in different regions of the USA, Canada and Mexico
using MASCO as a population prior. The node heights represent the mean
node heights. The tip color indicate the different sampling regions shown in the
legend. B Inferred root regions using MASCO (top) and SISCO (bottom). The
pie charts show the inferred probability of the root being in either of the different
states/regions by MASCO and SISCO. C Violin plots of the inferred coalescent
rates for the different regions. The black plot distribution is the exponential
prior with mean 1. We used this prior for both coalescent and migration rates.

the root based on the phylogenetic data available. We provide a possible expla-
nation to why we observe differences in the inferred root state in the Discussion
below.

4 Discussion

We provide an exact way to calculate the probability density of a phylogenetic
tree under the structured coalescent (Takahata, 1988; Hudson, 1990; Notohara,

10
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1990) without the need to sample migration histories, as in previously described
approaches (Beerli and Felsenstein, 2001; Ewing et al., 2004; Vaughan et al.,
2014), by solving a set of ordinary differential equations.

Additionally, we introduce a new approximation that outperforms a previ-
ously described approximation (Volz, 2012). This new approximation facilitates
a trade-off between speed and accuracy. The increased speed compared to the
exact solution originates from ignoring any correlations between lineages. This
assumption leads to better scaling of the computational complexity with the
number of states and lineages. We show that this assumption allows us to infer
migration, coalescent rates and root states in all scenarios tested within this
simulation study.

Additionally assuming independence of the lineages states from the coales-
cent process, as introduced in (Volz, 2012), leads however to major biases in
parameter and root state inference. These biases are especially pronounced in
our simulations when migration is slow compared to the coalescent rate. This
observation can be explained in the following way:

The lower migration rates are compared to coalescent rates, the stronger the
influence of the coalescent process on the configuration of lineages across states.
The assumption of independence of the lineage states from the coalescent process
does not allow for the incorporation of this information into the calculation of
lineage state probabilities though.

Next, we showed how the approximations of the structured coalescent per-
form in inferring asymmetric coalescent and migration rates. While coalescent
rates are inferred accurately for both approximations, inference of migration
rate ratios is biased when coalescent rates are asymmetric under SISCO. We also
showed that under biased sampling, inferences of migration rates are strongly
biased under SISCO, but not under MASCO.

Both biases can be understood in the following way. A lineage may have a
higher probability of coalescing in one state than another either because the
pairwise coalescent rate in one state is higher (e.g. due to a smaller effective
population size) or because more lineages reside in one state than another (e.g.
because of biased sampling). Taking the influence of the coalescent process on
lineage states into account, as done under MASCO, reduces the probability of
a lineage occupying a state with a high coalescent rate if no coalescent events
oceur.

In other words, MASCO redistributes the probability mass assigned to each
state to reflect the observed coalescent history, including the observation that
a lineage may have not yet coalesced (see equation 3). SISCO does not redis-
tribute probability mass to reflect the observation that a lineage has not yet
coalesced. In order to reduce the probability of lineages coalescing in a state
with high rates of coalescence, it overestimates the migration rate out of such
states. This overestimation of migration rates out of a state is observable when
having asymmetric coalescent rates due to either a higher pairwise coalescent
rate within a state or having more lineages in a given state due to biased sam-
pling. Either way, the migration rate out of the state with a higher coalescent
rate is overestimated and underestimated in the other direction. While revising
this manuscript, it was brought to our attention that updates to the R package
rcolgem (Erik M Volz, 2016) (based on Volz (2012)), uses a related approach to
redistribute probability mass between states.

While MASCO does redistribute probability mass via the coalescent process,

11
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it ignores the correlations between lineages encoded in the joint probabilities
when only considering marginal lineage state probabilities. These correlations
are expected to be especially strong in parts of the tree where there are only a few
co-existing lineages present. These correlations between lineages are induced by
the coalescent process. The rate at which lineages coalesce is highly dependent
on the number of lineages in a state. Having one or two lineages in the same state
is the difference between having a zero or non-zero rate of coalescence, whereas
having a 1000 or a 1001 lineages in the same state doesn’t impact the rate
of coalescence as much. In turn, this means that at lower number of lineages,
the state of a single lineage has a much larger impact on the rate at which
coalescent events are expected. This then leads to stronger correlations between
the state of individual lineages. We however did not find a scenario under which
MASCO would be considerably biased compared to the exact description of the
structured coalescent.

We applied the different approximations of the structured coalescent to avian
influenza virus HA sequences sampled from different orders of birds in North
America. We found that the inferred region of the root varies with the method
used. SISCO places high confidence in the center of the USA being the root
state. MASCO on the other hand infers the East coast to be the most likely
location of the root, while also placing a considerable amount of probability mass
to other locations such as the North East or North West to reflect uncertainty
in the phylogenetic data about the root location.

Asymmetric coalescent rates may offer one explanation why SISCO places
more probability on the center being the root location than MASCO and why
it excludes all other states from being possible root states. We have shown that
asymmetric coalescent rates can bias the inference of migration rates. Under
SISCO, asymmetric coalescent rates lead to an overestimation of the migration
rate from a state with fast coalescent rate into a state with slow coalescent rate
and an underestimation of the migration rates in the other direction (recall that
we consider backwards in time rates). Because the coalescent rate in the center
is inferred to be low, SISCO puts much more weight on it being the source than
MASCO. The opposite appears to occur for the East Coast, which is inferred
to have a very high rate of coalescence. MASCO infers the East Coast to be the
most likely source region while it is almost excluded using SISCO.

Although we used the AIV analysis to illustrate how inferences obtained from
MASCO and SISCO can differ, the results presented here should be interpreted
with caution with regards to any biological implications as we ignored popu-
lation structure arising between different avian host species. We additionally
assumed coalescent and migration rates to be constant over time, potentially
further biasing the inference of the root state.

While population dynamics such as changing transmission (i.e. coalescent)
and migration rates through time can greatly influence the shape of a phylogeny,
we ignored such dynamics in this study. However, compared to mugration type
methods (Lemey et al., 2009), the structured coalescent approximation intro-
duced here can be extended in a conceptually straightforward way to allow for
dynamic populations (Volz et al., 2009; Volz, 2012). The improved approxima-
tion to the structured coalescent introduced here should therefore allow for more
accurate quantification of pathogen movement in structured populations with
complex population dynamics while still being computationally efficient enough
to be applied to large datasets. Lastly, while we do not consider the special case
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of isolation-with migration (Wakeley, 2000; Nielsen and Wakeley, 2001; Hey,
2010), the here presented approaches should translate easily by i) assuming
contemporenous sampling (which is already possible) and ii) combining states
after times t1, ..., t;,—1, allowing the combined state to have new coalescent and
migration rates.

5 Materials and Methods

5.1 Principle of the structured coalescent process

The structured coalescent (Takahata, 1988; Hudson, 1990; Notohara, 1990) ex-
tends the standard coalescent by allowing lineages to occupy different states. If
we consider L; to be a random variable that denotes the state of lineage i with
state space {1,...,m}, there are m™ different possible configurations K of how n
lineages can be arranged (K = (L1 =1l1,..., Li = ljy oo, Ly = 1), l; € {1, ...,m}).
These configurations can change over time by adding and removing lineages

A

Configuration

Coalescent Event [ ]

(L1 = red, Ly = red)

Migration Event

time

(L1 = blue, Ly = red)

Coalescent Event

(L1 = blue, Ly = blue, L3 = red)

Sampling Event [ ]

(L1 = blue, Ly = blue)
(=]
Il

-

Figure S7: Events and configurations on an example tree. Here, we illus-
trate the possible events and the configurations before and after each event on
a simple tree, with time going backwards from present to past. The first two
lineages are both in state blue, i.e. the configuration is (L = blue, Ly = blue),
with lineage 1 being the parent lineage of 1 and 2 after relabelling. After a lin-
eage in state red is sampled, the configuration changes, as given in the figure. A
coalescent event in state blue then reduces the number of lineages in state blue
to 1. A migration event then causes lineage L to change state from blue to red.

or by lineages changing state. Throughout this paper, we consider time going
backwards from present to past, as typically done under the coalescent.
A migration event along one lineage i from state a to state b changes the
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configuration of lineages as follows:

(Li=1U,....Lic1 =li1,Li = a, Liy1 = lig1, ..., Lp = 1)

migration event from a to b
—
(L1 =l Licy = L1, Ly = b, iy = i, o Ly = 1)

In figure S7, this corresponds to lineage 1 in blue changing to red.
Configurations can additionally change due to sampling. Sampling events
simply add lineages, such as L3 = red is added in figure S7. Typically, we
condition on the sampling events, but one can also introduce a rate for samples
being obtained.
A coalescent event between lineage 4 and j with ¢ < j changes the configu-
ration as follows:

(L1 =li,es Licy = lioy, Ly = a, Lig1 = liga, .o
Ljfl = ljflaLj = a,Lj+1 = lj+1, ,Ln == ln)

coalescent event
—

(Ly =l s Licy = L1, Li = a, Ligy = liga, ooy
Lj—l = Zj—lij = lj+1, ~-~7Ln—l = Zn)

Lineages j + 1, ..,n are relabelled to j,...,n — 1 and lineage ¢ denotes the parent
lineage of 7 and j after a coalescent event. The most recent coalescent event in fig-
ure S7 for example changes the configuration from (L; = blue, Ly = blue, Ly =
red) to (Ly = blue, Ly = red).

The rate at which coalescent events in state a happen can be calculated from
the pairwise coalescent rate A\, in state a and the number of lineages k,(K) in
state a for a given configuration K. The pairwise coalescent rate denotes the
rate at which any two lineages in a state coalesce. For a given configuration I,
the total rate C at which coalescent events between any two lineages in the same

state happen is:
vy (ka(K)
c=> (") 1)

a=1

where (k‘lgc)) is the number of pairs of lineages in state a given configuration
K. Under the standard Wright-Fisher model, the pairwise coalescent rates, A,
are the inverse of the effective population sizes N, .

5.2 Calculating the likelihood for a tree under the struc-
tured coalescent

Structured coalescent methods typically use MCMC to integrate over possible
lineage state configurations along a tree (Beerli and Felsenstein, 2001; Ewing
et al., 2004; Vaughan et al., 2014). This is sometimes referred to as sampling
migration histories. Given a migration history, the likelihood for a tree can be
calculated under the structured coalescent with given migration and coalescent
rates. Here, we want to calculate the marginal likelihood for a tree without
sampling those migration histories, but by integrating over all possible migration
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histories H. Formally, we seek to calculate the following probability:

P(T|S,M,A) = / P(T,H|S,M,\)dH,
H

with T being the tree, S the sampling states of the tips, M the set of migration

rates and A the set of coalescent rates.

Let P.(Ly =1ly,....,L; = l;, ..., L, = 1,,T) be the probability density that the
samples more recent than time ¢ evolved according to the coalescent history,
i.e. the branching pattern, given by our tree T" between the present time 0 and
time ¢ and that the n lineages at time ¢, Lq,..., L,, are in states I1,...,[,. In
figure S7, this probability is the joint probability of a configuration at time ¢ with
the lineages being either in red or blue, and the probability of the branching
pattern and tip states being as observed between time ¢ and 0 (ignoring the
particular configurations in that time interval).

We aim to calculate P; for ¢ = tppeq, With ¢ being the time of the
root of the tree T. At the root of the tree, summing over the probability of
the remaining lineage being in any state will yield the likelihood for the tree,
P(T|S,M,A) = Zlel P ca(L1 =a,T).

In order to evaluate P; at t = t,,,.cq, We start at the time of the most recent
sample, at ¢ = 0, and iteratively calculate P, a; based on P;. To calculate F;,
we split the calculation into three parts: time intervals in the tree where no
coalescent or sampling events happen, sampling events, and coalescent events.
Below, we first consider the interval part of this calculation. Afterwards, we
calculate the contribution of coalescent and sampling events.

Interval contribution. For the interval part, we calculate P4 based on P;
allowing for no event in time step At (second line below), observing a migration
event leading to the configuration at ¢ + At (third line below), or seeing more
than one event (i.e. higher order terms which are of order O((At)?) leading to
the configuration at t + At (forth line below):

Prine(Ly =11,y Li =Ly ooy Ly = 1, T)
=P(Ly =1y, ., Ly =iy oy Ly = 1, T)(1 — MAt — CAY)

+Y> </,LaliAtPt(L1 =Ul,...Li=a,..,L, = ln,T))

=1 a=1

+ O((At)?)

Here, M is the sum of migration rates and C the sum of coalescent rates for
configuration (Ly = ly,...,L; = l;,...,L, = l,). The rate uq, denotes the rate
at which migration events from a to [; happen. Now, when re-arranging and
letting At — 0, we obtain the differential equation,

dP,(Ly =1y, ... L; = ls,....; L, = 1,,T)
dt
= —(M+C)P(Ly=1ly,...;Li =i, ... Ly =1, T)

+y ) (Malipt(L1 =l,..Li=a,...L, = ln,T)).

=1 a=1
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With explicitly writing M and C (using equation 1 for C), we obtain,

dP,(Ly =l1,...Li=1;,....; L, =1,,T)
dt

= ZZ (:U’alipt(Ll =l,..Li=a,.. L, =1,T)

i=1 a=1

— ,U/liaPt(Ll = ll, cony Ll = li7 veny Ln = ln7T)>

- Z)\a (l;a) Py(Ly=1l1,....Li = liy ..., Ly = 1, T)
a=1

(interval contribution) (2)

with the double summation on the right hand side considering the contribution
of migration and the fourth line considering the contribution of coalescence.
Further, k, = > 01,4 where § is the Kronecker delta with 6, , = 1 for L; = a
and 0 otherwise. Note that in the case of [; = a, the two terms in the migration
part cancel each other out and the net migration is 0. This interval contribution
equation allows us to calculate P; within intervals by solving the differential
equation.

It is important to note that this differential equation shows a direct link
between the coalescent process and the probability of a set of lineages being in
a configuration. For example, configurations that would favor high coalescent
rates among lineages would become less probable over intervals during which
no coalescent events occur in the tree.

Sampling event contribution. At every sampling event the state of the sam-
pled lineage is independent of all other lineages in the tree. We can therefore
calculate the probability of any configuration at a samping event at time ¢ as
follows:

P(Ly=1l,...Li =1, ..., Lyy1 = lng1,T)
= Pt(Ll = ll7 7L’L = li7 7Ln = ln;T)Pt(L7L+1 = ln+17T)

(sampling event)

In scenarios where the sampling state is known to be say a, we have P;(L,+1 =
a,T)=1and P;(Ly+1 =b,T) =0 for b # a. In cases where the sampling state
is an inferable parameter or not exactly known, this probability can be between
0orl.

Coalescent event contribution. Next, we have to calculate the probability
of the new configuration resulting from a coalescent event between lineages i
and j in state a at time t. This probability can be expressed by the following
equation:

Pt(Ll = ll, ~-~7Li = a, --~-7Ln—1 = ln,T)
= Pt(Ll == ll, 7Lz =a, ...,Lj = a, 7Ln = lnzT))\a

(coalescent event)
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Thus based on the three equations, (interval contribution), (sampling event),
(coalescent event), we can calculate the likelihood for a tree, P(T|S, M, A). We
refer to this approach as the exact structured coalescent (ESCO).

5.3 Approximations of the exact structured coalescent

Between events (sampling and coalescent), the exact structured coalescent re-
quires m™ differential equations to be solved, with m being the number of dif-
ferent states and n the number of lineages present at a point in time. To be able
to analyse datasets with more than a few states and lineages, approximations
have to be deployed.

In the exact structured coalescent, the state of a lineage i is always associ-
ated with a configuration I and the coalescent history described by the tree T
Keeping track of these configurations automatically keeps track of all correla-
tions between lineages. We will now assume that lineages ¢, 7 and k and their
states l;,1; and [ are uncorrelated, i.e.:

P,(Lj =1, L, = ly, L; = ;|T)
MAECO

P,(L; = [;|T)P,(L; = ;|T)P:(Li = lx|T)
Using this approximation, we will write down an expression for:

P(L;=1;,T) =) PR(K,T),
K\i

with > K\ being the summation over all configurations while fixing the state of
lineage 1.

The interval contribution, i.e. the change in marginal lineage state probabil-
ity over time, %Pt(Li = [;,T), can be derived from equation 2 and the above
expression employing the MASCO assumption. This derivation is explained step

by step in the supplement, and results in the following differential equation:

d
ZP(Li =1,,T) =

3)

The second line denotes the change in marginal lineage state probability due to
migration. The third line denotes the reduction in P(L; = I;,T) due to the rate
of coalescent events directly involving lineage i. The fourth line now denotes the
rate of coalescence of events that do not involve lineage i. Integrating equation 3
over time is equivalent to calculating the probability that the lineage i is in state
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l; and that all lineages evolved up to time ¢ as given by the coalescent history
T. The above equation ensures that > " P,(L; = a,T) = P,(T) for every
lineage i. This is due to the fact that P;(L; = a,T) incorporates information
about everything that happens in the tree and therefore also events not directly
involving lineage 3.

For the coalescent event contribution, we calculate the probability of lineage
i coalescing with lineage 7 in state a as,

Py(Li=a,T) = P(L; = a|T)P(L; = a|T)P(T)\a

with > | P,(L; = a,T) = P,(T) being the probability of having observed the
coalescent history T' up to time ¢, and P,(L; = a|T) = P(L; = a,T)/P(T
where P;(L; = a,T) is obtained through Eqn. 3. As with ESCO, we relabel
the indices of all lineages after each coalescent event such that the labels of n
co-existing lineages is always ¢ € {1,..,n}. Note that since we keep track of the
joint probabilities of lineages being in any state and the coalescent history T,
the probabilities of all lineages k not involved in the coalescent event have to be
updated as well, such that Y/ | P,(Ly = a,T) = P,(T) holds at every point in
time for every lineage k.

For the sampling event contribution, we simply add a lineage n+ 1 with as-
sociated probability Pi(L,4+1 = lp+1,T), such that Zl P(Lypy1 =1p41,T) =
P(T).

The likelihood for a given tree under the structured coalescent under the
MASCO approximation now is, P(T|S,M,A) = Y7 P, (L1 = a,T) =
Ptyprea(T)-

A further approximation to the interval contribution can be obtained by
ignoring the two coalescent terms in equation 3, i.e. additionally assuming in-
dependence of the lineage states from the coalescent process between events.
Thus, we assume that lineages move independent of the coalescent process be-

tween events:
SISCO

P(L; =K, T) P(L; =1;)
This allows to simplify equation 3 to:
dP, L =1)
Rl = k) => (ual Py(Li = a) = p,o P(Li = m) (4)
a=1
and:
dPy(T A -
% =-P(T)> ) Y P(Li=a)) P(L;=
a=1 “ i=1 j#i

The derivation of the two equations above is explained step by step in the
supplement. At a coalescent event between lineage i and j, the probability of
P,(T) can be updated as follows:

Pt(T) = Pt(T) i)\apt(l/i = (I)Pt<LJ = CL)

a=1

Similarly, we can calculate the probability of the parent lineage being in state
a as:
)\aPt(Li = a)Pt(Lj = a)

Pl = a) = S~ BT, = )Py (L, = b)
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The likelihood for a given tree under the structured coalescent under the SISCO
approximation now is, P(T|S,M,A) = P, ..(T)>" P, ... (L1 = a) =
P, (T).

We refer to this as the state independence approximation of the structured
coalescent (SISCO). The equations used by SISCO to calculate the state of a
lineage over time have been described previously in Volz (2012). While these lin-
eage state probabilities evolve independently of the coalescent history T" between
events, they do depend on T at sampling and coalescent events.

5.4 Application to Avian Influenza Virus

We applied the different approximations of the structured coalescent to a pre-
viously described data set of Avian Influenza Virus H7 hemaglutinen (HA) se-
quences (Lu et al., 2014), sampled from the bird orders Anseriformes, Charadri-
iformes, Galliformes and Passeriforms in Canada, Mexico and the USA. We used
previously aligned sequences from De Maio et al. (2015). The sequences were
analyzed in BEAST2 (Bouckaert et al., 2014) using an HKY+T; site model.
A strict molecular clock model was assumed and the first two and the third
codon positions were allowed to have different mutation rates. MASCO and
SISCO were used as structured coalescent population priors. The dataset was
split into 7 different states according to geographic regions in North America
(see table S1). Three parallel MCMC chains were run for 1% 107(MASCO) resp.
2 % 107(SISCO) iterations with different initial migration and coalescent rates.
After a burnin of 10%, the chains were combined and the probability of the root
being in each state was assessed. The combined chain had ESS values above 100
for any inferred probability density or parameter.

5.5 Implementation

We implemented all three approximations in one common package for BEAST2.
ESCO and MASCO use a forth order Runge-Kutta solver with fixed step size im-
plemented in the Apache Commons Math library (http://commons.apache.org)
to solve equations 2 and 3. SISCO uses matrix exponentiation to solve the lin-
eage state probabilities over time (equation 4). All three structured coalescent
methods use pairwise coalescent rates and backwards in time migration rates
as described above. In the Results section, we present simulation analyses high-
lighting the quality of the different structured coalescent approximations.

5.6 Software

Simulations were performed using a backwards in time stochastic simulation
algorithm of the structured coalescent process using MASTER, 5.0.2 (Vaughan
and Drummond, 2013) and BEAST 2.4.2 (Bouckaert et al., 2014). Script gener-
ation and post-processing were performed in Matlab R2015b. Plotting was done
in R 3.2.3 using ggplot2 (Wickham, 2009). Tree plotting and tree height analy-
ses were done using ape 3.4 (Paradis et al., 2004) and phytools 0.5-10 (Revell,
2012). Effective sample sizes for MCMC runs were calculated using coda 0.18-
1 (Plummer et al., 2006).
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5.7 Data availability

All scripts for performing the simulations and analyses presented in this paper as
well as the Java source code for the structured coalescent methods are available
at https://github.com/nicfel/The-Structured-Coalescent.git. Output files from
these analyses, which are not on the github folder, are available upon request
from the authors.
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