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Abstract

A common approach to design genetic circuits is to compose gene expression cassettes to-
gether. While appealing, this modular approach is challenged by the fact that expression of each
gene depends on the availability of transcriptional/translational resources, which is in turn deter-
mined by the presence of other genes in the circuit. This raises the question of how competition
for resources by di�erent genes a�ects a circuit’s behavior. Here, we create a library of genetic
activation cascades in bacteria E. coli, where we explicitly tune the resource demand by each
gene. We develop a general Hill-function-based model that incorporates resource competition
e�ects through resource demand coe�cients. These coe�cients lead to non-regulatory interac-
tions among genes that reshape circuit’s behavior. For the activation cascade, such interactions
result in surprising biphasic or monotonically decreasing responses. Finally, we use resource
demand coe�cients to guide the choice of ribosome binding site (RBS) and DNA copy number
to restore the cascade’s intended monotonically increasing response. Our results demonstrate
how unintended circuit’s behavior arises from resource competition and provide a model-guided
methodology to minimize the resulting e�ects.

Keywords: genetic circuit, context dependence, modularity, resource competition, model-

guided design, activation cascade
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Introduction

Predicting the behavior of genetic circuits in living cells is a recurring challenge in synthetic biology [1].
Genetic circuits are often viewed as interconnections of gene expression cassettes, which we call nodes. Each
cassette (node) is composed of core gene expression processes, chiefly transcription and translation. Here,
we view each node as an input/output system that takes transcription factors (TFs) as input and gives a
TF as output. The input TFs regulate the production of the output TF. Although in an ideal scenario we
would like to predict the behavior of a circuit from that of its composing nodes characterized in isolation,
in reality, a node’s behavior often depends on its context, including other nodes in the same circuit and the
host cell environment [2]. This fact significantly limits our current ability to design genetic circuits that
behave as intended. There are a number of causes to context dependence, including unknown structural
interactions between adjacent genetic sequences [3], loading of TFs by target DNA sites (retroactivity) [4, 5,
6], unintended coupling between synthetic genes and host cell growth (host-circuit interaction) [7, 8, 9], and
competition among synthetic genes with each other for common transcriptional and translational resources
[10, 11, 12, 13, 14]. Context dependence due to structural interactions and retroactivity has been addressed
by engineering insulation parts and devices [15, 16, 6, 17, 18] and that due to host-circuit interaction may
be mitigated to some extent by orthogonal RNA polymerases (RNAPs) and ribosomes [19, 20, 21, 22]. By
contrast, the characterization and mitigation of competition for shared resources among synthetic genes
remain largely unexplored.

Expression of all genes in a genetic circuit relies on a common pool of transcriptional and translational
resources. In particular, the availability of RNAPs and ribosomes has been identified as a major bottleneck
for gene expression in bacteria [23, 24, 25, 26]. When a node is activated, it depletes the pool of free
RNAPs and ribosomes, reducing their availability to other nodes in the circuit. This can potentially a�ect
the behavior of a circuit altogether. Recent experimental results have demonstrated that competition for
transcriptional and translational resources can couple the expression of two synthetic genes that are otherwise
unconnected [10, 12]. In particular, limitation in ribosome availability has been identified as the key player
in this coupling phenomenon [12]. These works further demonstrate that upon induction of a synthetic gene,
the expression level of a constitutively expressed gene on the same plasmid can be reduced by more than 60%.
Similar trade-o�s have been observed in cell-free systems [27] and in computational models [11, 13, 14, 28].

In this paper, we seek to determine how competition for RNAPs and ribosomes by the genes constituting
a synthetic genetic circuit changes the intended circuit’s behavior in bacteria E. coli. To address this
question, we perform a combined modeling and experimental study. In particular, we develop a general
mathematical model that explicitly includes competition for RNAPs and ribosomes in Hill-function models of
gene expression. In our models, resource demand coe�cients quantify the demand for resources by each node
and shape the emergent dose response curve of a genetic circuit. We construct a library of synthetic genetic
activation cascades in which we tune the resource demand coe�cients by changing the RBS strength of the
cascade’s genes and DNA copy number. When the resource demand coe�cients are large, the dose response
curve of the cascade can either be biphasic or monotonically decreasing. When we decrease the resource
demand coe�cients, we restore the intended cascade’s monotonically increasing dose response curve. For
general circuits, our model reveals that due to non-zero resource demand coe�cients, resource competition
gives rise to non-regulatory interactions among nodes. We give a general rule for drawing the e�ective
interaction graph of any genetic circuit that combines both regulatory and non-regulatory interactions.

Results

Surprising biphasic response of a genetic activation cascade

We built a genetic activation cascade composed of three nodes and two transcriptional activation stages.
Two inducer-responsive TFs, LuxR from Vibrio fischeri [29] and NahR from Pseudomonas putida [30],
activate gene expression in their active forms (i.e., holo forms) when their respective inducers N -hexanoyl-L-
homoserine lactone (AHL) and salicylate (SAL) are present. Node 1 uses the lac promoter to constitutively
express LuxR in a LacI-deficient host strain. By increasing inducer AHL concentration, the active form
of LuxR increases, and it can transcriptionally activate the following node. We consider active LuxR as
the output of node 1. Node 2 uses transcriptional activation by the active LuxR through the lux promoter
(Figure 1A). To characterize the dose response curve of this node, we placed red fluorescent protein (RFP)
under the control of the lux promoter. An increase in AHL concentration increases the active LuxR to
promote the production of RFP (Figure 1A).

Node 3 employs transcriptional activation by active NahR and the sal promoter to express green fluo-
rescent protein (GFP) as fluorescence output. Inactive NahR is first produced under the control of the lux

promoter. We applied a saturating amount of AHL (100 nM) and expressed LuxR constitutively to produce
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Figure 1: Failure of modular composition in a simple two-stage activation cascade. (A) The
first activation stage consists of a node that takes as input the transcription activator LuxR to promote
production of RFP as output in the presence of AHL, resulting in a monotonically increasing dose response
curve. Upward arrows with leftward/rightward tips represent promoters, semicircles represent RBS, and
double hairpins represent terminators. The illustrative diagram composed of nodes and edges at the upper-
right corner represents regulatory interactions among species. (B) The second activation stage consists of a
node that takes as input the transcription activator NahR to promote production of GFP as output in the
presence of SAL, resulting in a monotonically increasing dose response curve. (C) The two-stage activation
cascade CAS 1/30 was built by connecting the nodes in a cascade topology. Biphasic dose response curve
(solid line) of the cascade was observed instead of the expected monotonically increasing dose response curve
(dashed line), which is the composition of the two increasing Hill functions for the individual nodes according
to equation (3). All experimental data represent mean values and standard deviations of populations in the
steady state analyzed by flow cytometry in three independent experiments. Each plot is normalized to its
maximum fluorescence value (see SI Section A7 for details).
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a saturating amount of inactive NahR. By increasing the amount of inducer SAL, active NahR concentration
increases, activating production of GFP (Figure 1B). We further confirm that the dose response curve of
GFP activation by active NahR remains monotonically increasing under di�erent AHL concentrations (see
SI Section A6 and Figure S1).

To build a two-stage activation cascade (CAS 1/30), we connected the three nodes by replacing the RFP
in node 2 by NahR. Active NahR can be regarded as the output of node 2 and the input to node 3. With a
constant amount of SAL (1 mM), increased AHL concentration leads to increased active LuxR, and hence
to increased concentration of active NahR, resulting in increased production of GFP (cascade output).

The expected behavior of this cascade is therefore a monotonically increasing GFP fluorescence as AHL
is increased. This can be easily predicted by a standard Hill-function model of the circuit. Specifically,
letting I

1

denote inducer AHL, I
2

denote inducer SAL, x
1

denote active LuxR, x
2

denote active NahR, and
x

3

denote GFP output, and using I
1

, I
2

, x
1

, x
2

and x
3

(italics) to represent their concentrations, we obtain
the following ordinary di�erential equation (ODE) model (see SI Section B1 for details):

dx
1

dt
= T

1

· H
1

(I
1

)¸ ˚˙ ˝
LuxR production

& allosteric modulation

≠ “x
1¸˚˙˝

dilution

,

dx
2

dt
= T

2

· F
2

(x
1

) · H
2

(I
2

)¸ ˚˙ ˝
NahR production

& allosteric modulation

≠ “x
2¸˚˙˝

dilution

,

dx
3

dt
= T

3

· F
3

(x
2

)¸ ˚˙ ˝
GFP

production

≠ “x
3¸˚˙˝

dilution

,

(1)

where T
i

(i = 1, 2, 3) is a lumped parameter describing maximal production rate of node i (defined in equation
(S15) in SI), “ is the dilution rate constant, and H

1

(I
1

), H
2

(I
2

), F
2

(x
1

) and F
3

(x
2

) are standard increasing
Hill-functions whose maxima are normalized to 1. H

1

(I
1

) and H
2

(I
2

) describe allosteric modulation of LuxR
by AHL, and of NahR by SAL. Since we applied a constant amount of SAL (i.e., I

2

= constant), H
2

(I
2

)
is a constant. Without loss of generality, we assume H

2

(I
2

) © 1 in sequel, as any non-unity H
2

(I
2

) can be
absorbed into the lumped parameter T

2

without a�ecting our analysis (see SI Section B1). Hill functions
F

2

(x
1

) and F
3

(x
2

) describe transcriptional regulations of NahR by active LuxR, and of GFP by active NahR,
respectively. These Hill functions describing regulatory interactions are derived from the chemical reactions
in SI Section B1, and are given by:

H
1

(I
1

) = (I
1

/k
1

)n1

1 + (I
1

/k
1

)n1
F

2

(x
1

) = —
2

+ (x
1

/k
2

)n2

1 + (x
1

/k
2

)n2
, F

3

(x
2

) = —
3

+ (x
2

/k
3

)n3

1 + (x
2

/k
3

)n3
. (2)

In equations (2), k
i

are the dissociation constants between the regulators, I
1

, x
1

and x
2

, and their respective
DNA/protein targets. Dimensionless parameters —

i

< 1 characterize basal expressions, and n
i

are Hill
coe�cients capturing cooperativities of the TF and promoter (or of the inducer and TF) bindings. Setting
the time derivatives in (1) to zero, we obtain the dose response curve of the cascade as the composition of
three increasing Hill-functions:

x
3

= T
3

“
F

3

5
T

2

“
F

2

3
T

1

H
1

(I
1

)
“

46
. (3)

It is clear from (3), that independent of parameters, the steady state of x
3

(GFP concentration) always
increases with I

1

(AHL concentration).
Surprisingly, the experimental results contradict this rather trivial prediction. In fact, although the

input/output responses of both transcriptionally regulated nodes are monotonically increasing (Figure 1A-
B), their cascade shows a biphasic dose response curve, in which the GFP fluorescence decreases with
increased concentrations of AHL for higher AHL concentrations (Figure 1C). This fact clearly demonstrates
that while the standard model well represents the activation behavior of each individual node, its predictive
ability is lost when the nodes are connected and thus are simultaneously activated.

In the next section, we derive a new model, similar in form to that of model (1), which is able to predict
the experimentally observed behavior.

A cascade model taking into account resource competition predicts non-

regulatory interactions

An underlying assumption in the standard Hill-function model (1) is that the concentrations of free RNAPs
and ribosomes can be regarded as constant parameters [31, 32] (refer to SI Section B1). In reality, because
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their total availability is limited [23, 24, 26], their free concentrations should depend on the extent to which
di�erent nodes in a circuit demand them. With reference to Figure 1C, the biphasic response of x

3

can be
explained by the following resource competition mechanism. When we increase I

1

, the concentration of x
1

increases, promoting production of x
2

. As node 2 sequesters more RNAPs and ribosomes, the amount of
free resources decreases, which in turn result in decreased transcription and translation rates in node 3.

We therefore created a model that explicitly accounts for the limited concentrations of RNAPs and
ribosomes and for their competition by the three nodes in the cascade. For a given growth rate, the total
concentrations of RNAPs and ribosomes can be assumed constant parameters [9, 23]. Considering the
conservation law for these resources and solving for their free concentrations (see SI Section B2), we obtain
the following modified Hill-function model:

dx
1

dt
= T

1

H
1

(I
1

)
1 + J

1

+ J
2

F
2

(x
1

) + J
3

F
3

(x
2

)¸ ˚˙ ˝
G1(x1,x2,I1): e�ective node 1 production

≠ “x
1¸˚˙˝

dilution

, (4)
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dt
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(x
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)
1 + J

1

+ J
2

F
2

(x
1

) + J
3

F
3

(x
2

)¸ ˚˙ ˝
G2(x1,x2): e�ective node 2 production

≠ “x
2¸˚˙˝

dilution

, (5)

dx
3

dt
= T

3

F
3

(x
2

)
1 + J

1

+ J
2

F
2

(x
1

) + J
3

F
3

(x
2

)¸ ˚˙ ˝
G3(x1,x2): e�ective node 3 production

≠ “x
3¸˚˙˝

dilution

, (6)

in which H
1

(I
1

), F
2

(x
1

) and F
3

(x
2

) are regulatory Hill functions defined in equations (2), and T
i

(i = 1, 2, 3)
is the maximum production rate of node i defined in (S25) in SI. The lumped dimensionless parameter J

i

can be understood as an indicator of maximal resource demand by node i, and we call it resource demand

coe�cient. It is defined as:

J
i

:= p
i,T

K
i

·
1

1 + –
i

Ÿ
i

”
i

y
T

2
, (7)

where p
i,T

is the DNA copy number of node i; –
i

is its transcription elongation rate constant, describing
the average number of mRNAs transcribed from a single DNA molecule in unit time; ”

i

is mRNA decay
rate constant, and y

T

is the total concentration of RNAPs. The ability of each DNA molecule (mRNA
molecule) to occupy free RNAPs (ribosomes) is characterized by lumped coe�cient K

i

(Ÿ
i

), defined in
equations (S3) and (S8) in SI. They can be viewed as e�ective dissociation constants that decrease with
(i) stronger a�nity between activated promoter (RBS) in node i and free RNAPs (ribosomes), and (ii)
lower transcription (translation) elongation rate constants. Physically, resource demand coe�cient of node
i (J

i

) increases as (I) the total number of promoter sites (p
i,T

) increases, (II) the total number of mRNA
molecules (p

i,T

–
i

y
T

/K
i

”
i

) increases, (III) the ability of each DNA molecule to sequester free RNAPs (1/K
i

)
increases, or (IV) the ability of each mRNA molecule to sequester free ribosomes (1/Ÿ

i

) increases. For a
given transcriptional activation level, the portion of resources allocated to each node is quantified by J

1

,
J

2

F
2

(x
1

) and J
3

F
3

(x
2

), respectively, and follow the conservation law (see SI Section B5 for derivation):

y
T

· z
T¸ ˚˙ ˝

total available

resources

= y · z¸˚˙˝
free

resources

+ y · z · J
1¸ ˚˙ ˝

node 1

resource demand

+ y · z · J
2

F
2

(x
1

)¸ ˚˙ ˝
node 2

resource demand

+ y · z · J
3

F
3

(x
2

)¸ ˚˙ ˝
node 3

resource demand

, (8)

where y
T

(y) and z
T

(z) are the total (free) amount of RNAPs and ribosomes, respectively.
The major di�erence between model (4)-(6) and the standard Hill-function model (1) is the common

denominator 1 + J
1

+ J
2

F
2

(x
1

) + J
3

F
3

(x
2

) in the e�ective node production rates G
1

(x
1

, x
2

, I
1

), G
2

(x
1

, x
2

)
and G

3

(x
1

, x
2

). In a resource-abundant situation where RNAPs and ribosomes bound to all nodes are much
smaller than their free amounts (y ¥ y

T

and z ¥ z
T

), we have J
1

, J
2

, J
3

π 1, and model (4)-(6) reduces
to the standard Hill-function model (1). Detailed proof of this result is in SI Section B5. Because of the
common denominator, the production of each node depends on all TFs present in the circuit as opposed to
depending only on its own inputs as in equation (1). In particular, regardless of parameters, we always have
the following e�ective interactions among the cascade nodes (see SI Section B3.1 for derivation):
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,
ˆG

2

ˆx
2

< 0 ∆ x
2

‰ x
2
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,
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(9)
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Figure 2: Activation cascade becomes an e�ective type 3 IFFL due to resource competition.

(A) E�ective interactions among nodes in a two-stage activation cascade with resource competition. Black
solid edges are regulatory interactions, and red dashed edges represent emergent non-regulatory interactions
due to resource competition. (B) Parameter space illustrating diverse cascade dose response curves obtained
from numerical simulations when the resource demand coe�cient J

2

is changed. The horizontal axis shows
the DNA copy number, and the vertical axis shows the RBS strength of node 2. Numerical values on the
vertical axis represent the ratio between the dissociation constant of node 1 (Ÿ

1

) between RBS and ribosomes
(kept constant at 15 µM), and that of node 2 (Ÿ

2

). The cascade has monotonically decreasing, biphasic or
monotonically increasing dose response curve depending on whether the parameters fall into the gray, dotted
or grid shaded region in the parameter space, respectively. Simulations are based on a full reaction rate
equation model corresponding to the chemical reactions in SI Section B1 and B2. Parameter values are
listed in SI Table 2.

While interactions I
1

æ x
1

, x
1

æ x
2

and x
2

æ x
3

are due to the intended allosteric modulation and
transcriptional activations, the other interactions are not present in the standard model (1). They can be
regarded as non-regulatory interactions arising from resource competition among nodes. In particular, the
non-regulatory interactions x

1

‰ x
3

and x
1

‰ x
1

are due to the fact that as x
1

increases, production of x
2

is activated, depleting the pool of free resources, thus reducing the amount of resources available to initiate
transcription and translation of x

3

and x
1

, respectively. Similarly, an increase in x
2

activates production of
x

3

, reducing resources available to its own expression and that of x
1

, leading to non-regulatory interactions
x

2

‰ x
2

and x
2

‰ x
1

.
Based on (9), the e�ective interactions among nodes in an activation cascade are shown in Figure 2A,

where we use red dashed edges to represent emergent non-regulatory interactions due to resource competition.
The non-regulatory interactions create a feed-forward edge x

1

‰ x
3

, a feedback edge x
2

‰ x
1

and two negative
auto-regulation edges: x

1

‰ x
1

, x
2

‰ x
2

. In SI Section B3.1, we demonstrate that regardless of emergent
negative auto-regulation edges on x

1

and x
2

, and the feedback edge x
2

‰ x
1

, x
1

and x
2

still increases with
inducer input I

1

as expected. Therefore, the topology of this activation cascade e�ectively becomes a type
3 incoherent feed-forward loop (IFFL) [31], where x

3

production is jointly a�ected by regulatory activation
from x

2

and non-regulatory repression from x
1

. It is well-known that, depending on parameters, the dose
response curve of an IFFL can be monotonically increasing, decreasing or biphasic [33, 34]. As we increase I

1

to increase x
1

, if transcriptional activation x
1

æ x
2

æ x
3

is stronger than non-regulatory repression x
1

‰ x
3

,
then the dose response curve is monotonically increasing. Conversely, if the non-regulatory repression is
stronger than transcriptional activation, the dose response curve becomes monotonically decreasing. Biphasic
responses can be expected when transcriptional activation dominates at lower inducer levels, and resource-
competition-induced non-regulatory repression becomes more significant at higher inducer levels. A detailed
analytical treatment is in SI Section B3.

The strength of the non-regulatory repression x
1

‰ x
3

can be reduced by decreasing resource demand
coe�cient of node 2 (J

2

). This is because, as a result, the dose response curve of an activation cascade
is monotonically increasing when J

2

π 1 (see SI Section B3.2). Conversely, we expect the dose response
curve to be monotonically decreasing when J

2

is large, and to be biphasic for intermediate values of J
2

.
Based on the definition of resource demand coe�cient in (7), we can decrease J

2

by choosing weak node 2
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Figure 3: Model-guided design restores the monotonically increasing dose response curve of

the cascade. The dose response curves of circuits CAS 1/30 (A) and CAS 1/60 (C) were biphasic and
monotonically decreasing, respectively. By reducing the RBS strength of NahR, the dose response curve of
CAS 0.3/30 (B) became monotonically increasing, and that of CAS 0.3/60 (D) became biphasic. Further
decreasing the copy number of CAS 0.3/60 to CAS 0.3/30 restored the monotonically increasing dose response
curve. Experimental results are presented on top of the parameter space created in Figure 2B by simulations.
Blue and green arrows represent design actions to restore the monotonically increasing dose response curves
starting from failed cascades CAS 1/30 and CAS 1/60, respectively. Mean values and standard deviations
of fluorescence intensities at the steady state are calculated from three independent experiments analyzed
by flow cytometry and normalized to the maximum value in each plot (see SI Section A7).

RBS strength and low DNA copy number. We simulated the dose response curves of activation cascades
with di�erent node 2 RBS strengths and DNA copy numbers, presented in the parameter space in Figure
2B. The lower left corner of the parameter space corresponds to the cascade with the smallest J

2

, and
the upper right corner corresponds to the largest J

2

. In accordance with these predictions, simulations
in Figure 2B confirms that smaller J

2

(weak x
2

RBS and low DNA copy number) results in monotonically
increasing response (grid shaded region), while larger J

2

(strong x
2

RBS and high DNA copy number) results
in monotonically decreasing response (gray region). The dotted region corresponds to intermediate values
of J

2

which result in biphasic response.

Model-guided design recovers monotonically increasing response of the

cascade

Based on the simulation map in Figure 2B and the mathematical analysis of model (4)-(6) described in
the previous section, we created a library of activation cascades in which each cascade should result into
one of the three di�erent behaviors shown in Figure 2B. This library is composed of cascades that di�er
in the value of the resource demand coe�cient of NahR (J

2

), with the rationale that we can mitigate the
strength of the key non-regulatory interaction x

1

‰ x
3

to recover the intended monotonically increasing dose
response curve of the cascade. In particular, starting from CAS 1/30, whose dose response curve is biphasic
(Figure 3A), we designed circuit CAS 0.3/30 with about 30% RBS strength [12] of NahR compared to CAS
1/30, theoretically resulting in a reduction of J

2

. We therefore expect a reduction of the x
1

‰ x
3

interaction
strength, leading to a monotonically increasing dose response curve, which is confirmed by the experiment
(Figure 3B).

Similarly, we constructed another cascade circuit CAS 1/60 in which the DNA copy number is about
twice as that of CAS 1/30 (about 60 vs 30). According to our model, resource demand coe�cient of NahR
J

2

in CAS 1/60 should double compared to that of circuit CAS 1/30. Therefore, we expect a possibly
monotonically decreasing dose response curve. Experiments confirm this prediction (Figure 4C). A local
increase in GFP fluorescence at about 10 nM AHL is due to the two-step multimerization of NahR proteins
[35], which is detailed in SI Section A5. To obtain a monotonically increasing dose response curve from this
circuit, we first reduced NahR resource demand coe�cient J

2

by designing a circuit CAS 0.3/60, whose NahR
RBS strength is 30% compared to that of CAS 1/60. Theoretically, depending on parameters, reduced J

2
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Figure 4: Rules to determine e�ective interaction graphs arising from resource competition

in a genetic circuit. Black solid edges represent regulatory interactions; red dashed edges represent non-
regulatory interactions arising from resource competition; if a black and a red edge have the same starting
and ending nodes, we indicate their combined e�ect with a gray edge. (A) If TF x

j

has only one target,
then resource competition does not change the nature (activation or repression) of interaction from x

j

to its
target. However, it weakens the intended strength. (B) If TF x

j

regulates multiple targets, then the e�ective
interactions from x

j

to its targets are undetermined. (C) If x
j

is a transcriptional activator (repressor), then
it becomes an e�ective repressor (activator) for all nodes that are not its target. (D) Applying the rules in
A-C, we determine the e�ective interaction graph for a repression cascade.

can lead to either monotonically increasing or biphasic dose response curves (see Figure 2B). Our experiment
show that the response of CAS 0.3/60 is indeed biphasic (Figure 3D). To restore a monotonically increasing
dose response curve, we can further decrease J

2

by reducing DNA copy number to create circuit CAS 0.3/30,
whose dose response curve is monotonically increasing (Figure 3B).

General rules to draw e�ective interactions in genetic circuits

Interaction graphs, which use directed edges to represent regulatory interactions, are a convenient graphical
tool to design and/or analyze the qualitative behavior of a genetic circuit [31]. Here, we expand the concept
of interaction graph to incorporate non-regulatory interactions due to resource competition. We call the
resultant interaction graph an e�ective interaction graph, which includes both regulatory interactions and
non-regulatory interactions due to resource competition. In an e�ective interaction graph, we draw x æ y
(x ‰ y) to represent e�ective activation (repression). We draw x ( y if the interaction is undetermined,
that is, it depends on parameters and/or x concentration.

The resource competition model (4)-(6) and the e�ective interaction graph identified in Figure 2A for the
activation cascade can be generalized to any genetic circuit in a resource-limited environment. Each node i
is a system that takes active TFs as inputs through the process of transcriptional regulation, and produce
an active TF x

i

as an output. Therefore, each node represents a dynamical process that can be captured
by the ODE describing the rate of change of active x

i

’s concentration x
i

. In a circuit with N nodes, we can
write the dynamics of node i as (see SI Section B4 for derivation):

dx
i

dt
= T

i

F
i

(Q
i

x) · H
i

(I
i

)
1 +

q
N

k=1

J
k

F
k

(Q
k

x)
¸ ˚˙ ˝

Gi(x,Ii): e�ective node i production

≠ “x
i

.¸˚˙˝
dilution

(10)

According to model (10), e�ective production rate of x
i

, G
i

(x, I
i

), is jointly a�ected by transcriptional
regulation T

i

F
i

(Q
i

x), allosteric modulation H
i

(I
i

), and resource competition R(x) := [1+
q

N

k=1

J
k

F
k

(Q
k

x)].
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In particular, since resources are shared among all nodes, R(x) is a common denominator to the e�ective
production rate of every node. In model (10), T

i

and J
i

are lumped parameters that represent the maximum
production rate of x

i

and the maximum resource demand by node i, respectively (see equation (S70) and (7)
for precise expressions). In particular, we gave the expression of J

i

in equation (7) along with the explanation
of its physical meaning. The binary matrix Q

i

selects the TF inputs to node i (see SI Section B4.1 for precise
definition), and the vector x = [x

1

, · · · , x
N

]T represents the concatenation of all active TFs’ concentrations
in the circuit. Active TFs are defined as proteins, either in inducer bound or unbound form, that can
transcriptionally regulate a gene. Normalized Hill function F

i

(Q
i

x) describes the transcriptional regulation
of node i by its input TFs (see SI equation (S53) for precise expression). For those TFs whose activity can
be allosterically modulated by an inducer I

i

, normalized Hill function H
i

(I
i

) represents the portion of TF
that is active. If node i is not transcriptionally regulated, that is, x

i

is constitutively expressed, then F
i

© 1.
Similarly, if the activity of the TF x

i

is not allosterically modulated by an inducer, then H
i

© 1. Parameter
“ is a dilution rate constant that models cell growth.

Given model (10), a regulatory interaction from x
j

to x
i

is given by a non-zero ˆF
i

/ˆx
j

. It is an
activation (æ) if ˆF

i

/ˆx
j

> 0 and a repression (‰) if ˆF
i

/ˆx
j

< 0. A non-regulatory interaction due
to resource competition from x

j

to any node x
i

is present if ˆR/ˆx
j

is non-zero. Since R(x) is in the
denominator, conversely, the non-regulatory interaction is an activation (æ) if ˆR/ˆx

j

< 0 and a repression
(‰) if ˆR/ˆx

j

> 0. The quantity ˆR/ˆx
j

captures the following physical phenomenon, which is responsible
for non-regulatory interactions. As the concentration of active TF x

j

increases, resource demand by the nodes
that x

j

activates/represses, which we call x
j

’s targets, increases/decreases; this in turn, reduces/increases the
free amount of resources available to all nodes in the circuit. Therefore, the existence of a non-regulatory
interaction originating from node j is exclusively dictated by the action (activation or repression) that TF
x

j

exerts on its targets; it is not dictated by the pure change in the concentration of TF x
j

itself. E�ective

interaction from x
j

to x
i

represents the combined e�ect of regulatory and non-regulatory interaction from
x

j

to x
i

, and is identified based on the sign of ˆG
i

/ˆx
j

.
Following the above, we list a set of immediate graphical rules to draw the e�ective interactions origi-

nating from x
j

based on whether it is a transcriptional activator or repressor and based on the number of its
targets (Figure 4A-C). These rules establish that when x

j

transcriptionally regulates only one target, the na-
ture of the e�ective interaction (i.e. activation vs. repression) from x

j

to its target is una�ected by resource
competition, but the strength of such interaction is weaker than the intended regulatory interaction. (Figure
4A). However, when x

j

has multiple targets, the nature of e�ective interactions from x
j

to its targets are
undetermined (see Figure 4B and example in Figure S11). If x

j

is a transcriptional activator (or repressor),
then it is e�ectively repressing (or activating) all nodes that are not its targets, possibly including itself
(Figure 4C). Detailed derivation of these graphical rules can be found in SI Section B6. Using these rules,
the e�ective interaction graph of a two-stage activation cascade (Figure 2A) can be immediately identified.
In Figure 4, we use black solid edges to represent regulatory interactions, and red dashed edges to represent
non-regulatory interactions due to resource competition. If a black and a red edge have the same starting
and ending nodes, we indicate their combined e�ect with a gray edge.

As an additional example of these graphical rules, we construct the e�ective interaction graph of a
two-stage repression cascade in Figure 4D. Both x

1

and x
2

are repressors with only one target. Therefore,
applying the rule in Figure 4A, we obtain x

1

‰ x
2

and x
2

‰ x
3

. Since x
3

is not a target of x
1

and x
1

is a
repressor, applying the rule in Figure 4C, we obtain x

1

æ x
3

. Similarly, x
1

and x
2

are e�ectively activating
themselves, and x

2

e�ectively activates x
1

. Since x
3

does not transcriptionally activate or repress a target,
there is no e�ective interaction originating from x

3

. The resultant e�ective interaction graph in Figure 4D
leads to a dose response curve that is monotonically increasing regardless of parameters (refer to SI Section
B7). We can further use these interaction graphs to compare circuits with same functionality. Specifically,
with a positive inducer input, the activation cascade of Figure 2A and the repression cascade of Figure 4D
both are intended to have a monotonically increasing dose response curve. Since the repression cascade can
keep this qualitative behavior in the face of resource competition, while the activation cascade may not, the
former design is more robust to resource competition than the latter.

Discussion

Gene expression relies on transcriptional and translational resources, chiefly RNAPs and ribosomes. As
all genes in a circuit compete for these limited resources, unintended non-regulatory interactions among
genes arise. These interactions can dramatically change the intended behavior of a genetic circuit. In this
paper, through a combined modeling and experimental study, we have characterized the extent to which
resource competition a�ects a genetic circuit’s behavior. We have incorporated resource competition into
standard Hill-function models through resource demand coe�cients, which can be readily tuned by key
circuit parameters such as RBS strength and DNA copy number. These coe�cients dictate the strengths
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of non-regulatory interactions and can be e�ectively used to guide the design of a genetic circuit toward
the intended behavior. Our mathematical model further provides a simple graphical tool to identify the
nature of non-regulatory interactions (i.e. activation vs. repression) and to create the e�ective interaction
graph of the circuit. Under the guidance of the model, we created a library of genetic activation cascades
and demonstrated that, by tuning the resource demand coe�cients of the cascade’s nodes, the strengths of
non-regulatory interactions can be predictably controlled and intended cascade’s response can be restored.

Previous theoretical studies have analyzed how competition for shared resources a�ects gene expression.
Using a stochastic model [13], Mather et al. found a strong anti-correlation of the proteins produced by
ribosome-competing mRNAs. Rondelez [28] developed a general model to describe substrates competing
for a limited pool of enzymes. De Vos et al. [11] analyzed the response of network flux toward changes in
total competitors and common targets. More recently, Raveh et al. [14] developed a ribosome flow model to
capture simultaneous mRNA translation and competition for a common pool of ribosomes. In [12], Gyorgy
et al. developed a mechanistic resource competition model that gives rise to “isocost lines” describing
tradeo�s in gene expression, which were experimentally validated. All these models, with the exception of
[28], are restricted to circuits without regulatory links among competing nodes. In contrast, our general
model explicitly accounts for regulatory interactions among nodes and reproduce the “isocost lines” of [12]
as a special case (see SI Section B4.4). Furthermore, di�erently from [28], our model couples the resources’
enzymatic reactions with the slower gene expression reactions to obtain a model for resource-limited genetic
circuits.

Previous experimental studies have provided evidence that transcriptional and translational resources
may be limited in the cell by showing that DNA copy number, mRNA concentration, and protein con-
centration do not always linearly correlate with each other [24, 26]. Accordingly, there has been extensive
experimental evidence that synthetic genes’ over-expression inhibits host cell growth [7, 36, 8, 9]. However,
the e�ects of competition for shared resources on genetic circuits have only been recently addressed, mostly
focusing on the single-gene e�ects as opposed to investigating the emergent e�ects at the network level
[10, 12, 22, 37]. In this paper, we have theoretically predicted and experimentally demonstrated that signif-
icant network-level e�ects arise due to non-regulatory interactions dictated by resource competition. These
interactions need to be accounted for in circuit design and optimization. Accordingly, we have provided a
model-based approach to guide genetic circuit design to mitigate the e�ects of unintended interactions.

As a form of host-circuit interaction, previous studies have shown that overexpression of synthetic genes
may retard host cell growth, which in turn a�ects dilution rates of the synthetic species [7, 8, 9, 38]. In
our experiments with CAS 0.3/30 and CAS 0.3/60, none to very modest changes in growth were observed.
In experiments with CAS 1/60 and CAS 1/30, appreciable decrease in growth rates were observed when
AHL concentrations are higher than about 10 nM (see Figure S3). However, unintended e�ects of resource
competition can already be observed in the dose response curve of CAS 0.3/60 for all AHL concentrations
and those of CAS 1/30 and CAS 1/60 for low AHL concentrations. Nevertheless, in SI Section B8, we use a
simple model of dilution rate constant modulation by resource depletion to demonstrate that the qualitative
behavior of the activation cascade model is unchanged even when growth retardation is taken into account.

As circuits grow in size and complexity, a “resource-aware” design approach needs to be adopted by
synthetic biologists. While resource competition can be exploited in certain situations to our advantage
[39, 40, 41], its global and nonlinear features largely hamper our capability to carry out predictive design. To
alleviate the e�ects of resource competition, metabolic engineers down-regulate undesired gene expression to
re-direct resources to the pathway of interest, thus increasing its yield [42, 43]. Similarly, in a genetic circuit,
we can tune the resource demand coe�cients of nodes by selecting appropriate RBS and DNA copy numbers
to diminish the resource demand by certain nodes and hence make more resource available to other nodes.
This tuning should be performed by keeping in mind other design specifications that the circuit may have,
such as maximal output or sensitivity of the dose response curve [1]. A simulation example of how to relate
easily tunable parameters, such as RBS strength and DNA copy number, to circuit’s output is given in SI
Section B3.3 for the genetic activation cascade. At the higher abstraction level of circuit topology, our model
helps to identify topologies whose behavior is less sensitive to the e�ects of non-regulatory interactions. We
provided an example of this with the two-stage activation and repression cascades. While the dose response
curve of the former can be completely reshaped by non-regulatory interactions due to resource competition,
the dose response curve of the latter is independent of resource competition.

Characterization of resource competition has deep implications in the field of systems biology, in which
a major task is to reconstruct networks from data. In this case, it is critical to distinguish direct regulatory
interactions from indirect ones [44], which may arise from non-regulatory interactions due to resource com-
petition. In this sense, our model may provide deeper insights to guide the identification of natural networks
from perturbation data.
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Associated content

Methods and materials, detailed experimental data and mathematical models are described in Supporting
Information.
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