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Abstract: 24 

Spinner dolphins (Stenella longirostris) and spotted dolphins (S. attenuata) show high 25 

intraspecific morphological diversity and endemic subspecies in the eastern tropical 26 

Pacific Ocean (ETP). Previous studies of mitochondrial DNA (mtDNA) have found low 27 

genetic differentiation among most of these groups, possibly due to demographic factors, 28 

ongoing gene flow, and/or recent divergence. These species were heavily depleted due to 29 

bycatch in the ETP yellowfin tuna fishery. Because population structure is important for 30 

accurate management of the recovery of these species, we collected whole mitochondrial 31 

genome sequences from 104 spinner and 76 spotted dolphins to test structure hypotheses 32 

at multiple hierarchical levels. Our results showed significant differences between 33 

subspecies of spotted (FST: 0.0125; P =  0.0402) and spinner dolphins (FST: 0.0133; P =  34 

0.034), but no support for the division of existing offshore stocks of spotted dolphins or 35 

Tres Marias spinner dolphins. We compare these results to previous results of genome-36 

wide nuclear SNP data and suggest high haplotype diversity, female dispersal, male 37 

philopatry, or relative power of the two datasets explains the differences observed. Our 38 

results further support a genetic basis for biologically meaningful management units at 39 

the subspecies level, and provide a critical component to mitigating historical and 40 

continued fishery interactions. 41 
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Introduction: 42 

Determining population genetic structure is important for accurately managing protected 43 

wildlife species (Taylor 2005). Because mitochondrial DNA (mtDNA) is more abundant 44 

in cells and has a higher rate of mutation - thus accruing variability on a time-scale 45 

typical of population divergence – it has been the preferred marker for population genetic 46 

studies of wildlife (Moritz 1994; Allendorf 2017). Moreover, because of the strictly 47 

maternal inheritance of mtDNA, comparing the strength of genetic structure between 48 

mtDNA and nuclear DNA (nuDNA) can provide valuable insights into maternal genetic 49 

structure and sex-bias dispersal in wildlife populations (Moritz 1994). Mitochondrial 50 

DNA data are particularly useful for species with strong matrilineal social structure – 51 

such as several toothed whale species (i.e., killer whales, sperm whales, and pilot whales). 52 

In cetaceans, whole mtDNA genome (mitogenome) sequencing has provided additional 53 

clarity species-level population structure and phylogeographic patterns where single 54 

mtDNA markers have not (Archer et al. 2013; Morin et al. 2010). We expanded upon 55 

previous mtDNA datasets and include the whole mitochondrial genome to test for 56 

population structure in two species of dolphin. 57 

  58 

Fisheries bycatch is arguably the largest threat facing cetaceans today (Read et al. 2006). 59 

One of the largest fisheries bycatch events in history occurred in the eastern tropical 60 

Pacific Ocean (ETP) and heavily impact pelagic spinner and spotted dolphins in this area. 61 

These two species were abundant (numbering in the low millions) in the ETP (Wade et al. 62 

2007), but because both species commonly associate with one-another and with large 63 

tuna (see Scott et al. 2012 for details), bycatch in the dolphin-set tuna purse-seine fishery 64 

starting in the 1960s killed hundreds of thousands annually (Lo and Smith 1986, National 65 

Research Council 1992, Wade 1995). Despite protection under the U.S. Marine Mammal 66 

Protection Act of 1972 and multi-national protection under the 1999 Agreement on the 67 
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International Dolphin Conservation Program (Joseph 1994, Gosliner 1999), ETP spinner 68 

and spotted dolphin population abundances remain low (Wade et al. 2007, Gerrodette et 69 

al. 2008). Determining how populations are naturally structured in the ETP is critical to 70 

accurately managing the recovery of these populations. 71 

 72 

ETP Spinner Dolphins 73 

Globally, there are four subspecies of spinner dolphin (Stenella longirostris). The 74 

nominate form, the pantropical spinner (S. l. longirostris) inhabit in all tropical waters of 75 

the world outside the ETP. Pantropical spinners are usually associated with islands in the 76 

central and western Pacific, such as the Hawai‘ian Islands. In shallow waters of Southeast 77 

Asia, there is a much smaller dwarf spinner subspecies (S. l. roseiventris) (Perrin et al. 78 

1989, 1999). The Central American spinner dolphin (S. l. centroamericana) and the 79 

eastern spinner dolphin (Stenella l. orientalis) are endemic to the ETP (Fig. 1, based on 80 

Perrin 1985). Analyses of external coloration, body size, and the extensive analyses of 81 

cranial morphology lead to the erection of these ETP subspecies (Perrin et al. 1991, 82 

Douglas et al. 1992). The Central American subspecies is found off the Pacific coasts of 83 

Southern Mexico south through Panama, in relatively near-shore waters. The eastern 84 

spinner dolphin (S. l. orientalis), on the other hand, inhabits offshore waters that extend 85 

from Baja California, Mexico, south to Ecuador (Perrin 1990).  86 

 87 

For management purposes, the two ETP endemic spinner dolphin subspecies are 88 

considered stocks, plus a third stock - the whitebelly spinner.  The "whitebelly" spinner is 89 

proposed to represent a hybrid swarm between the eastern subspecies and the pantropical 90 

subspecies of the central and western Pacific (Perrin et al. 1991). Taxonomically, it is 91 

classified as part of the nominate (pantropical) spinner subspecies S. l. longirostris. 92 

Significant geographic overlap exists between the eastern subspecies and the whitebelly 93 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/091215doi: bioRxiv preprint 

https://doi.org/10.1101/091215


 5

form (Perrin et al. 1985) (See Fig. 1). Finally, a distinct morphotype of the eastern 94 

spinner dolphin, known as the "Tres Marias" spinner dolphin, has been described from 95 

near the islands of the same name off the coast of Mexico. These were thought to be a 96 

distinct type based on external body morphometrics (Perryman and Westlake 1998). 97 

 98 

Some molecular genetics approaches have not found genetic structure corresponding to 99 

the subspecific morphological differences (Dizon et al. 1994, Galver 2002). Andrews et 100 

al. (2013) estimated high levels of gene flow between subspecies in the ETP using 101 

autosomal and mitochondrial genes and found a shared Y chromosome haplotype in the 102 

eastern and Central American subspecies that was not found in the pantropical or dwarf 103 

subspecies. Interestingly, this locus was found to be polymorphic in whitebellies, 104 

supporting the hypothesis of introgression in this form (Andrews et al. 2013). The 105 

authors proposed that sexual selection was driving the divergence of spinner dolphins in 106 

the ETP. Recently, Leslie and Morin (2016) found strong population structure within 107 

both species using genome-wide SNP data. 108 

 109 

 110 

ETP Spotted Dolphins 111 

The pantropical spotted dolphins (Stenella attenuata) in the ETP is split into two 112 

subspecies based on morphometric analyses: a coastal endemic subspecies (S. a. 113 

graffmani - Perrin 1975, Perrin et al. 1987) and an offshore pantropical subspecies (S. a. 114 

attenuate). Genetic analyses of microsatellites show high genetic diversity in spotted 115 

dolphins and support some differentiation between subspecies (Escorza-Treviño et al. 116 

2005). This study identified at least four demographically independent populations within 117 

the coastal subspecies (S. a. graffmani) and differences between southern populations of 118 

the coastal subspecies and the pelagic subspecies. However, they found no differences 119 
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between the northern populations of the coastal subspecies and the pelagic subspecies. 120 

Escorza-Treveño et al. (2005) identified demographically independent populations within 121 

the coastal subspecies and posited that interchange continues between the northern S. a. 122 

graffmani populations and the offshore pantropical subspecies.  123 

  124 

Although the results of Escorza-Treviño et al. (2005) indicate substructure, the entire 125 

coastal subspecies is currently a single management stock. Offshore pantropical spotted 126 

dolphins in the ETP are divided into two stocks: 1) the ‘northeastern’ (NE) stock is 127 

defined geographically as north of 5°N, east of 120°W, and 2) the ‘western-southern’ 128 

(WS) stock is defined as south and west of this northeastern area (Fig. 2) (Perrin et al. 129 

1994). A distributional hiatus along 5°N is the basis for the north-south boundary 130 

between NE and WS stocks (Perrin et al. 1994), and this has recently been supported by 131 

SNP analyses (Leslie and Morin 2016).  132 

 133 

Given the morphological differentiation between subspecies and recent evidence of 134 

nuclear DNA genetic differentiation, we assume the previous results from single mtDNA 135 

loci lacked power to resolve these close intraspecific relationships. In addition, studies of 136 

other cetacean species have shown mitochondrial genomes to be a useful tool for 137 

resolving intraspecific relationships when single mtDNA genes cannot (Archer et al.2013, 138 

Morin et al. 2010. 139 

 140 

 141 

Objectives 142 

We used DNA capture array library enrichment and highly paralleled DNA sequencing to 143 

collect whole mitochondrial genome sequence data from 104 spinner and 76 spotted 144 

dolphins to test hypotheses of population genetic structure at multiple hierarchical levels 145 
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in the eastern tropical Pacific Ocean. We performed analyses of whole mtDNA genomes 146 

(mitogenomes) and individual mtDNA genes to test observed levels of differentiation 147 

between recognized and proposed management stocks. We also tested for structure 148 

supporting the Tres Marias spinner dolphin and alternative stock boundaries in the 149 

offshore spotted dolphins. Although still only representing one locus, mitogenomes allow 150 

us to examine matrilineal population structure and contrast our findings with those found 151 

in previous studies using nuclear DNA (Escorza-Treviño et al. 2005; Andrews et al. 152 

2013; Leslie and Morin 2016) to infer sex-biased dispersal. 153 

  154 

 155 

METHODS 156 

 157 

Sample Collection and DNA extraction 158 

Skin samples used in this study were collected from free-ranging animals via biopsy dart 159 

(Lambertsen 1987) on research cruises or from dead specimens killed as bycatch in the 160 

tuna purse-seine fishery between 1982 and 2010 (104 spinner dolphins and 76 spotted 161 

dolphins Fig. 1, 2; Supplementary Material Tables S1, S2). On research cruises it is 162 

relatively common to see some fraction of spinner dolphins of alternate morphology (i.e., 163 

possibly different subspecies) within a school of dolphins comprised mostly of another 164 

morphotype/subspecies. For this reason, spinner dolphin samples collected from research 165 

cruises were assigned to a stock based on the external morphology of the majority of 166 

animals in the school, rather than the morphology of the individual sampled or the 167 

geographic location of the school. This method was preferable because: 1) only after 168 

observing the group (which could contain > 1,000 individuals) for some time could 169 

observers classify it to stock, 2) the external characters distinguishing subspecies are 170 

subtle, therefore researchers collecting biopsies from the bow of the research vessel could 171 
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not confidently classify fast-swimming individuals in real time, and 3) the ranges of ETP 172 

spinner dolphin subspecies overlap making geography an unreliable predictor of stock 173 

identity. Some samples were used from areas where the eastern and whitebelly spinners 174 

are known to geographically overlap (see Figure 1). Spinner dolphin samples from 175 

Hawai‘i spanned the breadth of the main islands and also Midway Atoll.  176 

 177 

Because there is little overlap of subspecies distribution in ETP pantropical spotted 178 

dolphins, geographic location of the sampling site was used to assign samples to 179 

subspecies and stocks. To avoid misassigned individuals near the borders of the NE and 180 

WS offshore stocks, we did not use samples collected between 4°N and 6°N east of 181 

125°W. Hawai‘ian spotted dolphin samples were collected from the Kona Coast of 182 

Hawai‘i and O‘ahu. 183 

 184 

Biopsy samples were stored in salt-saturated 20% DMSO, 70% ethanol, or frozen with no 185 

preservative. We extracted DNA using silica-based filter membranes (Qiagen, Valencia, 186 

CA) on an automated workstation (Perkin Elmer, Waltham, MA). DNA was quantified 187 

using Pico-Green fluorescence assays (Quant-it Kit, Invitrogen, Carlsbad, CA) and a 188 

Tecan Genios microplate reader (Tecan Group Ltd, Switzerland).  189 

 190 

Library Preparation and Sequencing 191 

Next-generation sequencing libraries were generated as described by Hancock-Hanser et 192 

al.  (2013), using unique 6bp and 7bp index sequences for each individual to allow up to 193 

100 samples to be multiplexed. Multiplexed libraries were enriched for whole 194 

mitogenomes and 85 nuclear DNA loci using Sure Select DNA Capture Arrays (Agilent 195 

Technologies, Inc., Santa Clara, CA, USA) as described by Hancock-Hanser et al.  196 

(2013). Sequence data from the 85 nuclear loci were not used in this study. Target 197 
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sequences for capture enrichment included the reference pantropical spotted dolphin 198 

mitochondrial genome (Genbank No. EU557096; Xiong et al. 2009) and a suite of 85 199 

nuclear loci (not included in this study). Three identical arrays - designed with the eArray 200 

software package (Agilent Technologies, Inc., Santa Clara, CA, USA) - were used to 201 

capture a multiplexed mix of both species. Each array contained one replicate of the 202 

mitogenome probes at a probe interval of 15bp as well as 13 replicates of probes for the 203 

nuclear loci at a probe interval of 3bp. Each enriched library was then sequenced using 204 

1X100bp Illumina HiSeq technology (two using Illumina HiSeq2000 and one using 205 

HiSeq2500). 206 

  207 

Mitogenome Assembly 208 

Raw read data were filtered for quality (minimum quality score of 15) and demultiplexed 209 

by unique barcode. Consensus sequences for each sample were generated from 210 

mitogenome sequence reads using a custom pipeline (Dryad data repository 211 

doi:10.5061/dryad.cv35b) in R v2.15.0 (R Core Team, 2014). Reads were first mapped to 212 

the reference spotted dolphin sequence with the short-read alignment tool BWA (Li and 213 

Durbin, 2009). The mpileup module in SAMTOOLS (Li et al. 2009) was then used to 214 

convert the resulting BAM-format alignment file into a ‘‘pileup’’ text format, which was 215 

then parsed by custom R code to create the consensus sequence for each individual. The 216 

following rules were used in this process: A “N” was inserted at a position if the 217 

assembly had <3 reads, <5 reads where not all contained the same nucleotide, or >5 reads 218 

where no one nucleotide (i.e., A, C, G, T) was present in >70% of the reads. All 219 

mitogenome sequences were initially aligned with MAFFT using the automatic selection 220 

of an appropriate handling strategy (“auto”) and default parameters (Katoh et al. 2009) 221 

followed by a refinement of alignments by eye.  222 

  223 
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 224 

Diversity Estimates and Population Structure Analyses 225 

Two mitogenome data sets were created for each species. First, we partitioned each 226 

species’ mitogenome into fifteen loci (12 coding sequences, the control region and 2 227 

rRNA genes). ND6 and tRNA loci were removed prior to analyses because they conform 228 

to different evolutionary models and ND6 falls on the opposite strand from the remaining 229 

genes (Duchene et al. 2011). Sequences were aligned to the pantropical spotted dolphin 230 

reference and locus start/stop positions were annotated in GENEIOUS v5.4 (Biomatters 231 

Limited) using the GENEIOUS alignment tool and the amino acid translation tool, 232 

respectively. 233 

  234 

Second, we removed the control region because of high variation in this region and 235 

concatenated the remaining 14 regions to make the concatenated mitogenome sequences. 236 

The final sequence lengths for the concatenated data were 13,426bp and 13,425bp for 237 

spinner and spotted dolphins, respectively. An individual was removed entirely from 238 

analyses if it contained >10% missing data across the entire concatenated sequence. 239 

  240 

For both data sets, we estimated haplotypic diversity (h, Nei 1987) and nucleotide 241 

diversity (π, Tajima 1983), and assigned individual genes and whole mitochondrial 242 

genome sequences to unique haplotypes using tools from the strataG package in R (v. 243 

2.3.1; Archer et al.2016). Two pairwise estimates of population genetic structure, FST 244 

(Wright 1949) and ΦST (Excoffier et al. 1992), were also performed using the strataG 245 

package. The significance of each estimate was tested using 5000 non-parametric random 246 

permutations of the data matrix variables. For ΦST, pairwise distances were calculated 247 

using the best substitution model as identified by Akaike’s Information Criterion in 248 

JModelTest version 2.1.4 (Posada 2008). Models were determined for individual gene 249 
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regions and the entire concatenated dataset. 250 

 251 

We performed a substitution rate test on each species’ mitogenome data set to determine 252 

if mutations had reached a point of saturation. For this test, we generated pairwise percent 253 

differentiation and plotted this against a Jukes and Cantor (1969) correction factor 254 

generated using MEGA 5.2.2 (Tamura et al. 2011). We chose this model because of its 255 

simplicity; if deviations were seen here then general saturation could be assumed. 256 

 257 

Although mitochondrial loci are assumed to be under purifying selection (Stewart et al. 258 

2008) we, nonetheless, tested spinner dolphin mitochondrial genes for evidence of 259 

positive selection using both Tajima’s D and Codon-based Z-Test as implemented in 260 

MEGA 5.2.2 (Tamura et al. 2011).  261 

 262 

 263 

RESULTS: 264 

 265 

Hancock-Hanser et al. (2013) present information on the success rate of the DNA capture 266 

method including summary statistics of the data analyzed in this paper. As it relates to 267 

our analyses, questions might arise about how using arrays designed from closely-related 268 

species affected our results. As presented in Tables 4 and 5 of Hancock-Hanser et al. 269 

(2013), spinner dolphin samples had slightly higher number of mtDNA reads per 270 

individual than spotted dolphin samples, despite use of the spotted dolphin mitogenome 271 

as the capture bait. The same pattern was found for the nuDNA capture – spinner 272 

dolphins had more reads per individual than spotted dolphins - despite all the baits being 273 

common bottlenose dolphin DNA sequence. We interpreted this consistency as an 274 

indication that inter-specific capture worked well and that any decrease in capture success 275 
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(as evidenced in reads per individual for a given species) was more likely due to a 276 

combination of other factors (sample quality, multiplexing rate, sequencing technology, 277 

and/or variation in library preparation) rather than reduced capture due to inter-specific 278 

baits. The one area that might have been an issue for inter-specific capture was the hyper-279 

variable section of the control region (see below). 280 

 281 

Spinner dolphins 282 

We assembled 104 complete or nearly complete (<10% missing data) concatenated 283 

spinner dolphin mtDNA data sets (Genbank accession numbers in Supplementary Table 284 

S1). The hyper-variable section of the control region had consistently lower coverage in 285 

many individuals and was removed from the concatenated data set (Supplementary Table 286 

S1). Subspecies and regional sample sizes, summary statistics and genetic diversity 287 

measures are listed in Table 1. At the subspecies level, haplotypic diversities were high 288 

and nucleotide diversity was low (>0.9722,  <0.0073, respectively). The substitution rate 289 

test did not show any signs of saturation. The best nucleotide substitution model 290 

estimated by JModelTest (Posada, 2008) was JC69 (Jukes and Cantor 1969) for each 291 

individual gene region and the entire concatenated data set. The results of FST and ΦST 292 

analyses of the mtDNA concatenated genes and ΦST of the individual gene regions for 293 

spinner dolphins are shown in Table 2. Due to space limitations, we only discuss ΦST for 294 

the partitioned gene region analyses. 295 

 296 

At the subspecies level, the ΦST test showed no differentiation between Central American 297 

spinners and eastern spinner dolphin subspecies in either the concatenated or partitioned 298 

data sets. FST was significant in the concatenated data set (0.0133, P = 0.034). ΦST 299 

comparisons of the whitebelly form and coastal Central American subspecies showed 300 

nearly significant differentiation in the concatenated data set (ΦST = 0.0490; P = 0.0542) 301 
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and seven individual gene regions. ND3 showed a significant difference at P = 0.0054, 302 

while all other significant comparisons between these strata were at P < 0.05 (Table 2). 303 

 304 

We found no significant differences between the whitebelly and the eastern subspecies 305 

using the concatenated mitogenome data (ΦST = 0.0181; P = 0.0741). However, eight 306 

individual mitochondrial genes showed significant differentiation. All individual gene 307 

partitions in spinner dolphins were found to be under purifying selection using Tajima's 308 

D tests for selection (Table S3) and Z-Test for positive selection using the Nei-Gojobori 309 

method (Nei and Gojobori 1986) (Table S6). 310 

 311 

ΦST tests showed no differentiation between Tres Marias spinners and either ETP spinner 312 

dolphin subspecies in either the concatenated or partitioned data sets. Four individual 313 

gene regions were significantly different in the pairwise comparisons of Tres Marias and 314 

whitebelly spinner dolphins (P < 0.05; ND3 at P <  0.01).  315 

 316 

All tests involving comparisons with Hawai‘ian spinner dolphins (S. l. longirostris) - 317 

using the concatenated data set - were highly significant. Four genes showed population 318 

structure (significant ΦST) in all pairwise comparisons between Hawai‘i and ETP groups 319 

(i.e., Central America, Tres Marias, eastern, and whitebelly spinner), but not in any 320 

pairwise comparisons between these ETP groups: 16S, ATP6, ND2, and ND5. Because 321 

of the low abundance and geographic isolation of the Hawai‘ian population, we presume 322 

these genetic differences between Hawai‘i and the ETP groups resulted primarily from 323 

drift in the Hawai‘ian population, though some unique haplotypes in Hawai‘i  also 324 

suggest sequence divergence between the subspecies. 16S had 24 haplotypes total, but 325 

only 4 haplotypes among all 15 Hawai‘ian samples. ATP6 had many more haplotypes in 326 

total (53), but again reduced diversity in Hawai‘i (5). One of these Hawai‘ian haplotypes 327 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/091215doi: bioRxiv preprint 

https://doi.org/10.1101/091215


 14

was common among all ETP groups, and two were exclusive to Hawai‘i. The final two 328 

Hawai‘ian ATP6 haplotypes were shared with one ETP spinner dolphin each. ND2 also 329 

had 53 haplotypes total, but only 4 spread among the 15 Hawai‘ian samples. Twelve 330 

samples from Hawai‘i had two haplotypes that were not shared with ETP populations. 331 

One individual shared a haplotype with an eastern spinner dolphin, the other two 332 

haplotypes were single samples unique to Hawai‘i. Finally, ND5 had 70 total haplotypes, 333 

but only 5 among the Hawai‘ian samples – none of which were shared with ETP 334 

populations.  335 

 336 

 337 

Spotted dolphins 338 

We assembled 76 complete or nearly complete (<10% missing data) spotted dolphin 339 

mitogenomes (Genbank accession numbers in Supplementary Table S2). Sample sizes, 340 

summary statistics and genetic diversity measures are listed in Table 1. At the level of 341 

subspecies, nucleotide diversity was higher in spotted dolphins (>0.0162) than spinner 342 

dolphins. Haplotypic diversity (h) is high in both species (>0.9529), but ETP spotted 343 

dolphins subspecies have slightly lower levels (0.9529 and 0.9804 for the coastal and 344 

offshore groups, respectively) than spinner dolphin subspecies (0.9722 and 0.9985) in 345 

this region. The coastal ETP subspecies for both spinner and pantropical spotted dolphins 346 

in the ETP show reduced h compared to their offshore ETP counterparts (Table 1). 347 

Similar to the spinner dolphin mitogenome data, the substitution rate test did not detect 348 

any signs of saturation, and JC69 was the best substitution model for all individual gene 349 

regions and the entire concatenated data set. 350 

 351 

Results of FST and ΦST analyses of the mtDNA concatenated genes and ΦST of the 352 

individual gene regions for spotted dolphins are presented in Table 4. Similar to the 353 
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spinner dolphins, our analyses at the subspecies level for spotted dolphins (coastal vs. 354 

offshore) show no significant differentiation using ΦST for the concatenated or partitioned 355 

data sets. FST was significant in the concatenated data set (0.0125, P =  0.0402).  356 

 357 

Estimates of differentiation between the current management stocks within the offshore 358 

subspecies (NE and WS stocks) using the whole mitogenome data and individual mtDNA 359 

genes showed no differences. Using ΦST, no significant differences were observed 360 

between the coastal subspecies and the NE offshore stock, however FST (0.0302) was 361 

highly significant at P =  0.0002 between theses management units. Similarly, ΦST was 362 

not significant for pairwise comparisons of the Coastal subspecies and WS offshore stock 363 

using the concatenated data or individual genes. 364 

 365 

Within the WS offshore stock, we found nearly significant ΦST differences between the 366 

southern and western offshore regions using the concatenated mitogenome (0.1666; P =  367 

0.0668). One individual mtDNA gene (ND4) had significant differentiation (p <0.05) and 368 

three others had nearly significant p-values (16S, ND1, ND5).  369 

 370 

Comparing separate western and southern portions of the WS stock to other partitions 371 

using the mitogenome data set also yielded no significant ΦST estimates. Our comparison 372 

of the NE stock to the western portion of the WS stock, however, was nearly significant 373 

using the concatenated mitogenome (ΦST = 0.1135; P =  0.0517) and four individual 374 

mtDNA genes showed significant ΦST differences (p<0.05). Neither data set showed 375 

significant differences between the NE stock and the southern portion of the WS stock for 376 

either statistic.  377 

 378 
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Comparison of the coastal subspecies to just the southern portion of the WS stock 379 

resulted in no significant FST or ΦST difference in the concatenated data set or individual 380 

gene regions. Between the coastal subspecies and western offshore portion of the WS 381 

stock, however, one individual gene region (ATP8) showed significant differentiation (P 382 

< 0.05), and one (12S) showed nearly significant differentiation (P = 0.0559). Ideally we 383 

would have partitioned the coastal subspecies south of central Mexico into the population 384 

units described by Escorza-Triveño et al. (2005), but our smaller sample size prevented 385 

us from doing this. 386 

 387 

Significant differentiation was detected between Hawai‘i and the coastal subspecies, and 388 

between Hawai‘i and offshore spotted dolphins, in FST and ΦST of the concatenated data 389 

set. As expected, given this result, significant differentiation was detected in many 390 

individual mtDNA genes (see Table 4). We also detected significant differences between 391 

Hawai‘i and the NE stock in four genes, but not for the concatenated mtDNA data set 392 

(although it was nearly significant for ΦST  at P = 0.0645). Hawai‘i and the WS stock 393 

were significantly different in the concatentated data set using ΦST, and in nine individual 394 

genes (P < 0.05).  395 

 396 

Finally, we also tested hypotheses of differences between Hawai‘i and divided western 397 

and southern portions of the WS stock. Hawai‘i and the western portion were 398 

differentiated using the concatenated dataset (ΦST : 0.4932; P = 0.0179). Ten individual 399 

genes showed differentiation between these two strata (see Table 4). Hawai‘i and the 400 

southern portion of the WS stock were not differentiated based on our concatenated data 401 

sets, but did show significant differentiation in five individual genes (P<0.05). 402 

 403 

 404 
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Discussion 405 

 406 

Spinner and spotted dolphins in the eastern tropical Pacific offer a unique opportunity to 407 

study genetic differentiation at multiple scales in species with strong intraspecific 408 

morphological differences. Recent divergence, high genetic diversity, large population 409 

sizes, and ongoing gene flow likely contribute to low detectability of genetic divergence 410 

(Galver 2002, Escorza-Treviño et al. 2005, Andrews et al. 2013, Taylor and Dizon 1996, 411 

Waples 1998). Using complete mitogenomes, we found some genetic support for 412 

endemic subspecies of spinner and spotted dolphins, although the strength of this support 413 

varies between markers (see Table 5). We did not find support, however, for the division 414 

of offshore stocks of spotted dolphins; nor did we find separation of the Tres Marias 415 

spinner dolphins as an independent population. In contrast, nuclear SNP analysis 416 

recovered these stock-level differences (Leslie and Morin 2016). The difference in our 417 

findings compared to those of Leslie and Morin (2016) could reflect the limitations of our 418 

mtDNA data or something biologically meaningful about the populations. 419 

 420 

First, we will discuss the individual comparisons for each species, then finish with an 421 

overall discussion comparing our findings with those of others. 422 

 423 

Spinner Dolphins 424 

Traditional FST was very low as expected, but supported endemic subspecies distinction 425 

(Central American and eastern). We found non-significant results from ΦST – a metric 426 

that includes differences in nucleotide divergence. Thus we conclude that haplotypes 427 

within these two subspecies are very similar, but that haplotype frequencies are 428 

significantly different.  429 

 430 
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Nevertheless, our results provide evidence of genetic differentiation between the accepted 431 

ETP endemic subspecies concordant with morphology (Perrin et al. 1991) and results 432 

from Andrews et al. (2013) who used data from the nuclear Actin gene, and Leslie and 433 

Morin (2016) who used restriction-associated nuDNA sequencing. Differences in 434 

ecological, distributional, morphological, nuDNA, and now mtDNA data support the 435 

recognition of these distinct subspecies. 436 

 437 

Breeding biology and movement patterns could also affect the patterns we see between 438 

the Central American and eastern spinner dolphins. In particular, assortative mating can 439 

decrease Ne, which could serve to amplify signal of structure in the nuDNA genome. The 440 

eastern spinner dolphin is thought to have a polygynous mating system (Perrin and 441 

Mesnick, 2003). Perrin and Mesnick (2003) concluded that relatively few males are 442 

involved with mating, serving to reduce Ne and potentially increase genetic structure 443 

(Perrin and Mesnick, 2003). Conversely, however, a skewed breeding system might also 444 

increase dispersal, as adult male dominance might promote movements of juvenile males 445 

which then become established breeders outside their natal range. Unfortunately, very 446 

little is known about the movement patterns of individual dolphins in the ETP, and less is 447 

known about differences in movement based on sex. High site fidelity in males could also 448 

restrict male-mediated geneflow between groups and increase relative signal in nuDNA 449 

analyses.  450 

 451 

FST and ΦST tests between the whitebelly spinner and the Central American endemic ETP 452 

subspecies revealed nearly significant differentiation (Table 5), indicating possible 453 

separation. Nuclear SNP data support differences between these two groups (Leslie and 454 

Morin 2016). In our mitogenome data set, every whitebelly sample had a unique 455 

haplotype. As a result, frequency-based measures of differentiation such as F-statistics 456 
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were likely underestimated. 457 

 458 

Using slightly different samples, Andrews et al. (2013) also found differentiation 459 

between Central American and whitebelly spinners using mtDNA genes (control region 460 

and cytb). We recovered the same pattern for cytb and several others (Table 2). Moreover, 461 

Andrews et al. (2013) included 10 samples of Central American spinners that had 462 

questionable subspecific identity (based on further investigation of the sample collection 463 

records at SWFSC by MSL). These samples were initially identified as Central American 464 

spinners, but the confidence in the identification was low and they should have been 465 

labeled as “unidentified”. Given the uncertainly, these samples could have been from 466 

eastern spinner dolphins. Removal of these samples reduced our representation of Central 467 

American spinners (n=9), which may have impacted our ability to detect intraspecific 468 

structure. However, the Central American subspecies has lower relative abundance, and 469 

therefore might be expected to show higher levels of structure due to drift.  470 

 471 

Two biological explanations for the possible differentiation between Central American 472 

and whitebelly spinners in the mtDNA are isolation by distance and admixture between 473 

whitebellies and Hawai‘ian spinners. These are the two most geographically distant 474 

putative populations of ETP spinner dolphins; therefore, isolation by distance could 475 

contribute to population genetic structuring. Admixture between the whitebelly and 476 

Hawai‘ian spinners would bring novel haplotypes from the Gray’s subspecies (Hawai‘i) 477 

into the whitebellies resulting in genetic structure.  478 

 479 

We found nearly significant ΦST between the whitebelly spinner and the eastern spinner 480 

using the concatenated mitogenome data. In addition, we also found significant 481 

differences between these strata in eight individual mtDNA genes. Leslie and Morin’s 482 
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(2016) SNP analysis supported differentiation of these two groups. Andrews et al. (2013) 483 

inferred high migration rates between whitebelly and eastern spinner dolphins (30.1 484 

migrants per generation from whitebelly to eastern and 57.9 migrants from eastern to 485 

whitebelly). Despite this high rate of migration, we detected evidence of differentiation.  486 

 487 

As discussed, the statistical power to estimate levels of migration between very large 488 

populations with low relative sample sizes is weak (Waples 1998, Taylor et al. 2000). For 489 

this reason, we did not estimate levels of migration for these data. Andrews et al. (2013) 490 

did estimate migration in ETP spinner dolphins and found lower, but significantly 491 

different from zero, rates of migration per generation between populations of Gray’s 492 

(Hawai‘ian and other Pacific Island groups) spinners and the whitebelly spinners (3.22 493 

migrants per generation into Gray’s and 1.6 into whitebelly spinners). The rate of 494 

migration into Gray’s spinner populations from the eastern population was estimated to 495 

be less than one (0.82), but significantly different from zero. Although this was not a 496 

major focus of our study, the differences we detected between the Hawaiian population 497 

and the ETP pelagic populations were higher than any comparisons within the ETP, 498 

supporting the hypothesis that this is an insular population or possibly subspecies. 499 

 500 

Differences in breeding systems could help drive or maintain differentiation between 501 

eastern and whitebelly spinner dolphins (Perrin and Mesnick 2003). A polgynous system 502 

in eastern spinners could result in higher site-fidelity and lower male Ne – both of which 503 

would accentuate signal in nuDNA population structure. Alternatively, as discussed 504 

above, admixture between whitebelly and Hawai‘ian spinners could also result in novel 505 

whitebelly genotypes resulting in higher apparent population structure between 506 

whitebelly and eastern spinners. 507 

 508 
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Alternative spinner dolphin stocks: 509 

We found no support for a Tres Marias population that differs from the eastern or Central 510 

American subspecies (e.g., Perryman and Westlake 1998) using the concatenated or 511 

individual mitochondrial gene data sets. Given the weak genetic differences we found 512 

between the accepted endemic subspecies with much more marked morphological 513 

differences, this result may not be surprising. We found statistically significant 514 

differences in four individual mtDNA genes when comparing the Tres Marias group to 515 

the whitebelly spinners and several nearly significant genes. We do not feel confident 516 

making taxonomic recommendations for the “Tres Marias” spinners based on these 517 

analyses. Additional studies should approach this question using larger sample sets and 518 

additional data. 519 

 520 

Spotted dolphins:  521 

Spotted dolphin mitogenomes have lower haplotypic diversity but higher nucleotide 522 

diversity than spinner dolphins, despite extremely high historical population sizes in the 523 

former. The two main reasons for lower haplotypic diversity could be a recent and/or 524 

prolonged population bottleneck, such as the decrease caused by mortalities in the tuna 525 

purse-siene fishery, or an extremely matrifocal social structure (Hoelzel et al. 2007). 526 

Although matrifocal social structure is known in several species of odontocetes (e.g., 527 

killer whales and sperm whales), it is not a known characteristic of spotted dolphins, and 528 

thus is an unlikely cause of low genetic diversity. 529 

 530 

Similar to our findings for spinner dolphins, traditional FST calculated for the spotted 531 

dolphin mitogenome data set supports differentiation of the offshore S. a. attenuata and 532 

the endemic coastal S. a. graffmani subspecies, whereas ΦST failed to indicate any 533 

difference - either for the entire genome or within any single gene. Our results show the 534 
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NE stock being strongly differentiated from the coastal subspecies (based on allele 535 

frequency alone), counter to the results found by Escorza-Treviño et al. (2005) showing 536 

connection between the NE stock and the coastal subspecies based on seven 537 

microsatellite loci. In that study, the authors inferred that there was a strong connection 538 

between the coastal and offshore subspecies in northern Mexico. The differences between 539 

our results and those of Escorza-Treviño et al. (2005) could be due to sampling; the 540 

previous study included more samples from the northern portion of the coastal spotted 541 

dolphin range than we did. Additionally, the differences could be attributed to the unique 542 

evolutionary patterns of the different markers examined in Escorza-Treviño et al. (2005) 543 

(i.e., microsatellites) vs. the mitogenomes used in our study. 544 

 545 

Spotted dolphin stocks: 546 

A main objective of this work was to test for difference between existing (NE, WS, and 547 

Coastal) and proposed (independent W and S) management stocks. Using the whole 548 

mtDNA genome data set, we found no evidence for differentiation between the two 549 

current stocks (NE and WS). This could be because the two stocks are genetically 550 

connected or because our data lack power to detect differentiation at this fine scale. The 551 

concatenated mtDNA indicated weak evidenced for splitting up the current WS stock - a 552 

high ΦST value (0.1666) and nearly significant (P =  0.0668). Similarly, we detected 553 

nearly significant differences between the NE stock and the western group of the WS 554 

stock using the concatenated mtDNA genome. Four mtDNA loci had significant ΦST 555 

estimates for this partition. The NE and the offshore southern group were not 556 

significantly different in any test, suggesting that the distributional hiatus at 5° north is 557 

not a barrier to gene flow. We cannot say with any certainty if this is the case, however, 558 

because of the low sample size for the southern portion of WS stock (n=9); a larger 559 

sample size is necessary to convincingly investigate this hiatus. Overall, the whole 560 
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concatenated mtDNA genome was not as useful as anticipated for delimiting stock 561 

structure, possibly because it introduced more variation (via novel haplotypes) into an 562 

already highly variable system. Whole mtDNA genomes have been useful for clarifying 563 

subspecific boundaries where information in single mtDNA genes has shown low 564 

variability (Archer et al.2013, Morin et al. 2010), including in this paper, but testing 565 

population-level boundaries in highly abundant cetaceans using mtDNA genomes may be 566 

less feasible. 567 

 568 

Leslie and Morin (2016) found divergence between the offshore and coastal spotted 569 

dolphin subspecies, but did not include data from individuals from the NE offshore stock 570 

of spotted dolphins. Therefore, this comparison includes animals from the most 571 

geographically separate portions of the offshore (WS) and coastal subspecies range. 572 

Additional nuclear data from the NE stock are needed to determine whether proximate 573 

populations of these two subspecies are also as genetically divergent. 574 

 575 

Overall Patterns Observed 576 

Despite the increase in data over other mtDNA studies, it is likely that whole 577 

mitogenomes still do not provide enough statistical power to detect differences given the 578 

recent divergence, continued low-level interbreeding, and/or high diversity and historical 579 

abundance. We collected whole mitogenomic data to help resolve close population 580 

relationships. However, one risk of adding more data in this situation – with populations 581 

with high genetic diversity – is that haplotype discovery may not plateau within a sample 582 

set. In other words, more unique haplotypes are added thereby increasing the difficulty of 583 

characterizing haplotype frequencies among and between populations. Sequencing 584 

additional samples could help rectify this issue.  585 

 586 
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Similarly, there are also limitations to using frequency-based F-statistics. FST is good at 587 

detecting frequency differences that indicate genetic structure in cases where haplotypes 588 

are similar within populations and different between populations (such as those that 589 

would result via drift in small populations). However, when haplotype diversity is high 590 

within and among populations, very large sample sizes are needed to characterize 591 

haplotype frequencies to detect differences using FST. In this situation, FST point values 592 

will be underestimated. Moreover, sampling effects can become important drivers of FST 593 

beyond the base frequency of alleles present and result in false positive results. Our initial 594 

hypothesis was that sequencing more of the mitogenome would result in more shared 595 

differences within populations which would be reflected in both the frequency-based 596 

statistics; this was not the case.  597 

 598 

Instead, we found significant differences between subspecies of both spinner and spotted 599 

dolphins using FST, but not ΦST. FST and ΦST provide slightly different perspectives on 600 

population differentiation and we believe it is important to present both measures. Our 601 

results show inconsistencies between these two metrics, which does not necessarily mean 602 

analytical problems or inaccuracies, but reflects something interesting about our data. FST 603 

tests for population differentiation are based on allele (or haplotype) frequencies and do 604 

not provide direct insights into levels of molecular divergence (Weir and Cockerham, 605 

1984, Excoffier et al. 1992, Meirmans and Hedrick 2011). ΦST estimates capture more 606 

information regarding the differentiation due to sequence divergence (or nucleotide 607 

diversity) in addition to differences in haplotype frequencies. The high heterozygosity 608 

issues mentioned above can still impact ΦST. Although we chose to focus the bulk of the 609 

discussion on ΦST, we do report statistically significant measures of FST and briefly 610 

compare and contrast the two metrics. ΦST may be more indicative of older, long-term 611 

processes, whereas FST can show recent differences among populations, indicating 612 
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another reason it is important to report both metrics. In addition, given that the test for 613 

significance is determined by an arbitrary cut-off (P =  0.05), we also present results that 614 

are “nearly significant”. Combined with given the difficulty of distinguishing these 615 

groups in previous works, we felt it important not to focus too intensely on the arbitrary 616 

cut-off, but rather overall patterns of indicators. 617 

 618 

Moreover, our sample sizes were low in some partitions (n=7). This could result in the 619 

allele frequencies of populations being under-characterized, which could skew results in 620 

over- or under-classification. Efforts should be made to collect more samples for future 621 

studies.  622 

 623 

Alternatively, non-significant results could occur with low levels of geneflow between 624 

strata that are demographically independent populations (Avise 1995; Taylor and Dizon 625 

1996). Because management decisions rely on them, results must be interpreted within 626 

the context of all available information and with recognition of the caveats of the data 627 

used to generate them. 628 

 629 

The discordance we observed between the mitogenome results and those using nuDNA 630 

data (Leslie and Morin 2016) could also reflect biological factors. One possibility is 631 

female-mediated exchange diluting the signal of structure in mtDNA or male site-fidelity 632 

increasing structure in the mtDNA. Although there is some evidence from radio tagging 633 

studies that spinner and spotted dolphins can move relatively large distances (Perrin et al. 634 

1979), a thorough investigation into the differences between sexes is lacking. At least for 635 

spinner dolphins it is likely that the polygynous breeding system described by Perrin and 636 

Mesnick (2003) would contribute to increased signal of structure in the nuclear genome.  637 

 638 
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Drift in mtDNA loci as indicated by comparisons with Hawai‘i 639 

Because of the greater divergence observed between Hawai‘ian and ETP populations of 640 

these two dolphins, we thought it would be informative to highlight genes showing 641 

structure (Hawai‘i vs. ETP), likely due to neutral drift acting on a small insular 642 

population, that might be useful for studying other Hawai‘ian populations of cetacean 643 

species. Four genes (16S, ATP6, ND2, and ND5) showed population structure 644 

(significant ΦST) in all pairwise comparisons between Hawai‘i and ETP spinner dolphin 645 

groups (i.e., Central America, Tres Marias, eastern, and whitebelly spinner), but not in 646 

any pairwise comparisons between these ETP groups. All of the mtDNA regions with 647 

significant ΦST were found to be under purifying selection (negative Tajima’s D - Table 648 

S3; and non-significant Z-tests – Table S4) indicating that the within-mitogenome 649 

differences are accumulating by neutral drift rather than via positive selection in ETP 650 

spinner dolphins. Significant differences between ETP groups and the Hawai‘ian insular 651 

population of spotted dolphins were found in all but five of the mtDNA genes. We note 652 

however that the low sample sizes for Hawai‘ian spotted dolphins may explain some of 653 

the non-significant differences observed with respect to ETP stocks. 654 

 655 

Positive Selection in ETP Spinner Dolphin mtDNA 656 

Selection should affect linked loci equally; however, selection can act on individual 657 

mtDNA genes, such as in the case of cytochrome b in Antarctic killer whales (Foote et al. 658 

2010). We tested for positive selection in spinner dolphin mitochondrial genes and found 659 

none. We did not test for positive selection in spotted dolphins because there were no 660 

individual mtDNA genes that supported differentiation between the two ETP subspecies. 661 

 662 

Conclusions: 663 

 664 
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Defining population genetic structure is challenging for species with large historical 665 

population sizes and high mobility. These populations may retain high genetic variation 666 

even as abundance becomes relatively low, which could obscure signals of genetic 667 

structure used to designate stock boundaries for estimating population abundance and 668 

setting stock-specific mortality limits. Ultimately, without information on structure, 669 

populations could be under-classified and unique evolutionary units and populations 670 

could go extinct as we may fail to take appropriate conservation action.  Alternatively, 671 

there is a cost to managing populations as separate when there is no biological basis to do 672 

so. Such errors can have economic, social, and political consequences resulting from 673 

unnecessary restrictions on human activity. Furthermore, a consistent pattern of these 674 

errors will “stiffen the resolve of skeptics and make it difficult to accomplish sound 675 

resource management in the future” (Waples 1998).  676 

 677 

This unique system of two delphinids, with available samples collected in situ from 678 

remote offshore environments encompassing extensive geographic and morphological 679 

variation, was used to test for population genetic structure at multiple hierarchical levels 680 

in species with high historical abundance and high intra-specific morphological variation. 681 

Our results show a complex pattern of genetic structure in the two different data sets for 682 

each species. Although complex, we believe the structure observed in our results is 683 

biologically meaningful. Given the aforementioned difficulties with detecting structure 684 

using genetic techniques in this system – and the supporting morphometric results - even 685 

subtle signatures of structure are significant findings. The mitogenome data show support 686 

for the endemic ETP spinner and spotted dolphin subspecies.  687 

 688 

We found very little support for the division of offshore stocks of spotted dolphins and no 689 

support for the unique form of Tres Marias spinner dolphins as compared to the eastern 690 
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or Central American subspecies. This is not to say that these biological entities do not 691 

exist, just that our mtDNA data do not support them or may not have sufficient power to 692 

detect the subtle genetic differences between them. Further, we recommend the collection 693 

and analysis of additional samples from the Central American subspecies to compare to 694 

existing offshore subspecies samples collected from fisheries bycatch and research 695 

cruises. In addition, we recommend additional studies of population structure that 696 

incorporate environmental variables as potential population boundaries in this area. 697 

Finally, placing these populations within a global phylogeographic context will help 698 

provide a better context for our results by fully characterizing intraspecific diversity and 699 

establishing the evolutionary process that led to ETP endemism.   700 
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 1 

Table 1. Summary statistics for ETP spinner (A) and spotted (B) dolphin mitogenome 1 

data. nH: number of haplotypes; PS: polymorphic sites; h: haplotype diversity; π: 2 

nucleotide diversity; %: percent of unique haplotypes. 3 

 4 

 5 

^ Stocks that are not recognized for management purposes. ~ The Tres Marias 6 

spinner samples are part of the eastern stratum. 
§
 Includes data for five samples that 7 

were omitted from stock comparisons because they were sampled too close to 8 

geographic stock boundaries.9 

A. Spinner dolphins Stenella longirostris (n = 104) 

Subspecies/Stock n:female/male/unk nH PS h π % 
Central American 
S. l. centroamericana 

9:4/4/1 8 648 0.9722 0.0057 0.7778 

eastern~ 
S. l. orientalis 

53:28/19/6 51 648 0.9985 0.0073 0.9245 

Putative Stocks 
whitebelly 
S. l. longirostris 

27:16/11/0 27 457 1 0.0043 1 

Tres Marias^~ 
S. l. orientalis 

21:8/10/3 20 373 0.9952 0.0078 0.9048 

Hawai‘i  
S. l. longirostris 

15:1/4/10 9 104 0.9921 0.0068 0.8260 

     

B. Spotted dolphins Stenella attenuata (n = 76) 

Subspecies n:female/male/unk nH PS h π % 
Coastal 
S. a. graffmani 

24:11/13/0 16 234 0.9529 0.0162 0.5000 

ETP offshore
§
 

S. a. attenuata 

47:20/19/8 43 519 0.9804 0.0198 0.7222 

Offshore Stocks (S. a. attenuata) - Current and Putative^ 
northeastern  25:10/8/7 22 400 0.9867 

 
0.0238 0.8000 

western-southern  17:9/7/1 17 298 1 0.0096 1 

Offshore western^  8:7/1/0 8 191 1 0.0087 1 

Offshore southern^ 9:2/6/1 9 253 1 0.0092 1 

Hawai‘i  5:1/3/1 3 36 0.7000 0.0244 0.4000 
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 2 

Table 2: Pairwise divergence estimates for subspecies and stocks of spinner dolphins based on concatenated mitogenome data (FST, ΦST and χ2) and 0 

partitioned mitogenomic data (ΦST only). Light gray backgrounds for p<0.05; medium gray for p<0.01; darker gray backgrounds for p<0.001 (p-1 

values in parentheses).  2 

 3 

Taxon 1 (n) 
vs. 

Taxon 2 (n) 

Concatenated 
mitogenome Partitioned mitogenome ΦST (p-value) 

FST 
(p-value) 

ΦST 
(p-value) 

12s 
nH=24 

16s 
nH=24 

ATP6 
nH=53 

ATP8 
nH=11 

COI 
nH=65 

COII 
nH=39 

COIII 
nH=47 

CYTB 
nH=61 

CR 
nH=50 

ND1 
nH=59 

ND2 
nH=53 

ND3 
nH=21 

ND4 
nH=56 

ND4L 
nH=22 

ND5 
nH=70 

Central Amer. (9) 
vs. eastern (53) 

0.0133 
(0.034) 

-0.0127 
(0.5235) 

-0.0120 
(0.5265) 

0.0061 
(0.4977) 

-0.0076 
(0.4001) 

0.0590 
(0.0801) 

-0.0276 
(0.8640) 

-0.0199 
(0.6988) 

-0.0158 
(0.5766) 

-0.0094 
(0.4711) 

0.0017 
(0.3983) 

0.0148 
(0.2501) 

-0.0260 
(0.7376) 

0.0338 
(0.1325) 

-0.0287 
(0.6950) 

-0.0268 
(0.7444) 

-0.0139 
(0.5368) 

Central Amer. (9) 
vs. whitebelly (27) 

0.0128 
(0.056) 

0.0490 
(0.0542) 

-0.0165 
(0.5882) 

0.0217 
(0.1947) 

0.0311 
(0.1277) 

0.1279 
(0.0189) 

0.0351 
(0.0903) 

0.0936 
(0.0144) 

0.0086 
(0.2995) 

0.0601 
(0.0456) 

0.0555 
(0.0412) 

0.0844 
(0.0362) 

0.0113 
(0.2833) 

0.1505 
(0.0054) 

0.0870 
(0.0464) 

0.0478 
(0.0931) 

0.0273 
(0.1203) 

eastern (53) vs. 
whitebelly (27) 

0.0007 
(0.2867) 

0.0181 
(0.0741) 

0.0307 
(0.0414) 

0.0159 
(0.0835) 

0.0051 
(0.2421) 

-0.0065 
(0.5546) 

0.0264 
(0.0288) 

0.0342 
(0.0152) 

-0.0020 
(0.4501) 

0.0154 
(0.1165) 

0.0270 
(0.0059) 

0.0260 
(0.0468) 

0.0104 
(0.1687) 

0.0638 
(0.0018) 

0.0464 
(0.0422) 

0.0343 
(0.0214) 

0.0026 
(0.2859) 

                  

Tres Marias (21) vs. 
Central Amer. (9) 

0.0155 
(0.0914) 

-0.0345 
(0.7576) 

0.0113 
(0.2921) 

-0.0283 
(0.7240) 

-0.0436 
(0.7284) 

-0.0082 
(0.2863) 

-0.0393 
(0.8636) 

-0.0318 
(0.7150) 

-0.0301 
(0.6752) 

-0.0238 
(0.5872) 

-0.0102 
(0.5328) 

-0.0158 
(0.5219) 

-0.0451 
(0.8698) 

0.0022 
(0.4025) 

-0.0558 
(0.8900) 

-0.0638 
(0.9470) 

-0.0383 
(0.7888) 

Tres Marias (21) vs. 
eastern (32) 

0.0009 
(0.4107) 

-0.0116 
(0.7084) 

-0.0109 
(0.6474) 

-0.0217 
(0.9462) 

-0.0088 
(0.5169) 

0.0019 
(0.3119) 

-0.0124 
(0.7654) 

-0.0182 
(0.8772) 

-0.0150 
(0.8116) 

-0.0062 
(0.5291) 

-0.0135 
(0.8454) 

-0.0117 
(0.6898) 

-0.0031 
(0.4447) 

-0.0206 
(0.8894) 

-0.0185 
(0.7898) 

-0.0049 
(0.4887) 

-0.0105 
(0.6442) 

Tres Marias (21) vs. 
whitebelly (27) 

0.0024 
(0.1934) 

0.0263 
(0.0807) 

0.0421 
(0.0643) 

0.0111 
(0.1979) 

0.0086 
(0.2423) 

0.0175 
(0.2421) 

0.0323 
(0.0519) 

0.0406 
(0.0362) 

-0.0005 
(0.3907) 

0.0311 
(0.0765) 

0.0413 
(0.0168) 

0.0359 
(0.0636) 

0.0243 
(0.1087) 

0.0676 
(0.0052) 

0.0859 
(0.0789) 

0.0485 
(0.0448) 

0.0124 
(0.1807) 

                  

Hawaii (15) vs, 
whitebelly (27) 

0.0456 
(0.0001) 

0.1964 
(0.0002) 

0.0236 
(0.1667) 

0.3590 
(0.0002) 

0.2560 
(0.0002) 

-0.0127 
(0.6582) 

0.1964 
(0.0002) 

0.1885 
(0.0006) 

0.0154 
(0.1363) 

0.1031 
(0.0004) 

0.0771 
(0.0036) 

0.0818 
(0.0026) 

0.3302 
(0.0002) 

0.4467 
(0.0002) 

0.1324 
(0.0002) 

-0.0137 
(0.2197) 

01858 
(0.0002) 

Hawaii (15) vs. 
eastern (53) 

0.0449 
(0.0001) 

0.1849 
(0.0002) 

0.0428 
(0.0605) 

0.3293 
(0.0002) 

0.2268 
(0.0002) 

-0.0002 
(0.4031) 

0.2061 
(0.0002) 

0.2104 
(0.0002) 

0.0338 
(0.0625) 

0.1182 
(0.0026) 

0.2050 
(0.0002) 

0.1406 
(0.0012) 

0.3090 
(0.0002) 

0.3283 
(0.0002) 

0.1339 
(0.0025) 

0.0170 
(0.1643) 

0.1494 
(0.0007) 

Hawaii (15) vs. 
Central Amer. (9) 

0.0636 
(0.0219) 

0.3284 
(0.0002) 

-0.0083 
(0.4045) 

0.5265 
(0.0002) 

0.3328 
(0.0004) 

0.1600 
(0.0631) 

0.3983 
(0.0002) 

0.4280 
(0.0002) 

0.1415 
(0.0034) 

0.2474 
(0.0002) 

0.2464 
(0.0002) 

0.3091 
(0.0002) 

0.4352 
(0.0004) 

0.3863 
(0.0002) 

0.2728 
(0.0002) 

0.1597 
(0.0701) 

0.2854 
(0.0004) 

Hawaii (15) vs.  
Tres Marias (21) 

 0.0487 
(0.0004) 

 0.2260 
(0.0002) 

0.0796 
(0.0478) 

0.3900 
(0.0002) 

0.2552 
(0.0002) 

0.0339 
(0.2507) 

0.2576 
(0.0002) 

0.2351 
(0.0002) 

0.0703 
(0.0272) 

0.1398 
(0.0004) 

0.1533 
(0.0002) 

0.1958 
(0.0002) 

0.3454 
(0.0002) 

0.3608 
(0.0002) 

0.1667 
(0.0004) 

0.0630 
(0.0669) 

0.1828 
(0.0002) 
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Table 3. Pairwise divergence estimates (FST) for spinner and spotted dolphin subspecies, respectively, 14 

using all nuclear SNPs, and using only neutral SNPs. Light gray backgrounds for p<0.05; Medium 15 

gray for p<0.01; darker gray backgrounds for p<0.001.  16 

 17 

 18 Spinner dolphins   All 51 SNPs 42 Neutral SNPs 
Taxon 1 

n:female/male/unk 
Taxon 2 

n:female/male/unk 
FST 

(p-value) 
FST 

(p-value) 

Central American 
7:3/3/1 

eastern 
28:15/7/6 

-0.0023 
(0.4485) 

-0.0066  
(0.5148) 

Central American 
7:3/3/1 

whitebelly 
21:12/9/0 

0.0148 
(0.2607) 

0.0082  
(0.3216) 

eastern 
28:15/7/6 

whitebelly 
21:12/9/0 

0.0297 
(0.0059) 

0.0282  
(0.0099) 

    
Spotted dolphins  All 36 SNPs 25 Neutral SNPs 

Offshore 
13:6/6/1 

Coastal 
12:5/7/0 

0 .1711 
(0.001) 

0.1493  
(0.0005) 
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Table 4: Pairwise divergence estimates for subspecies and stocks of spotted dolphins using concatenated mitogenome data (FST, ΦST and χ2) and 0 

partitioned mitogenomic data (ΦST only). nH listed below each gene name is the number of haplotypes for that gene. Light gray backgrounds for 1 

p<0.05; medium gray for p<0.01; darker gray backgrounds for p<0.001 (p-values in parentheses). “NA” indicates comparisons where ΦST could not 2 

be estimated because all individuals in both strata share the same haplotype. “*” are where one stratum was n<5.  3 
 Concatenated 

mitogenome Partitioned mitogenome ΦST (p-value) 
Taxon 1 (n) vs. 
Taxon 2 (n) 

FST 
(p-value) 

ΦST 
(p-value) 

12S 
nH=6 

16S 
nH=7 

ATP6 
nH=20 

ATP8 
nH=5 

COI 
nH=21 

COII 
nH=13 

COIII 
nH=11 

CYTB 
nH=20 

CR 
nH=20 

ND1 
nH=15 

ND2 
nH=17 

ND3 
nH=10 

ND4 
nH=23 

ND4L 
nH=2 

ND5 
nH=29 

Coastal (24) vs.  
Offshore (52) 

0.0125 
(0.0402) 

-0.0091 
(0.4961) 

0.0089 
(0.2553) 

-0.0316 
(0.9932) 

-0.0149 
(0.6788) 

-0.0169 
(0.7536) 

0.0018 
(0.3265) 

-0.0133 
(0.6182) 

-0.0243 
(0.8890) 

-0.0143 
(0.6067) 

-0.0122 
(0.7336) 

-0.0099 
(0.5357) 

-0.0198 
(0.7610) 

-0.0222 
(0.9006) 

-0.0042 
(0.4085) 

0.0041 
(0.3023) 

-0.0056 
(0.4217) 

 
                 

Northeastern (25) vs.  
western-southern (17) 

0.0045 
(0.2099) 

-0.0076 
(0.4111) 

-0.0014 
(0.3779) 

0.0079 
(0.2841) 

-0.0156 
(0.5332) 

0.0057 
(0.2691) 

-0.0194 
(0.6164) 

0.0003 
(0.3637) 

-0.0193 
(0.5067) 

-0.0211 
(0.5423) 

-0.0091 
(0.5552) 

0.0086 
(0.2585) 

-0.0021 
(0.3473) 

-0.0068 
(0.4139) 

0.0039 
(0.3077) 

-0.0038 
(0.3771) 

-0.0187 
(0.5574) 

Coastal (24) vs. 
northeastern (25) 

0.0302 
(0.0002) 

-0.0082 
(0.4405) 

0.0032 
(0.3375) 

-0.0326 
(0.8096) 

-0.0204  
(0.7070) 

-0.0061 
(0.4689) 

-0.0007 
(0.3651) 

-0.0060 
(0.4325) 

-0.0271 
(0.7540) 

-0.0201 
(0.6148) 

-0.0041 
(0.4653) 

0.0031 
(0.3041) 

-0.0119 
(0.4797) 

-0.0105 
(0.4947) 

0.0055 
(0.2923) 

0.0016 
(0.3249) 

-0.0125  
(0.5309) 

Coastal (24) vs.  
western-southern (17) 

0.0144 
(0.0884) 

-0.0342 
(0.8102) 

-0.0186 
(0.5621) 

-0.0356 
(0.6598) 

-0.0297 
(0.7402) 

0.0081 
(0.3153) 

-0.0313 
(0.8118) 

-0.0355 
(0.8624) 

-0.0449 
(0.8950) 

-0.0385 
(0.8666) 

-0.0024 
(0.8060) 

-0.0392 
(0.9142) 

-0.0335 
(0.7224) 

-0.0393 
(0.9112) 

-0.0311 
(0.7582) 

-0.0360 
(0.7624) 

-0.0285 
(0.6812) 

   
               

Offshore southern (9) 
vs. offshore western (8) 

0.0771 
(0.2249) 

0.1666 
(0.0668) 

-0.1717 
(0.0781) 

0.2129 
(0.0618) 

0.1167 
(0.1039) 

0.1117 
(0.0801) 

0.1229 
(0.0743) 

0.1361 
(0.0939) 

0.1816 
(0.0767) 

-0.0471 
(0.4611) 

0.0683 
(0.1177) 

0.1767 
(0.0575) 

0.1771 
(0.0743) 

0.1155 
(0.1183) 

0.2148 
(0.0394) 

0.1382 
(0.1231) 

0.1895 
(0.0529) 

Northeastern (25) vs. 
offshore western (8) 

0.0027 
(0.4291) 

0.1135 
(0.0517) 

0.0853 
(0.0945) 

0.1848 
(0.0352) 

0.0728 
(0.1223) 

0.1128 
(0.0252) 

0.0575 
(0.1397) 

0.1164 
(0.0504) 

0.1117 
(0.0749) 

0.0064 
(0.3259) 

0.0348 
(0.1635) 

0.1525 
(0.0372) 

0.1179 
(0.0775) 

0.1142 
(0.0697) 

0.1497 
(0.0394) 

0.1309 
(0.0689) 

0.0894 
(0.0957) 

Northeastern (25) vs. 
offshore southern (9) 

0.0073 
(0.3755) 

-0.0400 
(0.7446) 

-0.0242 
(0.5728) 

-0.0537 
(0.8008) 

-0.0468 
(0.8162) 

-0.0691 
(0.9552) 

-0.0291 
(0.6287) 

-0.0387 
(0.7512) 

-0.0491 
(0.7828) 

-0.0509 
(0.8168) 

-0.0300 
(0.7886) 

-0.0379 
(0.7394) 

-0.0392 
(0.7150) 

-0.0551 
(0.9540) 

-0.0238 
(0.5626) 

-0.0694 
(0.9756) 

-0.0327 
(0.6092) 

Coastal (24) vs.  
offshore southern (9) 

0.0255 
(0.0762) 

-0.0130 
(0.4065) 

-0.0323 
(0.5874) 

-0.0277 
(0.4713) 

-0.0279  
(0.5721) 

-0.0147 
(0.4071) 

-0.0122 
(0.4423) 

-0.0079 
(0.3971) 

-0.0227 
(0.4611) 

-0.0579 
(0.8690) 

-0.0418 
(0.8558) 

-0.0012 
(0.3477) 

-0.0419 
(0.6714) 

-0.0309 
(0.5854) 

0.0051 
(0.3209) 

-0.0160 
(0.4301) 

-0.0030 
(0.3453) 

Coastal (24) vs. 
offshore western (8) 

0.0049 
(0.4321) 

0.0749 
(0.1331) 

0.1368 
(0.0559) 

0.1366 
(0.0855) 

0.0594 
(0.1583) 

0.1363 
(0.0167) 

0.0751 
(0.1281) 

0.0406 
(0.1953) 

0.0769 
(0.1535) 

-0.0089 
(0.3361) 

0.0488 
(0.1359) 

0.0609 
(0.1541) 

0.0901 
(0.1101) 

-0.0372 
(0.2059) 

0.1067 
(0.0881) 

0.0239 
(0.2425) 

0.0841 
(0.1269) 

   
               

Hawaii (5) vs. Coastal 
(24) 

0.1430 
(0.0026) 

0.2773 
(0.0208) 

0.4166 
(0.0019) 

0.2176 
(0.0572) 

0.2767 
(0.0174) 

-0.0502 
(0.5687) 

0.4032 
(0.0028) 

0.1687 
(0.0762) 

0.2175 
(0.0585) 

-0.2859 
(0.0254) 

0.2037* 
(0.0326) 

0.3643 
(0.0049) 

0.1575* 
(0.0947) 

0.3085 
(0.0042) 

0.2660 
(0.0252) 

0.2811 
(0.0202) 

0.2541 
(0.0244) 

Hawaii (5) vs. Offshore 
(47) 

0.1181 
(0.0006) 

0.1582 
(0.0389) 

0.1806 
(0.0422) 

-0.1282 
(0.1107) 

0.1882 
(0.0352) 

-0.0459 
(0.6156) 

-0.2138 
(0.0124) 

-0.0818 
(0.1323) 

0.1361 
(0.0632) 

-0.0849 
(0.1481) 

0.1485* 
(0.0475) 

0.2598 
(0.0082) 

0.1146* 
(0.1449) 

0.2609 
(0.0054) 

0.1239 
(0.0593) 

0.1689 
(0.0545) 

0.1303 
(0.0517) 

Hawaii (5) vs. 
northeastern (25) 

0.0576 
(0.2709) 

0.1308 
(0.0645) 

0.1153 
(0.0962) 

0.0809 
(0.1793) 

(0.1584 
(0.0353) 

-0.0198 
(0.4695) 

-0.1981 
(0.0206) 

0.0638 
(0.1739) 

0.1099 
(0.1123) 

0.1478 
(0.0714) 

0.1372* 
(0.0567) 

0.2499 
(0.0102) 

0.0869* 
(0.1279) 

0.2751 
(0.0051) 

0.0984 
(0.1029) 

0.1446 
(0.0843) 

0.0951 
(0.1355) 

Hawaii (5) vs.  
western-southern (17) 

0.2474 
(0.0702) 

0.2273 
(0.0238) 

0.2942 
(0.0284) 

0.2139 
(0.0774) 

0.2670 
(0.0297) 

-0.0542 
(0.8308) 

0.2583 
(0.0244) 

0.1353 
(0.1133) 

-0.1992 
(0.0547) 

0.2259 
(0.0286) 

0.1704* 
(0.0547) 

0.3089 
(0.0196) 

0.1793*(
0.1473) 

0.2751 
(0.0234) 

0.1925 
(0.0356) 

0.2673 
(0.0342) 

0.2062 
(0.0366) 

   
               

Hawaii (5) vs.  
offshore western (8) 

0.4958 
(0.0732) 

0.4932 
(0.0179) 

0.4558 
(0.0318) 

0.5298 
(0.0168) 

0.4984 
(0.0148) 

0.0285 
(0.3925) 

0.4640 
(0.0119) 

0.4572 
(0.0364) 

0.5036 
(0.0352) 

0.0013 
(0.4061) 

0.3598* 
(0.0771) 

0.5523 
(0.0039) 

0. 4484* 
(0.0328) 

0.4915 
(0.0033) 

0.5093 
(0.0114) 

0.1309 
(0.0689) 

.0924 
(0.1393) 

Hawaii (5) vs.  
offshore southern (9) 

0.1509 
(0.2207) 

0.1274 
(0.1167) 

0.3012 
(0.0268) 

0.0306 
(0.2757) 

0.1750 
(0.0718) 

0.0443 
(0.1961) 

0.2126 
(0.0202) 

0.0036 
(0.4437) 

0.0161 
(0.3045) 

0.1384 
(0.0872) 

-0.1260* 
(0.0865) 

0.2138 
(0.0178) 

0.0039* 
(0.2641) 

-0.0551 
(0.0206) 

0.0808 
(0.1389) 

0.1382 
(0.1231) 

0.5038 
(0.0198) 
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Table 5. Summary table of pairwise comparisons using mtDNA and nuDNA data sets (sample 24 

sizes in parentheses). In the mtDNA column, a “�”  denotes significance of whole mtDNA based 25 

on at least one measure (see Tables 2-4), ‘ns’ = non-significant, “ ~ ” = indicating possible 26 

structure with P-value between 0.05 and 0.1. “# Genes” is the number of significant mtDNA 27 

genes (“~” + # for nearly significant genes). For the nuDNA column, a “�” denotes significance 28 

and ‘NA’ denotes not tested (Leslie & Morin 2016; *Escorza-Treviño et al. 2005). 29 

   mtDNA nuDNA 

Spinner dolphins Taxon 1 (nmt/nnuc) Taxon 2 (nmt/nnuc) Whole # Genes  

Test of endemic subspecies Central American (9/9) eastern (53/36) � 0 � 

Testing whitebelly intergrade Central American (9/7) whitebelly  (27/15) ~ 7: ~1 � 

Testing whitebelly intergrade eastern (54/36) whitebelly (27/15) ~ 8; ~1 � 

Alternative stock hypotheses Tres Marias (21/12) Central American (9/9) ~ 0 � 

“” Tres Marias (21/12) Eastern (32/36) ns 0 � 

“” Tres Marias (21/12) Whitebelly (27/12) ~ 4; ~5 � 

“” Hawaii (15/0) Whitebelly (27/0) � 11 NA 

“” Hawaii (15/0) Eastern (32/0) � 11; ~1 NA 

“” Hawaii (15/0) Central American (9/0) � 12; ~1 NA 

“” Hawaii (15/0) Tres Marias (21/0) � 13; ~1 NA 

      

Spotted dolphins Taxon 1 (nmt/nnuc) Taxon 2 (nmt/nnuc) Whole # Genes nuDNA 

Testing subspecies Offshore (52/13)     Coastal (24/27) � 0 �* 

Testing existing stocks Offshore NE (25/15) Off. western-southern (17/16) ns 0 � 

Testing existing stocks Offshore NE (25/15)  Coastal (24/27) � 0 � 

Testing existing stocks Offshore WS (17/16) Coastal (24/27) ~ 0 � 

Alternative stock hypotheses Offshore southern (9/0) Offshore western (8/0) ~ 1: ~9 NA 

“” Offshore NE (25/0) Offshore western (8/0) ~ 4; ~7 NA 

“” Offshore NE (25/0) Offshore southern 
(9/0) 

ns 0 NA 

“” Offshore southern (9/0) Coastal (24/0) ~ 0 NA 

“” Offshore western (8/0) Coastal (24/0) ns 1; ~3 NA 

“” Hawaii (5/0) Coastal (24/0) � 10; ~4 NA 

“” Hawaii (5/0) Offshore (52/0) � 6; ~4 NA 

“” Hawaii (5/0) Offshore NE (25/0) ~ 4; ~4 NA 

“” Hawaii (5/0) Offshore WS (17/0) � 9: ~3 NA 

“” Hawaii (5/0) Offshore western (8/0) � 10; ~2 NA 

“” Hawaii (5/0)  Offshore southern(9/0) ns 5; ~3 NA 
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Figure 1. Sampling localities and range map for spinner dolphins within the ETP. 30 

Subspecies and stock boundaries based on Perrin et al. 1985. Red dots indicate Central 31 

American spinners. Blue symbols indicate eastern spinners - boxes are the proposed Tres 32 

Marias form. Green dots indicate whitebelly spinners, a proposed intergrade between the 33 

pantropical (orange diamonds) and the eastern subspecies. mtDNA sample sizes are in 34 

the legend.  35 

 36 
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Figure 2.  Sampling localities for spotted dolphins with ETP subspecies and stock 37 

boundaries based on Perrin et al. 1985. Coastal spotted dolphins (S. a. graffmani) are in 38 

red and offshore (S a. attenuata) are in blue. Blue circles indicate sampling locations for 39 

the northeastern stock of offshore spotted dolphins. Blue triangles indicate samples from 40 

Hawaii. Inverted triangles indicate southern offshore samples that were removed from 41 

analyses of offshore stocks because they were collected between 4°N and 6°N; these 42 

samples were included in subspecies-level analyses. Animals that represent the western 43 

substock were the group of blue squares west of 120°W and animals representing the 44 

southern sub-stock were the group of blue squares taken from south of the 5°N stock 45 

boundary. Samples sizes for mtDNA analyses presented in the legend.  46 

 47 
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