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ABSTRACT Inference of demography and mutation rates is of major interest but difficult because genetic data is only
informative about the population mutation rate, the product of the effective population size times the mutation rate, and
not about these quantities individually. Here we show that this limitation can be overcome by combining genetic data
with pedigree information. To successfully use pedigree data, however, important aspects of real populations such as the
presence of two sexes, unbalanced sex ratios and overlapping generations have to be taken into account. We present here
an extension of the classic Wright-Fisher model accounting for these effects and show that the coalescent process under
this model reduces to the classic Kingman coalescent with specific scaling parameters. We further derive the probability
of a pedigree under that model and show how pedigree data can thus be used to infer demographic parameters. Finally,
we present a computationally efficient inference approach combining pedigree information and genetic data summarized
by the site frequency spectrum (SFS) that allows for the joint inference of the mutation rate, sex-specific population sizes
and the fraction of overlapping generations. Using simulations we then show that these parameters can be accurately
inferred from pedigrees spanning just a few generations, as are available for many species. We finally discuss future
possible extensions of the model and inference framework necessary for applications to wild and domesticated species,
namely the account for more complex demographies and the uncertainty in assigning pedigree individuals to specific
generations.
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Demographic processes shape the genetic variation and ge-
netic structure of populations and species, but also affect
the efficacy of selection. There is thus considerable interest in
inferring past demographic events, not least to serve as a null
model for the identification of markers under selection. To this
end, several methods have been proposed to estimate past de-
mography from genetic data, and many of which are based on
coalescent theory using either likelihood methods (e.g., Hey
and Nielsen 2007; Hey 2011; Excoffier et al. 2013) or simulations
embedded in Approximate Bayesian Computation (e.g., Beau-
mont et al. 2002; Wegmann et al. 2009). In these approaches,
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the coalescent model is used to link the genetic information to
demographic parameters by integrating over the unobserved
genetic relationships between individuals in a population in a
computationally efficient way:.

While the standard coalescent approach assumes no prior
information on the true (parent-offspring) relationship between
genetic lineages, knowledge on this would bring complementary
information and hence increase estimation accuracy. Indeed, sev-
eral methods have been proposed to use pedigree information
to infer demographic processes using the increase of inbreed-
ing over time under a given reproduction model (Falconer and
Mackay 1996; Gutiérrez et al. 2008). Additionally, a method that
allows the simulation of pedigrees under a given demographic
and reproductive model and draws genealogies inside these
pedigrees was developed (Gasbarra et al. 2005), and could be
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used, in an ABC framework, for inference. However, there is
currently no general inference framework for such data.

Here we develop a maximum-likelihood method to infer
demographic parameters from both pedigree information and
genetic data summarized by the site frequency spectrum (SFS)
of a sample. We postulate that the pedigree of a sample contains
information about the demography of the population at least
partially complementary to the information contained in the
genetic data and a method exploiting the full information should
therefore improve the inference of demographic parameters.

An additional advantage of our framework is its ability to
infer effective population sizes (N,) and mutation rates () jointly.
Under the standard coalescent framework, both parameters are
simply scaling the coalescent tree and hence only their product
can be estimated, usually in the form 6 = 4N.u. Wakeley and
Takahashi (2003) showed that a joint estimation becomes feasible
if the sample size n exceeds N, since the rate of coalescence in
the first few generation is a function of the ratio n/ N, and hence
contains information about N, regardless of yi. This was later
used to infer gene specific mutation rates in humans from deep
sequencing data Nelson et al. (2012); Schaibley ef al. (2013). As
we show here, pedigree information also contains information
about N, independent of y, enabling the joint inference of both
demography and mutation rate even in case where n < N.

Pedigree information is available for many populations or
species, in particular for managed populations under conserva-
tion management or domesticated animals under active breed-
ing (e.g., Clutton-Brock ef al. 1982; Ellegren 1999; Cunningham
et al. 2001; Mc Parland et al. 2007). Yet many of these species
have important life history traits that are not reflected in the
standard Wright-Fisher model, including overlapping genera-
tions and two sexes. Additionally, in most domesticated species,
fewer males are reproducing than females but males can repro-
duce over a longer time period, spanning several generations.
While such life history traits have an impact on the response
of the population to selection and are therefore accounted for
in breeding programs Hill (1974), changes in allele frequencies
due to drift remain well described by scaling the models with
an appropriate effective population size (N,) Wright (1931); En-
gen et al. (2007). As a consequence, demographic inference in
domesticated species using coalescent theory does usually not
model overlapping generation or sex biased population sizes.

However, simple scaling does not extend to models incorpo-
rating pedigree information. To address this, we present here a
Wright-Fisher-based diploid two-sex model with overlapping
generation well describing pedigrees observed from domesti-
cated breeding programs. We then show how this model results
in a simple scaling of the standard coalescent in the absence of
pedigree information and derive some analytical and numerical
solutions to obtain estimates of the model parameters using the
information contained in the SFS and pedigree data jointly. This
also allows for the estimation of important life history charac-
teristics such as the degree of overlapping generations and sex
specific population sizes from such data.

The Model

To account for life history traits very common in animal popu-
lations, we extend the classic Wright-Fisher model to a diploid
species with two sexes and overlapping generations. Our model,
which is schematically depicted in Figure 1, assumes discrete
generations consisting of Ny female and N, male individuals.
We further assume random mating in that in each generation,
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Figure 1 Graphical representation of the proposed two-sex
model with overlapping generations. Shown are female (cir-
cles) and males (squares) individuals along with their parent-
offspring relationships (black edges). The doted boxes on each
side represent the female and male gamete storages populated
with gametes of individuals from the pedigree. or the individ-
uals of generation 0 (grayed) genetic data is available and the
thick lines represent the genealogy of these individual. Dotted
lines indicate the part of the genealogy before gnax for which
the continuous time approximation is used. The tick mark on
the time scale represent the depth of this pedigree, d = 3.

and going backward in time, each individual picks a random
female and male individual of the previous generation as mother
and father, respectively.

We model overlapping generations by allowing individuals
to pick their parents not from the directly preceding generation
but from an earlier one with probabilities b; and by, for female
and male parents, respectively. In this case, however, the choice
of the actual distant parent is delayed and the lineage is just
stored. In biological terms, these stored lineages thus represent
gametes of a defined sex from previous generations, and we will
refer to this compartment as “gamete storage” in the following.
At the beginning of a generation, the so stored gametes then
pick a parent in the current generation with probabilities 1 — b
and 1 — by, and otherwise remain in storage, which implies
that the number of generations between parents of offspring are
exponentially distributed.

For simplicity, we will considered here only the case of con-
stant population sizes N¢, Ny, and probabilities to jump a gener-
ation by, b iz but we note that relaxing this assumption is straight
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forward under the inference framework introduced below.

Derivation of the coalescent

Two-sex models were previously shown (Mohle 1998) to be ap-
proximated accurately by the time-changed Kingman coalescent
(1982). Similarly, Blath et al. (2013) recently showed that models
with overlapping generations also result in a simple scaling of
the classic coalescent if the average time lineages spend in stor-
age is relatively small compared to the waiting time between
coalescent events. Here we derive the appropriate scaling for
the model introduced above.

We begin with the rate of coalescent and note that only the lin-
eages that are in individuals of the real populations can coalesce,
whereas lineages currently stored for later use have first to re-
enter the real populations. To obtain the fraction of lineages that
can coalesce with each other, we obtain their relative distribution
at equilibrium in the following four possible compartments: the
real female (R 1) and male (R;;) populations as well as the female
(By) and male (By,;) gamete storages (Supplementary Figure 51)
using the following system of difference equations:

ABy = Ry + Rp% — By(1 — by)

ARm*Bm(I*bm)+Rf1 L Rmb Rmz 7Rm1 by
ABf—Rf +Rm2 —]ffgl—bf)b . .
ARf—Bf(l—bf)-i-Rm == Rf%_Rme_Rf .,

The global rate of coalescence Pr(Coal) is then given by sum
of the per compartment rates weighted by the fraction of lineages
residing in them. Since the coalescent rates are zero in the gamete
storages and 1/2N ¢ and 1/2N,;, in R £ and R, respectively, we
have

1 (1—bp)? ?
(Coal) 2Nf I:(l _ bm) 4 (1 _ bf):|

1 a-b2 |

Y oN, [T b+ (=5 |

In accordance with previous results for two-sex (Mohle 1998)
or seed bank (Kaj et al. 2001) models, the obtained rate reduces
to
1Nu+N f
Coal —_—
P(Coal) = 2 2NN
if bf = b, =0, and to

(1—0b)*> Nm + Ny

]P(Coal) = > m .

ifby = b =b.

Following Kingman'’s approach, the distribution of time of
coalescent under our model is T; ~ exp (é) with time scaled in
2N, with

N¢Np(2 = by — by)?

Nf(l — bm)4 + Nm(l — bf)4

We next derive the rate of novel mutations in the presence of
overlapping generations. Importantly, the number of germ-line
mutations may not scale linearly with time, as, especially in
females, most of these mutations occur during early develop-
ment (Crow 2000). We model this effect using two mutation
rates: u for the part of the branches connecting real individuals

N, =

and p* = ey for the time spent in the gamete storage. From
the compartment model introduced above, we obtain the aver-
age fraction of time t; that linages spend in one of the gamete
storages as

BerBm
Rf—i-Rm—f—Bf—‘er

_ bf 72bfbm + by
(1=bm)+(1—0f)’

which results in an average effective mutation rate fi per genera-
tion:

ty, =

bf*bebm+bm
i=u-+ — &)l
F=r Ty a—by

Inference

We introduce here a Maximum Likelihood (MLE) method to
infer jointly the demographic 6; = {N¢, Niu, bs, by } and muta-
tional 6, = {y, ¢} parameters of the model introduced above.
This estimation is based on genetic data summarized by the site
frequency spectrum (SFS) and available pedigree information
in terms of child-parent relationships (filiation) that form one or
several connected networks spanning two or more generations
(P). The relevant likelihood function can be decomposed as

L(M) = Pr(SES|P,0,,60m) Pr(P|6,)
=) [Pr(SFS|G, 0,) Pr(G|P,0,)] Pr(Pl6;), (1)
G

where the sum runs over the unknown genealogies G repre-
senting the genetic relationships between all sampled individu-
als up to the the most recent common ancestor (MRCA). While
the pedigree and the genealogies share similar features, they
should not be confused.

In the following sections, we will first derive each term of
the likelihood function individually, and then give a detailed
description of an inference framework under this model.

The Pedigree

Let Pg be the way in which the individuals of generation g — 1
in the pedigree are assigned to their parents in generation g.
Note that generations as well as the choice of the mother and
the father are independent, and hence that

,P‘Gd H PI‘ Pg|9d H Pr(Pf,g|9d) PI‘(Pm,g
g>1 g>1

gd)/ (2)

where Py , and Py, represent the assignment of individuals to
their mothers and fathers respectively.

The pedigree spans between the generation of the most recent
individual g = 0 and the generation of the last known parent
that we call gpax. To derive the probability of the pedigree,
we consider all individuals at generation 0 in the pedigree as
numbered (i.e. identifiable). These individuals then choose their
parents from the previous generation, but are constrained in
their choices by the pedigree. The so chosen parents become
identifiable themselves and in turn choose the parents from
the previous generation according to the pedigree information
of that generation. This process continues until the top of the
pedigree is reached.

Here we will derive Pr(Py ,[6;) for this process for the indi-
viduals of generation ¢ — 1, of which exactly By, 1 will enter
the gamete storage with probability b as their mother is from
a distant generation. Among the B . ¢—1 that choose a mother

Joint inference of demography and mutation rates from polymorphism data and pedigrees 3


https://doi.org/10.1101/091090
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/091090; this version posted December 2, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

from generation g, the first individual of each of the M, groups
of siblings chooses a distinct mother from the population, which

they do in turn with probabilities 1, N{\,—;l, LY gMg . The M, so
chosen mothers, which have become identifiable themselves, are
chosen by their remaining offspring with probability Nif each.

The resulting probability of this process is

Bf/s'*l*Mg )
P(,Pf,é‘gd) =g <I\1[f> bef,gq (1 _ bf)Bf,g,ll ®)

where we used the notation
N r !

Afe = M :
NS (Nf = My)!

The same holds true analogously for IP(Py,¢|64) by replacing
the subscript f by m and using Fg, the number of fathers in
generation g, instead of M.

A maximum likelihood estimate of N [Z Ny, bf and by, is
easily obtained by taking the first derivative of the logarithm eq.
2. For by, thies yields

8Max SMax 1
Zglil Bfg-1 B Zglil Bfg-1
b 7 1-0 f) !
which admits the maximum likelihood estimate
§Max
Zglil B f.g—1

SMax P 4
LSt Brg-1+Brg

d
@logﬂ’(?wd) =

by =
and analogously for by,. For N Iz the first derivative is

8Max

d o Bf,gfl
d—Nflog]P(Pwd)fg;}"(Nf)—f(Nf—Mg)— N, 4)

where F is the digamma function defined as the logarithmic
derivative of the factorial function. As the population size is a
finite natural number, the maximum of this probability, if finite,
can be easily found numerically using dichotomy.

Genetic data

Coalescence is the merging of two or more genetic lineages. In a
diploid population, an offspring may inherit one of two possible
chromosomes of each parent. There are thus 2/ ways in which
I offspring lineages can be assigned to the two chromosomes
of a single parent (Figure 1). Enumerating all possible genealo-
gies constraint by even a small but fully resolved pedigree, as
done for two lineages in Wakeley et al. (2012), is computation-
ally already very challenging for large sample sizes, and easily
becomes prohibitive if the pedigree is only partially known. We
thus chose to turn to simulations to evaluate the sum in eq. 1, as
is commonly done in the absence of pedigree information (e.g.
Excoffier et al. 2013; Nielsen 2000; Nelson et al. 2012):

1
Y [Pr(SFS|G, 0,) Pr(G|P,6,)] ~ N, Y Pr(SFS|G = §,64,6m),
G 8

where the genealogies ¢ ~ Pr(G|P,0;,0y,) are simulated
under model parameters M and constrained by the pedigree P.

4 F. Parat et al.

Simulating genealogies inside a pedigree is straight forward
and only requires binary choices when following lineages back-
ward in time through the pedigree. In case of only partial pedi-
gree information, lineages reaching parents of which only one
or none of the parents are known choose their unknown par-
ents randomly from the whole population, or enter the gamete
storage (Figure 1). Since it is required to keep track of all these
choices, the simulations become rather time consuming in case of
limited pedigree information. At a certain generation in the past
we term g\, the pedigree does not contain any information
about ancestors anymore and the genealogy is then only con-
straint by the parameters of the model. As .« is often reached
long before the MRCA, we make use of the appropriately scaled
coalescent approximation introduced above to simulate the ge-
nealogies from gnax backwards to the MRCA (Figure 1).

To calculate Pr(SFS|G = g, 0,,), the probability of the genetic
data summarized by the SFS given a genealogy g, we use the
classic infinite site mutation model with Poisson distributed
mutations at rate i per site. Under this model, the probability
that a mutation results in a derived sample allele frequency of i
is given by the summed length L; of all branches with i leaves
and the probability of the SFS is thus given by a multinomial
distribution

pSLSt L Lo

_ — AL
Pr(SFS|IG=g M) =e S

®)
where §; is the number of segregating sites being shared by i
chromosomes in the sample of size n and L the total length of
the genealogy g (Fu 1998). We note that the branch lengths L; are
measured in mutational generations, and hence all generations
spent in the gamete storage only add e to the total length.

The maximum likelihood estimate of /i can be obtained ana-
lytically by differentiating the logarithm of eq. 5, which yields
the estimator

H= 7’
where L is the total length of the genealogy in mutational
generations. In the absence of pedigree information, for instance
for the part of the genealogy simulated under the coalescent
approximation, the total length of the genealogy is only available
measured in generations. In this case, the ML estimate becomes

(1-b)s
4N.Lc ~
where L. is the total length of the genealogy in coalescent time

(i.e., in 6 generations) and b and N, are the ML estimates of b
and N,, respectively.

i = (6)

Inference algorithm

An exact analytical or numerical solution for the joint maximum
likelihood of all parameters is not available. We will therefore
combine some of our analytical derivations with numerical eval-
uations to perform an MCMC-MLE inference as follows:

1. We sample vectors of demographic parameters G;i) ~
Pr(64]P),i =1,...,1 from their joint posterior distribution
given the pedigree using an MCMC framework.

2. For each sampled vector of parameters 9;“, we simulate

G = 100 genealogies constraint by the pedigree P.
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Figure 2 Power of parameter inference as a function of pedigree depth. Shown are the mean and standard deviation over 10 simu-
lated datasets. The true parameter values used for all simulations (A) Ny, = 500, (B) Ny = 500, (C) b = 0.2, and (D) p = 5 x 1072 are

indicated by gray horizontal lines.

3. For each Gtgi) we then compute the MLE estimate i@ ac-
cording to eq. 6 using the sampled genealogies.

4. Finally, we compute the joint likelihood of all model param-
eters for each pair of 9(5,1) and i) according to eq. 1, again
using the simulated genealogies.

Our inference scheme is thus closely related to a grid search
on the model parameters where we make use of the pedigree
information to conduct the simulation based likelihood evalua-
tion at promising locations only. The proposed combination of
MCMC sampling and MLE is possible because the population
size is constant and the maximum likelihood of fi does only
depend on the total length of the genealogies and not on their
topology. As shown in the results, our MCMC-MLE method is
an efficient compromise between speed and accuracy. Further
advantages and limitations are discussed in the last section of
the article.

The MCMC sampling in step 1 is implemented using a stan-
dard Metropolis algorithm (Metropolis et al. 1953) in which a
single parameter is updated per iteration using a Gaussian pro-
posal kernel mirrored at prior limits. We use uniform priors on
all parameters except the population sizes for which we use log-
uniform priors and propose updates on the logarithmic scale
during the MCMC to account for their prior easily spanning
several orders of magnitude.

For all the runs presented here, we run the MCMC for
4.5 x 10° steps thinned out to keep only every 500th param-
eter combination, of which the first 200 were discarded as a
burn-in (resulting in 8800 sampled parameter vectors 6;). We
use a normal distribution for the kernel of all three estimated
demographic parameters (N¢, Ny, and b). The MCMC param-
eters relative to each of these demographic parameters can be
found in the supplementary Table S1. The implementation of
the method in C++ is available upon request.

Simulations

To test the performances of our inference method, we used a
custom R script to simulate pseudo observed datasets (PODs)
consisting of a pedigree and a corresponding SFS for a sam-
ple of 50 individuals, unless specified differently. The pedigree
includes all ancestors of the sampled individuals until the pre-
defined depth d as well as the parents of all lineages in gamete
storage at generation d (Figure 1). Thus, the generation of the
oldest individual contained in the pedigree g« is such that

8Max = d. We set by = by, = b for all simulations and generated

an SFS by simulating 2000 loci of 10 kb each with y = 5 x 10~°
and e = 0.

We first used simulations to assess the benefit of having pedi-
gree data as a function of the pedigree depth across 10 indepen-
dently generated PODs with demographic parameters realistic
for domesticated breeds (N = 5000, N;; = 500 and b = 0.2). As
shown in Figure 2, our method is capable of accurately disen-
tangling the effects of the mutation rate and population sizes on
genetic diversity already if limited pedigree information is avail-
able. Indeed, reliable estimates are obtained for all parameters
including sex-specific population sizes, the frequency of over-
lapping generations as well as the mutation rate if a pedigree of
depth four or more is used (Figure 2).

o050 00

500 1000 2000 5000 10000 _>

Estimated N;
Estimated b

100 200

: . . . . . . . .
500 1000 2000 5000 10000 0.05 0.10 0.20 050
True Ny True b

T T
100 200

Figure 3 Estimated (A) N, in function of simulated N, and
(B) b in function of simulated b, in log-log scale. The vertical
bares represent the standard deviation over 10 datasets. The
gray diagonal marks the identity line.

Interestingly, the rate of overlapping generations b is esti-
mated well across the whole parameter range in the presence of
sufficient pedigree data (Figure 3), but smaller population size
seem to be consistently estimated more accurately than lager
sizes. This is visible as a reduced accuracy in the inference of
the female compared to male size in Figure 2, but also occurs
if the population sizes of both sexes are equal (Figure 3 and
4). We explain this as follows. The information about the pop-
ulation size of a pedigree is mostly contained in individuals
sharing parents (i.e., half or full siblings). If the population is
large but the number of individuals in the pedigree relatively
small, few to no siblings are observed and the power to esti-
mate the population size decreases. Indeed, when there are no

Joint inference of demography and mutation rates from polymorphism data and pedigrees 5


https://doi.org/10.1101/091090
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/091090; this version posted December 2, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

A. N;,=N, =100 B. N

N,, = 500

C.

<

N;= N, = 5000

S 1@ . - 31 @ e - . 31 @ @ o -
. ™ e o .. ® o .. ...
o ° o . .‘ o - ® © o -.

o _| o _| o _|

1@ e - L1710 @ o - 10 ® oo

o o o

- @0 - | I | @@°--| : @@ oo.

1 @@ ¢ 1@ @ o 1@ © @O--
QO - ® 0 o-- ® @ oo

-1 @@ ®-- - 1@ @ 0c-| 1@ @ @00
| | L | | L | | L

Depth Depth Depth
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siblings in the pedigree, the likelihood of the population size
increases monotonously but reaches a kind of plateau before the
true value is reached (e.q. 4). This leads to an overestimation of
the population size in the absence of genetic information and the
inability to disentangle N, from y if such data is available. As
an example, consider the posterior distributions shown in Sup-
plementary Figure S2 for the case of Ny = 5,000 and a pedigree
depth of one.

We next quantified the effect of pedigree depth and width
(number of individuals at g = 0) on the accuracy of inferring
population sizes. Maybe not surprisingly we found that much
more information is contained in small but deep compared to
large but shallow pedigrees (Figure 4). Indeed, increasing the
width beyond just a handful of individuals seems to hardly
reduce estimation accuracy except for very small population
sizes, probably due to the oversampling effect described by
Wakeley and Takahashi (2003).

The reason for this is that the number of individuals included
in a completely resolved pedigree is growing rapidly with each
generation going further back into the past (Derrida et al. 2000,
Supplementary Figure S3), and so are the number of observed
parent-offspring relationships informative about population size.
Indeed, around 80% of the whole population is included in a
complete pedigree of width 50 individuals at only few genera-
tions in the past, depending on the population size. At a depth of
four, which we found to result in good estimates, about 7.5% or
750 individuals will be part of the complete pedigree of 50 indi-
viduals from a population of 10,000 individuals (Supplementary
Figure S3).

Discussion

Here we developed a model explicitly accounting for two sexes
and overlapping generations. Under this model, genealogies fol-

6 F. Parat et al.

low a standard coalescent provided that time is rescaled appro-
prietely and that expected coalesce times are much larger than
the expected number of generations between parents and off-
spring, which is generally true under realistic parameter values.
This new model allowed us to infer parameters jointly from ge-
netic data and pedigree information. Using simulations we then
show that including pedigree information not only improves the
estimates of demographic parameters, but also allows to disen-
tangle the effects of demographic and mutational processes on
genetic diversity and hence to estimate these processes jointly.
Indeed, our simulations show that with pedigree information
of 50 individuals tracing back four generations is sufficient to
obtain accurate joint estimates of male and the female effective
population sizes, the proportion of overlapping generations and
the mutation rate. Importantly, obtaining this amount of pedi-
gree information is realistic for many populations of interest. For
example, such pedigrees are available for several human popu-
lations (e.g., Hussin et al. 2015), for many domesticated animals
breed of cattle and horses (e.g., Cunningham et al. 2001; Mc Par-
land ef al. 2007) and for some wild animals (e.g., Clutton-Brock
et al. 1982; Ellegren 1999).

However, we note that the amount of pedigree information
required for accurate inference does depend on the population
size with more data being required for larger populations. This
stems from the fact that most of the information about the pop-
ulation size contained in a pedigree depends on the number of
individuals sharing common ancestors. As a random sample is
expected to contain less such individuals in a large population
than in a smaller one, it will contain less information. Since
the number of common ancestors increases more rapidly with
the depth than the width of a pedigree, deep pedigrees of a
few individuals contain much more information than shallow
pedigrees of many individuals. As we discussed, the number
of distinct ancestors in previous generations rapidly decreases
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with depth and reaches about 80% of the population within only
few generations (Derrida et al. 2000, , Supplementary Figure S3).
However, these results consider a complete pedigree and are
expected to be mitigated in presence of missing information.

Having only little pedigree data available will make it diffi-
cult to disentangle the effect of mutation and drift. A particular
characteristic of such a situation is that the posterior distribution
of the population sizes given the pedigree data alone will be
very flat and often extend to very large population sizes. In such
cases, the samples generated with our MCMC will likely not be
distributed densely enough around the joint MLE to warrant ac-
curate inference. In the extreme case of no pedigree information,
the joint likelihood surface of the mutation rate and population
sizes will form a ridge and the estimate produced by our stochas-
tic inference method will single out a random combination not
necessarily reflective of the true parameters. However, as we
have show, already limited pedigree information of a few indi-
viduals over a few generations is sufficient to result in accurate
inference.

While our theoretical and simulation results are very promis-
ing, we note that its application to real data may present some
challenges. Firstly, the concept of generation, while convenient,
is an artificial construct to discretize time that has little biolog-
ical meaning for many long lived species. As a consequence,
attributing the individuals of a pedigree to specific generations
can be difficult. However, it is possible to extend our inference
framework to also integrate over the attribution of individuals
to generations as

L(M):/;[H’(SFS|G,M)]P(G|P,M)]]P(PIM)]P(P*IP)dP,

where we denote by P* the pedigree data without generation
information (hence only relationships). Here, Pr(P*|P) = 1
if the pedigree P is compatible with P*, that is, if all parents
are from an older generation than all of their offspring and
the most recently born individual is from generation 0, and
Pr(P*|P) = 0 otherwise. Unfortunately, none of the parameters
MLE is trivial to derive because finding the maximum of this
likelihood function implies finding the optimal set of pedigrees
P. However, an MCMC method sampling such pedigrees can be
envisioned to infer parameters under such an extended model.

Secondly, demographic events such as population size
changes, migration between populations or complex mating
systems, e.g., monogamy or harem models, may be needed
to describe real populations. The introduction of such demo-
graphic events in the discrete generation pedigree model is fairly
easy. For example, population size changes can be directly im-
plemented in eq. 3 by using generation specific values of Ny and
Ny The way demographic events shape coalescent processes
is well described for many cases and they apply to our model if
appropriately scaled. Complex mating systems or reproductive
skew are well described for generation by generation models
(Gasbarra et al. 2005) and some non-standard coalescent models
are known to arise in these cases (Eldon and Wakeley 2006). In
less extreme cases, specific mating systems can be well approxi-
mated by strongly skewed sex ratio (Nunney 1993) which our
model already incorporates in its current form. It is important
to note that inference under complex demographic scenarios
is unlikely to work well with the MCMC-MLE approach intro-
duced here as the pedigree may not have information for all
demographic parameters, resulting in a bad proposal for the
grid search. However, it is straight-forward to embed our model

’

in an MCMC framework sampling from the joint posterior dis-
tribution.

In conclusion, we presented here a new model and some
theoretical results on how to combine pedigree and genetic infor-
mation for the inference of demographic and mutational process
and showed that these processes can be disentangled if sufficient
pedigree information is available. This is widely unexplored
territory as most methods use individual or genealogy based
models. But the availability of both pedigree and genetic data
for many species, in particular domesticated animals, motivates
the development of methods that combines such data. While
an application to real data may pose additional challenges, our
work is a first step towards such a method and extensions of
our approach to more complex demographies and other features
of real populations are readily possible. If done properly, the
application of these to real data has the potential to give us deep
insight into the mutational process in natural populations.

Acknowledgements

We thank Dr. Christoph Leuenberger for helpful discussions on
the early version of the model. FP and AT acknowledge support
from the German Federal Ministry of Education and Research
(BMBF) within the AgroClustEr ‘Synbreed-Synergistic plant and
animal breeding’ (grant no. 0315528I). The work of S. M. Szilagyi
was supported by the Jdanos Bolyai Fellowship Program of the
Hungarian Academy of Sciences.

Literature Cited

Beaumont, M. A., W. Zhang, and D. J. Balding, 2002 Approxi-
mate Bayesian Computation in Population Genetics. Genetics
162: 2025-2035.

Blath, J., A. G. Casanova, N. Kurt, and D. Spano, 2013 The
ancestral process of long-range seed bank models. Journal of
Applied Probability 50: 741-759.

Clutton-Brock, T. H., F. E. Guinness, and S. D. Albon, 1982 Red
Deer: Behavior and Ecology of Two Sexes. University of Chicago
Press.

Crow, J. F,, 2000 The origins, patterns and implications of human
spontaneous mutation. Nature Reviews Genetics 1: 40—47.
Cunningham, E. P, J. J. Dooley, R. K. Splan, and D. G. Bradley,
2001 Microsatellite diversity, pedigree relatedness and the con-
tributions of founder lineages to thoroughbred horses. Animal

Genetics 32: 360-364.

Derrida, B., S. C. Manrubia, and D. H. Zanette, 2000 On the
Genealogy of a Population of Biparental Individuals. Journal
of Theoretical Biology 203: 303-315.

Eldon, B. and ]. Wakeley, 2006 Coalescent Processes When
the Distribution of Offspring Number Among Individuals
Is Highly Skewed. Genetics 172: 2621-2633.

Ellegren, H., 1999 Inbreeding and Relatedness in Scandinavian
Grey Wolves Canis Lupus. Hereditas 130: 239-244.

Engen, S., T. H. Ringsby, B.-E. Sether, R. Lande, H. Jensen, M. Lil-
legérd, and H. Ellegren, 2007 Effective Size of Fluctuating
Populations with Two Sexes and Overlapping Generations.
Evolution 61: 1873-1885.

Excoffier, L., I. Dupanloup, E. Huerta-Séanchez, V. C. Sousa, and
M. Foll, 2013 Robust Demographic Inference from Genomic
and SNP Data. PLoS genetics 9: e1003905.

Falconer, D. S. and T. F. C. Mackay, 1996 Introduction to Quantita-
tive Genetics. Longman, Google-Books-ID: 7ASZNAEACAA].

Fu, Y.-X., 1998 Probability of a Segregating Pattern in a Sample
of DNA Sequences. Theoretical Population Biology 54: 1-10.

Joint inference of demography and mutation rates from polymorphism data and pedigrees 7


https://doi.org/10.1101/091090
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/091090; this version posted December 2, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Gasbarra, D., M. J. Sillanpdd, and E. Arjas, 2005 Backward simu-
lation of ancestors of sampled individuals. Theoretical Popu-
lation Biology 67: 75-83.

Gautiérrez, J. P, I. Cervantes, A. Molina, M. Valera, and F. Goy-
ache, 2008 Individual increase in inbreeding allows estimating
effective sizes from pedigrees. Genetics, selection, evolution:
GSE 40: 359-378.

Hey, J., 2011 Isolation with Migration Models for More Than Two
Populations. Molecular Biology and Evolution 27: 905-920.
Hey, J. and R. Nielsen, 2007 Integration within the Felsenstein
equation for improved Markov chain Monte Carlo methods
in population genetics. Proceedings of the National Academy

of Sciences 104: 2785-2790.

Hill, W. G., 1974 Prediction and Evaluation of Response to Se-
lection with Overlapping Generations. Animal Production 18:
117-139.

Hussin, J. G., A. Hodgkinson, Y. Idaghdour, ].-C. Grenier, J.-P.
Goulet, E. Gbeha, E. Hip-Ki, and P. Awadalla, 2015 Recombina-
tion affects accumulation of damaging and disease-associated
mutations in human populations. Nature Genetics 47: 400—
404.

Kaj, I., S. M. Krone, and M. Lascoux, 2001 Coalescent Theory for
Seed Bank Models. Journal of Applied Probability 38: 285-300.

Kingman, J., 1982 The coalescent. Stochastic Processes and their
Applications 13: 235-248.

Mc Parland, S., J. F. Kearney, M. Rath, and D. P. Berry, 2007
Inbreeding trends and pedigree analysis of Irish dairy and
beef cattle populations. Journal of Animal Science 85: 322-331.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, 1953 Equation of State Calculations by Fast
Computing Machines. The Journal of Chemical Physics 21:
1087-1092.

Mohle, M., 1998 A convergence theorem for Markov chains
arising in population genetics and the coalescent with selfing.
Advances in Applied Probability 30: 493-512.

Nelson, M. M. R, D. Wegmann, M. G. M. Ehm, D. Kessner, P. S.
Jean, C. Verzilli, J. Shen, Z. Tang, S.-A. Bacanu, D. Fraser,
L. Warren, J. Aponte, M. Zawistowski, X. Liu, H. Zhang,
Y. Zhang, J. Li, Y. Li, L. Li, P. Woollard, S. Topp, M. D. Hall,
K. Nangle, ]. Wang, G. Abecasis, L. R. Cardon, S. Zéllner, J. C.
Whittaker, S. L. Chissoe, ]J. Novembre, and V. Mooser, 2012
An abundance of rare functional variants in 202 drug target
genes sequenced in 14002 people. Science 337: 100-104.

Nielsen, R., 2000 Estimation of population parameters and re-
combination rates from single nucleotide polymorphisms. Ge-
netics 154: 931-42.

Nunney, L., 1993 The Influence of Mating System and Overlap-
ping Generations on Effective Population Size. Evolution 47:
1329-1341.

Schaibley, V. M., M. Zawistowski, D. Wegmann, M. G. Ehm, M. R.
Nelson, P. L. St Jean, G. R. Abecasis, J. Novembre, S. Zoéllner,
and J. Z. Li, 2013 The influence of genomic context on mutation
patterns in the human genome inferred from rare variants.
Genome research 23: 1974-84.

Wakeley, J., L. King, B. S. Low, and S. Ramachandran, 2012 Gene
Genealogies Within a Fixed Pedigree, and the Robustness of
Kingman’s Coalescent. Genetics 190: 1433-1445.

Wakeley, J. and T. Takahashi, 2003 Gene genealogies when the
sample size exceeds the effective size of the population. Molec-
ular biology and evolution 20: 208-213.

Wegmann, D., C. Leuenberger, and L. Excoffier, 2009 Efficient
approximate Bayesian computation coupled with Markov

8 F. Parat et al.

chain Monte Carlo without likelihood. Genetics 182: 1207-18.
Wright, S., 1931 Evolution in Mendelian Populations. Genetics
16: 97-159.


https://doi.org/10.1101/091090
http://creativecommons.org/licenses/by-nc/4.0/

	The Model
	Derivation of the coalescent

	Inference
	The Pedigree
	Genetic data
	Inference algorithm

	Simulations
	Discussion
	Acknowledgements

