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Abstract

Background: Tumor phylogenies provide insightful information on intra-tumor
heterogeneity and evolutionary trajectories. Single-cell sequencing (SCS) enables
the inference of tumor phylogenies and methods were recently introduced for this
task under the infinite-sites assumption.

Results: Violations of this assumption, due to chromosomal deletions and loss of
heterozygosity, necessitate the development of statistical inference methods that
utilize finite-site models. We propose a statistical inference method for tumor
phylogenies from noisy SCS data under a finite-sites model. We demonstrate the
performance of our method on synthetic and biological data sets.

Conclusion: Our results suggest that employing a finite-sites model leads to
improved inference of tumor phylogenies.

Keywords: Tumor evolution; Intra-tumor heterogeneity; Single-cell sequencing;
Finite-site model; Phylogenetic tree

Background
Intra-tumor heterogeneity, as caused by a combination of mutation and selec-

tion [1–4], poses significant challenges to the diagnosis and clinical therapy of can-

cer [5–8]. This heterogeneity can be readily elucidated and understood if the evolu-

tionary history of the tumor cells was known. This knowledge, alas, is not available,

since genomic data is most often collected from one snapshot during the evolution

of the tumor’s constituent cells. Consequently, using computational methods that

reconstruct the tumor phylogeny from sequence data is the approach of choice.

However, while intra-tumor heterogeneity has been widely studied, the inference of

a tumor’s evolutionary history remains a daunting task.

Most studies to-date relied on bulk high-throughput sequencing data, which rep-

resents DNA extracted from a tissue consisting millions of cells [9–13]. As a result,

the admixture signal obtained from such data represents an average of all the dis-

tinct subpopulations present in the tumor [14]. This ambiguity makes it difficult

to identify the lineage of the tumor from the mixture. In such cases, phylogenetic

reconstruction requires a deconvolution of the admixture signal to identify the taxa

of the tree [15–17]. This type of data is low-resolution and can not depict cell-

to-cell variability that is needed for inference of tumor evolution [14, 18]. Another

approach for resolving intra-tumor heterogeneity and reconstructing tumor phy-

logeny is multi-region sequencing, in which, DNA sampled from multiple spatially
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separated regions of the tumor are sequenced [19, 20], however, this approach is

restricted to cases where the subpopulations are geographically segregated and can

not resolve spatially intermixed heterogeneity [21].

Single-cell DNA sequencing: promises and challenges

With the advent of single-cell DNA sequencing (SCS) technologies, high-resolution

data are becoming available, which promise to resolve intra-tumor heterogeneity to

a single-cell level [14, 18, 22–25]. These technologies provide sequencing data from

single cells, thus allowing for the reconstruction of the cell lineage tree. However,

high error rates associated with single-cell sequencing data significantly complicates

this task.

The whole-genome amplification (WGA) process, a crucial step in producing

single-cell sequencing data, introduces different types of noises that result in er-

roneous genotype inferences. The prominent WGA errors include: allelic dropout

(ADO) errors, false positive errors (FPs), non-uniform coverage distribution and

low coverage regions [14]. Allelic dropout is a prominent error in SCS data, which

contributes a considerable amount of false negatives in point mutation datasets.

ADO is responsible for falsely representing the heterozygous genotypes as homozy-

gous ones and the extent of such errors varies from 0.0972 to 0.43 as reported in

different SCS-based studies [22–26]. Even though variant callers have been proposed

for reducing ADO errors [27], the extent of such errors is still large. Different single-

cell sequencing studies have reported false positive rates varying from 1.2 × 10−6

to 6.7 × 10−5 [22–26], the number of occurrences of which can essentially exceed

the number of true somatic mutations. Often consensus-based approach is taken to

reduce the number of false positive errors [26–28], in which, variants only observed

in more than one single cell are considered. The variants observed in only one single

cell are treated as errors and removed. In doing so, this approach also removes the

true biological variants unique to a cell whereas, sites of recurrent errors persist.

Both ADO and coverage non-uniformity result in unobserved sites. Often more than

50% of the genotypes are reported as missing due to the low quality of SCS data

and thus no information regarding the mutation status of that site is conveyed [22].

Existing work

Single-cell-based studies for delineating the tumor phylogeny rely on the single-

cell somatic SNV profiles, which are confounded by the technical errors in single-

cell sequencing. Even though such errors prohibit the use of classic phylogenetic

approaches, many studies have used them. Distance-based methods like UPGMA

and neighbor joining have been used by Yu et al. [29], and Xu et al. [23] respectively.

Eirew et al. [30] used a popular Bayesian phylogenetic inference tool, MRBAYES

[31], for inferring evolutionary history. However, none of these methods account for

the SCS specific errors.

BitPhylogeny [32] is a non-parametric Bayesian approach that uses a tree-

structured mixture model to infer intra-tumor phylogeny. Even though such an

approach is valuable for identifying subclones from bulk sequencing data, it is

not suitable in the context of present-day single-cell datasets (fewer than 100
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cells) [22–24, 26, 29], which do not provide sufficient data required by the mix-

ture model in order to converge to the target distribution [33]. Furthermore, Bit-

Phylogeny is a flexible framework that can fit different data types but does not

specifically model the single-cell errors.

SCITE [34] and OncoNEM [33] are two computational tools that were specifi-

cally designed for inference of tumor evolution from SCS data. SCITE is an MCMC

algorithm that allows one to infer maximum likelihood tree from imperfect geno-

type matrix of SCS. It infers the evolutionary history as a mutation tree, proposed

by Kim and Simon in [35]. A mutation tree shows the chronological order of the

mutations that occur during tumor development. OncoNEM is a likelihood-based

method that employs a heuristic search algorithm to find the maximum likelihood

clonal tree, a condensed tree that represents the evolutionary relationship between

the subpopulations in the data. OncoNEM clusters the cells together into clones

and also infers unobserved populations that can improve the likelihood. Both of

these methods probabilistically account for technical errors in SCS data and can

also estimate the error rates of SCS data. However, both SCITE and OncoNEM

suffer by making inferences under the “infinite sites assumption”, which posits that

each site in the dataset mutates at most once during the evolutionary history [36]

and the taxa form a perfect phylogeny [37]. This assumption often gets violated in

human tumors due to different events such as chromosomal deletions, loss of het-

erozygosity (LOH) and convergent evolution [38]. Furthermore, OncoNEM infers

clonal trees where cell-to-cell evolution is not displayed, and SCITE is concerned

with the order of mutation in the tree but not the lineage of single cells. To the

best of our knowledge, there is no method that infers a phylogenetic tree from SCS

data under finite-site model of evolution while accounting for the technical errors

in SCS.

SiFit

Here we propose SiFit, a likelihood-based approach for inferring tumor trees from

imperfect SCS genotype data with potentially missing entries, under finite-site

model of evolution. To account for the errors in SCS, SiFit extends the error model

of SCITE and OncoNEM. This extension accommodates for the possible genotypes

that are excluded by infinite sites model. SiFit also extends the Jukes-Cantor model

of evolution [39] to adopt it for cancer phylogeny for single-cell data. SiFit employs

a heuristic search algorithm to find the phylogenetic tree that is most likely to pro-

duce the observed SCS data. We evaluate SiFit on a comprehensive set of simulated

data, where it performs superior to the existing methods in terms of tree recon-

struction. Application of SiFit to experimental datasets shows how infinite sites

assumption gets violated in real SCS data and how SiFit’s reconstructed tumor

phylogenies are more comprehensive compared to phylogenies reconstructed under

infinite sites assumption. SiFit achieves a major advance in understanding tumor

phylogenies from single cells and is applicable to wide variety of available single-cell

DNA sequencing datasets.

Results and discussion
Overview of SiFit

We start with a brief explanation of how SiFit infers a tumor phylogeny from noisy

genotype data obtained from single-cell sequencing. The input data consist of the
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following: (1) an n × m genotype matrix, which contains the observed genotypes

for m single cells at n different loci, the genotype matrix can be binary or ternary

depending on the data, and (2) the false positive rate (FPR), α and false negative

rate (FNR), β. These error parameters can be learned from the data.

SiFit includes (1) a finite-site model of tumor evolution and an error model for

SCS, based on which the likelihood score of a candidate phylogenetic tree and error

rate can be quantified and (2) a heuristic algorithm for exploring the joint space of

trees and error rates in search of optimal parameters.

SiFit outputs a phylogenetic tree describing the evolutionary relationship between

the single cells and the estimated error rates. The single cells are placed at the leaves

of the phylogenetic tree. A more detailed technical description of SiFit can be found

in the “Methods” section.

Phylogenetic trees and model of tumor evolution

We assume that the observed single cells evolved according to an underlying phylo-

genetic tree. A phylogeny or phylogenetic tree represents the genealogical relation-

ship among genes, species, populations, etc. [40]. In the context of tumor, it is a

rooted binary tree that represents the genealogical relationship among a set of cells.

The sequenced single cells are placed at the leaves of the phylogenetic tree. We also

assume that the cells evolve according to a finite-site model along the branches of

the tree.

The n×m true genotype matrix G contains the true genotypes of m single cells at

n different loci. If the data only contains information about the presence or absence

of a mutation at a locus, the matrix is binary, where the absence or presence of

a mutation is represented by a 0 or 1 at the entry G(i, j), respectively. Assuming

the cells to be diploid, if the data differentiates between heterozygous and homozy-

gous mutations, the genotype matrix is ternary, where a 0, 1 or 2 at entry G(i, j)

denotes homozygous reference, heterozygous or homozygous non-reference geno-

type, respectively. Heterozygous or homozygous non-reference genotypes represent

mutations. This ternary representation facilitates the use of mutation profile from

modern variant calling algorithms (e.g., Monovar [27] and GATK [41]) that report

mutation status of a sample in terms of genotypes.

For the finite-site model of evolution, we extend the Jukes-Cantor model of DNA

sequence evolution [39] to accommodate for single-cell data. Adoption of this finite-

site model of evolution enables us to account for convergent evolution or reversal of

genotypes that are excluded by methods that make the “infinite sites assumption”

(SCITE and OncoNEM). OncoNEM also assumes only binary data and does not

differentiate between heterozygous and homozygous mutations. This binarization of

data might result in loss of information for a dataset with ternary genotypes as het-

erozygous and homozygous non-reference genotypes can not be distinguished when

data is binarized. On the other hand, SCITE assumes that the observation of a ho-

mozygous non-reference genotype is due to technical errors only. These assumptions

follow from using the infinite sites model and are not made by SiFit.

SCITE also removes the mutations that are present in all cells or in one cell

as non-informative in tree reconstruction. SiFit does not remove such mutations

as these can be informative in the computation of the likelihood under finite-site

models.
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Model of single-cell errors

The observed genotype matrix, denoted by D, is an imperfect noisy version of the

true genotype matrix G. The false positive errors and the false negative errors are

responsible for adding noise in the observed genotype matrix. Considering binary

genotype data, false positive errors result in observing a 1 with probability α when

the true genotype is 0. Similarly, due to false negative errors, with probability β,

we will observe a 0, instead of a 1. These relationships between true and observed

genotype matrix are given by

Pr(Di,j |Gi,j) =



1− α if Di,j = 0, Gi,j = 0

β if Di,j = 0, Gi,j = 1

α if Di,j = 1, Gi,j = 0

1− β if Di,j = 1, Gi,j = 1

(1)

The error model for ternary data is described in detail in the “Methods” section. The

observed genotype matrix can also have missing data because of uneven coverage

of single-cell sequencing. SiFit handles missing data by marginalizing over possible

genotypes (see “Methods” section for details).

Tree likelihood

A phylogenetic tree, T = (T, t) consists of a tree topology T and a vector of the

branch lengths t. Assuming the technical errors to be independent of each other,

and sites to evolve independently, the likelihood of a phylogenetic tree T , and the

error rates θ = (α, β) is given by

L (T ,θ) = Pr(D|T ,θ) =
n∏
i=1

Pr(Di|T ,θ), (2)

where Di is the observed data at site i and it is a vector with m values corresponding

to m single cells. The likelihood calculation for a particular site is described in detail

in the “Methods” section. The maximum likelihood estimate is obtained by

(T ,θ)ML = arg max
(T ,θ)

Pr(D|T ,θ) (3)

Heuristic search algorithm

Our model has two main components, the phylogenetic tree T and the error rates

of single-cell data θ. The tree search space has (2m−3)!
2m−1(m−1)! discrete bifurcating tree

topologies for m cells, and each topology has a continuous component for branch

lengths. The overall search space also has a continuous component for error rates

along with the tree space. We designed a heuristic search algorithm to explore the

joint search space to infer the maximum likelihood configuration of phylogeny and

error rates. In the joint (T ,θ) space, we consider two types of moves to propose

a new configuration. In each type of move, one component is changed. Thus from

a current configuration (T ,θ), a new configuration of either (T ′,θ) or (T ,θ′) is

proposed. The new configuration is heuristically accepted according to a ratio of

likelihood and proposal. The search procedure terminates when the likelihood does

not improve or the maximum number of iterations has been reached.
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Performance on simulated data

First, we evaluated the performance of SiFit on extensive simulated datasets. The

simulation studies were aimed at analyzing SiFit’s accuracy of phylogeny inference

under different experimental conditions. We also assessed SiFit’s ability to estimate

the error rates and its robustness against increased error rates. We compared SiFit’s

performance to three other methods. To analyze how tree inference process degrades

if the inference algorithm fails to account for the SCS errors, we chose a represen-

tative of classic phylogeny inference method as used by Eirew et al. [30]. Eirew et

al. used MRBAYES [31], a Bayesian phylogenetic inference method, that reports

a set of trees drawn from the posterior distribution. Even though it was applied

on SCS data, this method does not account for the errors in SCS data. The trees

inferred from this method can be directly compared against the true trees. We also

compared against SCITE [34] and OncoNEM [33], methods that infer tumor trees

under “infinite sites assumption”. SCITE was designed to infer a mutation tree,

but it can also infer a binary leaf-labelled tree, where the cells are the leaf labels

and edges contain mutations. We used SCITE to infer the binary leaf-labelled tree

from simulated datasets so that they can be directly compared against the true

trees. OncoNEM infers a clonal tree which can not be directly compared against

the simulated trees. OncoNEM first infers a cell lineage tree and then converts it

to a clonal tree by clustering nodes. The cell lineage tree inferred by OncoNEM is

a different representation of the clonal tree . We convert the cell lineage tree in-

ferred from OncoNEM to an equivalent phylogenetic tree (potentially non-binary)

by projecting the internal nodes to leaves (for details see “Methods”) enabling us

to compare OncoNEM results against true trees.

As the performance metric, we use the tree reconstruction error, which measures

the distance of the inferred tree from the true tree. The distance between two

binary trees is measured in terms of Robinson-Foulds (RF) distance [42], which

counts the number of non-trivial bipartitions that are present in the inferred or

the true tree but not in both the trees. We normalize this count using the total

number of bipartitions in the two trees. The output of SiFit, SCITE and Bayesian

phylogenetic inference algorithm (MRBAYES) is compared against the true tree

in terms of the RF distance. The tree inferred by OncoNEM might be non-binary,

so for OncoNEM trees, we separately computed FP and FN distances between the

true tree and the inferred tree. For binary trees with the same leaf set, the FP and

FN distances are equal. For non-binary tree, FP and FN distances could differ from

each other. The “Methods” section gives the details of the tree reconstruction error

metric for comparing trees.

Accuracy of phylogeny inference

To analyze the accuracy of SiFit’s tree inference, we simulated random binary phy-

logenetic trees for varying number of leaves (single cells). The number of cells, i.e,

leaves in the trees, m, was varied as m = 20, m = 40 and m = 60. The number of

sites, n, was varied as n = 100, n = 250 and n = 500 respectively. For each combi-

nation of n and m, we generated 20 datasets that were simulated from 20 random

trees. The simulation for a single dataset was performed as follows. First, a random

binary tree is constructed on a leaf set of single cells by a recursive algorithm that
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randomly divides the set of cells into two subtrees that are also randomly generated,

and then joins them into a single tree by choosing a root that has the two subtrees

as the left and right child. The root of the tree has homozygous reference genotype

at all sites. The genotype sequence at the root is evolved along the branches of

the tree following our finite-site model of evolution. After evolving, the leaves have

genotype sequences with true mutations. m genotype sequences corresponding to m

single cells constitute the true genotype matrix. Errors are introduced into the true

genotype matrix to simulate single-cell errors. The false negative rate for cell c, βc,

is sampled from a normal distribution with mean βmean = 0.2 and standard devia-

tion βsd = βmean
10 . False negatives are introduced in the true genotype matrix with

probability βc for cell c. We introduced false positives to the true genotype matrix

with error rate, α = 2 × 10−3, by converting homozygous reference genotypes to

heterozygous genotypes with probability α. We used higher false positive rate than

reported in previous studies [22, 23] to ensure that false positives are inserted even

in datasets with smaller number of sites. After adding noise, the imperfect genotype

matrices were used as input to SiFit for learning maximum likelihood tree.

SiFit’s tree inference accuracy was compared against three other methods. Same

imperfect genotype matrix was used as input to SiFit and SCITE. For OncoNEM

and MRBAYES, the genotype matrices were binarized by converting the heterozy-

gous and homozygous non-reference genotypes to 1, i.e., presence of mutation. The

comparison is shown in Fig. 1, which shows the tree reconstruction error. For each

value of n, the mean error metric over 20 datasets is plotted along with the standard

deviation as the error bar. SiFit substantially outperforms the other three methods

for all values of m and n. The performance of each algorithm except for OncoNEM

improves as the value of n increases. The behavior of OncoNEM is different. For

m = 20, its accuracy decreases for n = 250 compared to n = 100 and n = 500. Also

for m = 40, OncoNEM’s accuracy slightly decreases when the number of sites n is

varied from n = 250 to n = 500. This might be because, OncoNEM was developed

for clonal tree inference and the effect of an additional number of sites cannot be

observed in the equivalent phylogenetic tree unless they (the additional sites) are

different across the clones. For n = 250 and n = 500 datasets, SiFit could find the

true tree topology for most of the datasets demonstrating its ability to infer correct

trees given enough data.

We also tested how SiFit’s performance is affected if SCS errors are not accounted

for via SiFit’s error model. For doing so, we compared the results for SiFit under

two experimental conditions (Fig. 2). In the first case, SiFit used both the error

model and the model of evolution during inference, while in the second case, SiFit

did not employ the error model and inferred based solely on the finite-site model

of evolution. As evident from Fig. 2, SiFit achieves higher inference accuracy when

it employs the error model along with the model of evolution compared to the case

when it excludes the error model. The difference between the two is smaller for

datasets with a smaller number of cells (m = 20), but the error model plays a

substantial role when the datasets get larger (m = 40 and m = 60). SCS FP errors

being non-recurrent, have more pronounced effect as the number of cells increases.

With an increase in the number of cells, the accurate reconstruction of phylogeny

becomes more difficult for a method that does not account for SCS errors. This
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experiment shows that both the model of evolution and the SCS error model are

fundamental components of SiFit and both of them play a significant role in tree

inference.

Inference with missing data

Due to uneven coverage and amplification bias, current single-cell sequencing

datasets are challenged by missing data points where genotype states are unob-

served. To investigate how missing data affect phylogeny reconstruction, we per-

formed additional simulation experiments. For m = 20 and n = {100, 250, 500}, we

generated datasets using the same error rates as before. For each combination of n

and m, we generated 20 datasets, for each of which, three other datasets with miss-

ing data = {10%, 25%, 50%} were generated. To generate the datasets with missing

data, genotype information of sites were removed with probability 0.1, 0.25, 0.5 for

missing data = {10%, 25%, 50%} respectively. SiFit’s results were compared against

SCITE and OncoNEM, the results are shown in Fig. 3. As the missing data rate

increases from 0 to 25%, we observe a slight increase in tree reconstruction error as

compared to the datasets without missing data. As missing data rate becomes 50%,

tree reconstruction error increases slightly more, even though for n = {250, 500}
the increase in tree reconstruction error remains consistent. This is expected as

50% missing data results in removing half of the data points. In each case, SiFit

performs substantially better than SCITE and OncoNEM. SiFit’s likelihood calcula-

tion treats each missing data as contributing a marginal probability of 1, effectively

making it equivalent to reducing the number of sites n. Even for very high rates

(50%) of missing data, SiFit’s performance is very good, especially for datasets with

250 and 500 sites.

Robustness to increasing error rates

Allelic dropout is the major source of error in single-cell sequencing data resulting

in false negatives [14]. To test the robustness of SiFit to increase in false negative

rate, β, we simulated datasets with increased false negative rates. The number of

cells, m was set to 20 and the number of sites, n, was set to 250. Mean false negative

rate, βmean, was varied from 0.1 to 0.4 in steps of 0.1 i.e, βmean ∈ {0.1, 0.2, 0.3, 0.4}.
The false negative rate of cell c, βc was sampled from a normal distribution as de-

scribed in the previous experiment. The false positive rate was set to α = 2× 10−3.

With these settings, for each value of βmean ∈ {0.1, 0.2, 0.3, 0.4}, 20 datasets were

simulated for phylogeny reconstruction. For this and subsequent experiments, the

performance of SiFit was compared against that of only SCITE as previous experi-

ments showed that SCITE performed the best among three competitor algorithms.

With the increase in the false negative rate, the tree inference error increases slightly.

For different settings of false negative rates, SiFit performs better than SCITE in

reducing the tree reconstruction error (Fig. 4). The rate of increase in tree recon-

struction error for SiFit is also much lower as compared to that of SCITE. This

suggests that SiFit is more robust against technical errors as compared to SCITE.

As the false negative rate increases, the standard deviation of inference error also

increases. This might be because for higher error rate, the chance of another tree

with different topology fitting the data increases.
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Estimation of error rates

In addition to the phylogenetic tree, SiFit also learns the error parameters from the

data. To examine SiFit’s capability to estimate the false negative rate from data, we

simulated 50 datasets from 50 random binary trees. For these datasets, the number

of cells was set to 20 and the number of sites was set to 250 and the false positive

rate was set to α = 0.002. The false negative rate, β was varied from 0.1 to 0.4.

These imperfect data matrices were given to SiFit for inference of tree and false

negative rate.

SiFit performed very well for estimating false negative rate as shown in Fig. 5.

The maximum likelihood value of β learned from the data were highly correlated

(0.9689) to the ones that generated the data. This experiment demonstrates SiFit’s

ability to infer error parameters from data.

SCITE can also learn false negative rate from data. Since, it assumes infinite sites

model, any deviation from that model should be treated as an error by SCITE.

To examine this, we used SCITE for learning the false negative rates from the

same datasets. As expected, SCITE overestimated the false negative rates for most

these datasets (Fig. 5) because any site that violates the infinite sites assumption

is treated as having an error by SCITE. The correlation of 0.5070 between the

SCITE’s estimates and original values of false negative rate was much lower than

that of SiFit.

Inference of tumor phylogeny from real tumor SCS data

We applied SiFit to three experimental single-cell DNA exome sequencing datasets:

a JAK2-negative myeloproliferative neoplasm, a muscle-invasive bladder cancer and

an estrogen receptor positive breast cancer patients. From these data we inferred

the phylogenetic lineages of the tumor and ordered the chronology of mutations.

These studies used different single-cell DNA sequencing methods and had different

samples sizes and error rates, which we selected to show that SiFit can be applied

broadly to different single-cell exome datasets.

Phylogenetic lineage of a myeloproliferative neoplasm

SiFit was applied to single-cell exome sequencing data from a JAK2-negative myelo-

proliferative neoplasm [22] patient. In this dataset, 58 tumor cells were sequenced,

which resulted in the detection of 712 somatic SNVs. The average ADO rate was

originally estimated to be β = 0.4309 and the false positive rate was estimated to

be α = 6.04× 10−5 [22]. Using SiFit, we estimated β = 0.301176, which is slightly

lower than the value reported in the original study. In total, approximately 58%

of the values were missing in the dataset. The reported genotypes were binary val-

ues, representing the presence or absence of a mutation at the SNV sites and were

obtained from another published study [32].

To test whether the genotype matrix violates the “infinite sites assumption”, we

ran the four-gamete test. The four-gametes theorem states that an m × n binary

matrix, M , has an undirected perfect phylogeny if and only if no pair of columns

contain all four binary pairs (0, 0; 0, 1; 1, 0 and 1, 1), where m represents the number

of taxa (leaves of the tree) and n represents genomic sites [43]. The perfect phylogeny

model conveys the biological feature that every genomic site mutates at most once
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in the phylogeny [43] and that mutations are never lost. The existence of perfect

phylogeny shows that the data could fit the infinite sites model of evolution. The

binary mutation matrix from JAK2-negative myeloproliferative neoplasm violated

the four-gamete test, with 307 pairs of SNV sites that contained all four binary

pairs.

The maximum likelihood tree inferred by SiFit on 712 SNVs is shown in Fig. 6

and has a log-likelihood of −12556.469516. The tree shows that the distance of the

normal bulk tissue (LN.T1) is the shortest from the root. The tree is linear near

the root, and branching is observed in the later stages of tumor progression, which

resulted in the divergence of two major subpopulations (B and C). We performed

k-medoids clustering using silhouette score (see “Method” for details) on the ML

tree-based distance matrix, which identified three tumor subpopulations (A, B, C).

More than 70% of the mutations occur at the trunk of the tree suggesting that

they occurred at the earliest stages of tumor progression. In the original study, the

authors identified 8 key cancer genes that were predicted to have a functional im-

pact and an important role in tumor progression: SESN2, ST13, NTRK1, ABCB5,

FRG1, ASNS, TOP1MT and DNAJC17 (Hou et al. [22], Table 3). However the

authors could not resolve the order of these mutations during tumor progression or

the clonal subpopulations in which they occurred. The SiFit tumor lineage shows

that SESN2, NTRK1, DNAJC17 and TOP1MT were early mutations that oc-

curred in the trunk of the lineage. In the later stages of the tumor lineage, driver

mutations were acquired in ABCB5 and PDE4DIP, which led to a major expan-

sion of a new subpopulation (B). Additional cancer gene mutations arose in ST13

and FRG1 within the subbranches of subpopulation B as this subpopulation con-

tinued to expand during tumor evolution. The same FRG1 mutation occurred in

two different branches within subpopulation B, indicating possibility of convergent

evolution. This result clearly differentiates our method from others and is a conse-

quence of the finite-site model uniquely implemented in SiFit. From population B,

subpopulation C diverged later in the evolution of the tumor and acquired a number

of new mutations, including a cancer gene mutation in ASNS. In addition to the

driver mutations, this tree also estimated the timing of many additional mutations

that occurred during the evolution of the tumor (Fig. 6). We also applied SCITE

to this dataset, which infers a linear mutation tree with two major subpopulations

diverging (14 and 12 cells) (Additional file 1: Fig. S1).

Phylogenetic lineage of a muscle-invasive bladder cancer

We also applied SiFit to single-cell exome sequencing data from a muscle-invasive

bladder transitional cell carcinoma [26]. The dataset consisted of 44 single tumor

cells, 12 single normal cells, in addition to bulk exome sequencing data from normal

and tumor tissue. In the original study, Li et al. [26] detected 443 somatic SNVs

across the cells using a consensus-based filtering method. The average ADO rate

was estimated to be 0.4 and the false positive rate was estimated to be 6.7× 10−5.

SiFit estimated β = 0.535172 which is slightly higher than the false negative rate

reported in the original study. 55.2% entries were missing in the final genotype

matrix. The genotypes represented the presence or absence of a mutation at the

site.
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We ran the four-gamete test on this dataset, which identified 123 pairs of SNV

sites violating the “infinite sites assumption” as a perfect phylogeny can not exist

because of the violation of four-gamete test.

SiFit was run on this dataset and the maximum likelihood tree was constructed

(Fig. 7). The tree shows a long linear trunk of tumor cells (A) that emerged from

the normal cells, that eventually bifurcated into two subtrees (B and C) in the later

stages of tumor evolution. K-medoids clustering analysis on the ML tree-based dis-

tance matrix identified three tumor subpopulations (A, B and C). These results

are consistent with the original study that reported three major subpopulations in

addition to the normal cells [26]. In the original study, four key genes were identified

as driver mutations: CFTR, NIPBL, ASTN1 and DHX57, but their chronology or

population substructure was not delineated. The SiFit lineage showed that CFTR,

NIPBL, ASTN1 and DHX57, all occurred at the earliest stages of tumor evolution,

in the base on the tumor trunk, before the first tumor cell was sampled (BC-58). In

addition to these key driver mutations, our annotations using TCGA and COSMIC

also identified PDE4DIP, ATM and BMPR1A as potential driver mutations that

occurred at the earliest stages of tumor evolution and were located in the base of

the evolutionary trunk. The SiFit tree also revealed the mutation occurrence and

order for other nonsynonymous mutations, including 72 in clone A (red), 11 in clone

B (blue) and 23 in clone C (green). In the later stages of tumor evolution, the tree

bifurcated into two major subpopulations (B and C), after having acquired 17 non-

synonymous mutations. However, the role of these mutations in tumor progression

remains unclear. We also ran SCITE on this dataset which inferred two trees with a

linear series of tumor cells that diverged from a normal subpopulation (Additional

file 1: Fig. S2, Fig. S3). Both tree structures contained a long trunkal branch, but

differed in the placement of a few of the normal single cells. The SCITE tree did

not resolve the bifurcation of the two major tumor lineages (B and C) or the three

major subpopulations that were identified by SiFit.

Phylogenetic lineage of an ER positive breast cancer

We further selected an invasive ductal carcinoma from an oestrogen-receptor pos-

itive (ER+) breast cancer patient for phylogenetic analysis using SiFit [24]. This

dataset consisted of single-cell exome sequencing data from 47 tumor cells and 12

normal cells. We focused our analysis on 40 nonsynonymous mutation sites that

were reported in the original study and were represented as a binary genotype ma-

trix. In the original study, the estimated false positive rate was 1.24× 10−6 and the

estimated allelic drop out was 9.72%. SiFit estimated the false negative rate to be

β = 0.139126, which was very close to the value reported in the original study.

The four-gamete test failed indicating the violation of “infinite sites assumption”

for 21 pairs of SNV sites. The maximum likelihood phylogenetic tree constructed

from this dataset (Fig. 8) shows a linear evolution of the cells at earlier stages of

the tumor in a very narrow trunk, followed by a highly branched tree structure

that resulted in multiple subpopulations. The tumor cells emerged from the normal

breast cells after acquiring driver mutations in PIK3CA and CASP3 which lead to

an expansion of the initial subpopulation via a linear trajectory. By performing k-

medoids clustering on the ML tree-based distance matrix, we identified five tumor
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subpopulations (A, B, C, D and E). Important driver mutations in FBN2 and

FGFR2 emerged in clone A. However, the FGFR2 clones did not undergo further

expansion and were detected in only three cells, while the FBN2 clones continued

to expand and diverged to form additional subpopulations (B, C, D and E). The

long branch lengths closer to the root of the tree and the placement of fewer tumor

cells in the linear branches suggests a highly branched tree structure and ongoing

mutational evolution in this tumor. The highly branched tree structure in this ER+

breast tumor agrees with the findings of Miller et al. [44], who investigated the clonal

landscape of 22 oestrogen-receptor-positive (ER+) breast cancer samples via bulk

sequencing and reported that more than 80% samples contained multiple (varying

from 2 to 5) subclonal cell populations with extensive intratumor heterogeneity,

which changed in response to aromatase inhibitor (AI) treatment. The tree inferred

by SCITE from this dataset had a linear structure in the trunk and then bifurcated

into two subtrees (Additional file 1: Fig. S4).

Conclusions
Tumor phylogenies provide insight into the clonal substructure of tumors and the

chronological order of mutations that arose during tumor progression. These lin-

eages have direct applications in clinical oncology, for both diagnostic applications

in measuring the amount of intra-tumor heterogeneity in tumors and for improv-

ing targeted therapy by helping oncologists identify mutations that are present

in the majority of tumor cells. Single-cell DNA sequencing data provides an un-

precedented opportunity to reconstruct tumor phylogenies at the highest possible

resolution, however are challenged by extensive technical errors that arise during

genome amplification. In this paper, we introduced SiFit, a probabilistic method for

recreating the evolutionary histories of tumors under finite-site model of evolution

from imperfect mutation profiles of single cells. This likelihood-based approach can

infer the maximum likelihood phylogeny that best fits the noisy single-cell datasets.

SiFit can also estimate the error rates of the single-cell DNA sequencing experi-

ments. SiFit employs a resilient error model that can account for various technical

artifacts in single-cell sequencing data, including allelic dropout (ADO), false pos-

itives and missing data. Our model is adaptable and can be easily extended to

include position-specific error rates. SiFit also provides this flexibility in choosing

the model of evolution, for which we extended the Jukes-Cantor model of evolu-

tion [39] to accommodate it for tumor phylogeny from single cell data. SiFit is

robust to variation in error rates and performs consistently with varying number of

cells in the dataset making it widely applicable to SCS datasets that vary in error

rates and the number of cells sequenced.

The main difference of SiFit from existing methods, specifically SCITE [34] and

OncoNEM [33] is that SiFit introduces a finite-site model of evolution. Both SCITE

and OncoNEM makes the “infinite sites assumption” that is frequently violated in

cases of convergent evolution or reversal of genotypes, events that occur in human

tumors due to LOH and chromosomal deletions [38]. SiFit also makes use of the

high-resolution SCS data by utilizing the single cells as the taxonomic units of the

reconstructed phylogenetic tree. On the other hand, SCITE reports a mutation

tree, in which the lineage of the cells are not shown. OncoNEM reports a clonal
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tree, which is a condensed tree with multiple cells clustered into a clone. This type

of clonal clustering and the use of clones as the taxonomic units, though useful

for finding genealogical relationships between clones, is low-resolution as a clone

represents a consensus of information from multiple single cells. The utilization of

mutation information from each individual cell makes SiFit’s tree reconstruction

method both robust and high-resolution.

SiFit performs accurately as evident from a comprehensive set of simulation stud-

ies that takes into account different aspects of modern SCS datasets by experi-

menting with varying number of cells in the dataset, wide range of error rates and

different fractions of missing data. The simulation studies also demonstrated that

SiFit substantially outperformed the state-of-the-art methods and is more robust

to technical errors from WGA. We also applied SiFit to reconstruct the phylogeny

for three real SCS tumor datasets. SiFit accurately reconstructed the phylogenetic

lineages of these tumors, and identified points in which subpopulations diverged

from the main tumor lineages. These trees also provided insight into the order of

mutations and the chronology in which they arose during tumor progression, which

were not inferred in the original studies.

SiFit’s phylogeny inference can potentially be improved by incorporating copy

number variations along with single nucleotide variants. Recent studies [45] indicate

that copy number appears to follow punctuated evolutionary model and are likely to

provide insight into possible loss of heterozygosity (LOH) events and can facilitate

in tree inference. Such an approach has previously been used in the context of bulk

sequencing data [16] and can be incorporated for SCS data under a finite-site model

of evolution. SiFit currently uses fixed error rates at every site. The error model

can be further extended using position-specific error rates, where sites with lower-

confidence mutations will have higher error rates and vice versa. The error model

will have higher complexity in that situation and systematic model selection has to

be performed.

As single-cell DNA sequencing becomes more high-throughput [46, 47] enabling

hundreds of cells to be analyzed in parallel at reduced cost and throughput, SiFit

is well positioned to analyze the resulting large-scale datasets to understand the

evolution of clones during tumor progression. SiFit adds a major step forward in

understanding the tumor phylogeny from SCS data and will have important trans-

lational applications for improving cancer diagnosis, treatment and personalized

therapy. Although the current study is focused on cancer, SiFit can potentially also

be applied to single-cell mutation profiles from a wide variety of fields including

immunology, neurobiology, microbiology and tissue mosaicism. These applications

are expected to provide new insights into our understanding of cancer and other

human diseases.

Methods
Input data

The input to SiFit is a matrix Dn×m = (Dij) of observed genotypes, where i ∈
{1, ..., n} denotes the index of genomic locus, j ∈ {1, ...,m} is the index of the single

cell and Dij is the observed genotype at the ith site of cell j. The genotype matrix

can be binary or ternary depending on the representation of the data. For binary
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matrix, Dij ∈ {0, 1, X}, where 0, 1 and X denote the absence of mutation, presence

of mutation and missing data respectively. For a ternary matrix, Dij can take value

from the set, {0, 1, 2, X}, where 0 denotes homozygous reference genotype, 1 and 2

denote heterozygous and homozygous non-reference genotypes respectively and X

denotes missing data.

Model of single-cell errors

False positive errors and false negative errors are the two different types of noises

that could be present in the genotype matrix. If α is the false positive error rate and

β is the false negative error rate, then for a ternary genotype matrix, the relationship

between the true and observed genotype matrices is given by:

Pr(Di,j |Gi,j) =



1− α− αβ
2 if Di,j = 0, Gi,j = 0

α if Di,j = 1, Gi,j = 0

αβ
2 if Di,j = 2, Gi,j = 0

β
2 if Di,j = 0, Gi,j = 1

1− β if Di,j = 1, Gi,j = 1

β
2 if Di,j = 2, Gi,j = 1

0 if Di,j = 0, Gi,j = 2

0 if Di,j = 1, Gi,j = 2

1 if Di,j = 2, Gi,j = 2

(4)

where Gi,j is the unobserved true genotype at the ith site of cell j. A true homozy-

gous non-reference genotype (site with true homozygous mutation) is affected by

neither false positive error nor allelic dropout. A false negative error can affect the

heterozygous genotype and combined with false positive error can also affect ho-

mozygous reference genotype. False positive error can affect homozygous reference

genotypes.

Single-cell datasets also contain missing data, sites for which genotype information

is missing. In our computation, we take Pr(Di,j |Gi,j) = 1 whenever Di,j = X. By

doing so, we marginalize the effect of missing data over three possible true genotypes

and is reflected in the likelihood computation.

Likelihood of a phylogenetic tree

Phylogenetic tree

We consider that the phylogenetic tree for single cells is a rooted directed binary

tree T = (T, t). It has two components, a tree topology T and a vector of branch

lengths t. The phylogenetic tree represents the genealogical relationship among a

set of single cells. The root of this tree has homozygous reference genotypes at all

sites. The leaves of the tree represent the observed single cells. The internal nodes

represent ancestral cells that are not observed in the data. Cells evolve along the

branches of the tree following a model of evolution and the branch length denotes

expected number of mutations per site.
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Model of evolution

We assume that the sites evolve identically and independently. As the model of

evolution in single cells, we extend the single parameter Jukes Cantor Model [39],

a finite-site Markov model, to accommodate for two copies of DNA present in a

diploid cell. Given three possible genotypes {0, 1, 2}, the transition matrix Pt is

given by,

Pt(0, 0) = Pt(2, 2) = (
1

4
+

3

4
e−µt)2

Pt(0, 1) = Pt(2, 1) = (
1

4
+

3

4
e−µt)(

1

4
− 1

4
e−µt)

Pt(0, 2) = Pt(2, 0) = (
1

4
− 1

4
e−µt)2

Pt(1, 0) = Pt(1, 2) =
1

2
(
1

4
+

3

4
e−µt)(

1

4
− 1

4
e−µt)

Pt(1, 1) = 1− (
1

4
+

3

4
e−µt)(

1

4
− 1

4
e−µt)

(5)

where Pt(i, j) represents the probability that genotype i will mutate to genotype j

over a branch of length t, µ is the parameter of the model. For a binary genotype

matrix, the transition matrix is given by,

Pt(0, 0) = (
1

4
+

3

4
e−µt)2

Pt(0, 1) = Pt(1, 0) = (
1

4
+

3

4
e−µt)(

1

4
− 1

4
e−µt)

Pt(1, 1) = 1− (
1

4
+

3

4
e−µt)(

1

4
− 1

4
e−µt)

(6)

In Eq. (5) and Eq. (6), we assume that each copy of a chromosome evolves inde-

pendently.

Likelihood

Since we assume that each site evolves independently and the technical errors affect

each site independently, the likelihood for the observed genotype matrix given a

phylogenetic tree T and error rates, θ is given by

L (T ,θ) = Pr(D|T ,θ) =
n∏
i=1

Pr(Di|T ,θ) (7)

where Di is the observed data at site i and it is a vector with m values corresponding

to m single cells. Let γ be the set of possible genotypes. If v be an internal node

of the tree with children u,w, and let Lvi (g), g ∈ γ denote the partial conditional

likelihood defined by

Lvi (g) = Pr(Dv
i |T ,θ, D̂i(v) = g) (8)

where Dv
i is the restriction of data Di to the descendants of node v and D̂i(v) is

the ancestral genotype for ith site at node v. Lvi (g) is the likelihood at site i for the

subtree rooted at node v, given that the genotype at v is g.
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The likelihood of the complete observed data Di at the ith site is given by:

Pr(Di|T ,θ) = Lri (0) (9)

where r is the root of the tree and since we consider that the genotypes at the

root are all homozygous reference (0), the probability Pr(D̂i(r) = 0) equals 1. The

partial conditional likelihood function satisfies the recursive relation

Lvi (g) =

∑
h∈γ

Ptvu(g, h)Lui (h)

∑
h∈γ

Ptvw(g, h)Lwi (h)

 (10)

for all internal nodes v with children u and w. tvu and tvw are the branch lengths

corresponding to branches that connect v to u and w respectively. Ptvu(g, h) and

Ptvw(g, h) are transition probabilities that are calculated using either Eq. (5) or

Eq. (6) with argument tvu and tvw respectively. For a leaf of the tree that denotes

single cell j, the partial likelihood is given by

Lji (g) = Pr(Di,j |Gi,j = g)

where Pr(Di,j |Gi,j) is calculated using either Eq. (2) or Eq. (4) depending on the

data. The partial likelihood values at the leaves are computed based on the error

rates of SCS data.

The log-likelihood for the observed genotype matrix given a phylogenetic tree T

and error rates, θ becomes a summation over n sites as in Eq. (11)

log L (T ,θ) =

n∑
i=1

logLri (0) (11)

This likelihood computation uses Felsenstein’s pruning algorithm [48] for calculating

the likelihood of a phylogenetic tree with the transition probabilities given by Eq. (5)

or Eq. (6). For the calculation of the partial likelihoods for leaves, we use the SCS

error model instead of values suggested in [48].

Search algorithm to infer phylogeny

We developed a heuristic search algorithm to stochastically explore the joint space

of phylogenetic trees and error rates. In the joint (T ,θ) space, we need to consider

two different types of moves to propose a new configuration. In tree changing moves,

a new phylogenetic tree, T ′ is proposed from current state T . In error rate changing

moves, a new error rate, θ′ is proposed from current error rate θ. The proposed

configuration is accepted or rejected based on an acceptance ratio. The acceptance

ratio for proposing a new phylogenetic tree is given by,

ρT = min

{
Pr(D|T ′,θ)qT (T |T ′)
Pr(D|T ,θ)qT (T ′|T )

, 1

}
(12)

which involves calculating the ratio of the likelihood of new configuration and cur-

rent configuration. Acceptance ratio also requires a proposal ratio which is computed
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based on qT , the proposal distribution for proposing new tree. A new error rate θ′

is accepted with ratio given by,

ρθ = min

{
Pr(D|T ,θ′)pθ(θ

′)qθ(θ|θ′)

Pr(D|T ,θ)pθ(θ)qθ(θ′|θ)
, 1

}
(13)

which takes into account the ratio of likelihoods of new and current configurations,

the ratio of prior probability of new and current error rates and also a proposal ra-

tio. pθ is the prior distribution on error rate and qθ is the proposal distribution for

proposing new error rate. Even though the details of this algorithm is motivated by

Metropolis-Hastings algorithm [49] for doing Markov Chain Monte Carlo (MCMC)

sampling, we search for the maximum likelihood configuration. The inference algo-

rithm is shown in Algorithm 1

Algorithm 1 Algorithm for phylogeny and error rate inference. D is the observed geno-

type matrix, θp is the starting value of error rates. The algorithm runs for niter iterations.

With probability π, error rate changing moves are proposed.
1: function PhyloTreeSearch(D, θp, niter, π, m)
2: Initialize:

T 0 to a random tree with m leaves
θ0 to θp

3: L 0 ← Likelihood of (T 0,θ0)
4: L best ← L 0,T best ← T 0,θbest ← θ0

5: for i = 1...niter do
6: Define T ← T i−1,θ ← θi−1

7: Sample r ∼ U(0, 1)
8: if r ≤ π then
9: Sample θ′ ∼ qθ(θ′|θ)

10: ρθ ← min

{
Pr(D|T ,θ′)pθ(θ

′)qθ(θ|θ′)
Pr(D|T ,θ)pθ(θ)qθ(θ

′|θ) , 1

}
11: accept θ′ with probability ρθ
12: θi ← θ′,T i ← T
13: L i ← Likelihood of (T ,θ′)
14: else
15: Sample T ′ ∼ qT (T ′|T )

16: ρT ← min

{
Pr(D|T ′,θ)qT (T |T ′)
Pr(D|T ,θ)qT (T ′|T )

, 1

}
17: accept T ′ with probability ρT
18: θi ← θ,T i ← T ′

19: L i ← Likelihood of (T ′,θ)
20: end if
21: if L i > L best then
22: L best ← L i,T best ← T i,θbest ← θi

23: end if
24: end for
25: return (L best,T best,θbest)
26: end function

Tree proposals

To explore the space of trees we need efficient moves that can make small and big

changes in the tree topology. Also, we need moves that change only the branch

lengths instead of changing the topology. To ensure that our search does not get

stuck to a local optimum, we use a combination of different types of moves. Lakner

et al. [50] described several tree proposal mechanisms that are effective in Bayesian

phylogenetic inference. Since our goal is to effectively search the tree space, we

can employ the same tree proposals in our search algorithm. We adopt two differ-

ent types of tree proposals described in [50] in our search process, branch change
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proposals that alter branch lengths and branch-rearrangement proposals that al-

ter the tree topology. The branch-rearrangement proposals can be divided into two

subtypes: the prune and reattach moves and the swapping moves.

For proposing new branch length, we draw a sample u from a uniform distribution

on [0, 1) and then get a random number r∗ by applying the transformation r∗ =

eη(u−0.5). The new branch length l∗ is a product of current branch length l and

r∗. In this way, we update branch length of all branches. This ensures that branch

lengths are locally changed the proposal ratio becomes a product
∏
k r
∗
k, where k is

the total number of branches in the tree. η is a tuning parameter that is set to the

value suggested in [50].

We consider two types of pruning-regrafting moves, namely Random Subtree

Pruning and Regrafting (rSPR) and Extending Subtree Pruning and Regrafting

(eSPR), which were described in [50]. The pruning-regrafting moves randomly se-

lect an interior branch, prune a subtree attached to that branch, and then reattach

the subtree to another regrafting branch present in the other subtree. For rSPR, the

regrafting branch is chosen randomly. For eSPR, an extension probability guides the

movement of the point of regrafting across one branch at a time. The eSPR move

favors local rearrangements.

We consider three types of swapping moves, namely Stochastic Nearest Neigh-

bor Interchange (stNNI), Random Subtree Swapping (rSTS) and Extending Sub-

tree Swapping (eSTS). stNNI chooses an internal branch as the focal branch and

stochastically swaps the subtrees attached to the focal branch. eSTS also involves

the swap of two subtrees but not necessarily nearest neighbors. The subtrees are

chosen according to an extension mechanism similar to eSPR. For rSTS, two ran-

domly chosen subtrees are swapped.

At each step of the search algorithm, one of these six moves is chosen with a fixed

probability. The proposal ratio associated with each branch-rearrangement proposal

is described in detail in [50].

Estimation of error rate

During the search process, we also update error rates. The estimates of error rates

that are input to SiFit are used to design the prior probability p(θ). The error rate

being a probability (value between 0 and 1), we choose a beta prior. The mean

of the prior is estimated from the input error rate and observed genotype matrix.

We choose a large standard deviation to cover a wide range of values. We choose

a normal distribution as the proposal distribution for proposing new error rate. At

each generation, the normal distribution is centered on the current value of error

rate. A user specified fixed probability determines whether, in a particular iteration,

a new error rate will be proposed.

Tree inference error metric

To measure the accuracy of tree inference, we used a metric that compares the

topology of the inferred tree to that of the true tree and computes a distance

between the two. This metric on general phylogenetic trees was proposed in [42]

and it is based on the symmetric difference between the bipartitions of the two

trees. The topology of a tree can be represented by the bipartitions present in the
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tree. A bipartition of a tree based on an edge gives us two set of leaves that would

be formed by deleting the edge. If E is the set of edges of T , then the bipartition

encoding of T , denoted by C(T ) = {ξ(e) : e ∈ E }, is the set of bipartitions defined

by each edge in T . ξ(e) is the bipartition on the leaf set of T produced by removing

the edge e from T . We consider three distances between two trees.

If Tt is the true tree on a set of single cells S and Ti is the inferred tree, then

the following are the three inference error metrics.

False Negative (FN) distance, This counts the edges in Tt that induce bipartitions

that are not present in C(Ti). This distance is normalized by dividing by the total

number of bipartitions in Tt, i.e.
|C(Tt)\C(Ti)|
|C(Tt)|

False Positive (FP) distance, This counts the edges in Ti that induce bipartitions

that are not present in C(Tt). This distance is normalized by dividing by the total

number of bipartitions in Ti, i.e.
|C(Ti)\C(Tt)|
|C(Ti)|

Robinson-Foulds (RF) distance. The Robinson-Foulds distance is the average of

FP and FN distance. This is the most common error metric.

If the two trees to compare are binary then we use RF distance between them

as the error metric. For binary trees, FP, FN and RF distances are equal to each

other. To compare a true binary tree to an inferred non-binary tree, we compute

FP and FN distances separately.

SiFit, SCITE and MRBAYES output binary tree which can be compared against

the true tree in terms of RF distance. For OncoNEM, we consider the cell lineage tree

that it infers and then we convert the cell lineage tree to an equivalent phylogenetic

tree by projecting the observed single cells to leaves (shown in Additional file 1:

Fig. S5). The equivalent phylogenetic tree might be binary or non-binary and we

compute both FP and FN distances for it when comparing to the true tree.

Inference of ancestral sequences and order of mutations

The inference of the chronological order of mutations in the tumor lineage requires

the inference of mutation status of the internal nodes so that the mutations can

be placed on the branches of the phylogeny. We infer the mutational profiles of

the internal nodes using a likelihood-based approach that finds the most likely

mutational profile for an internal node given the phylogenetic tree and error rates.

We extend the dynamic programming algorithm for inferring ancestral sequences

described in Pupko et. al [51] to account for the error rates of the single cells.

For a single cell c at the leaf of the tree, the partial likelihood for a genotype g

at site i is calculated as Lc(g) = arg max
h

Ptvc(g, h)Pr(Di,c|Gi,c = h) and mutation

state, mc(g), is set to h that attains the maximum value for partial likelihood. v is

the parent of c and tvc is the branch length connecting v to c. For a missing data,

Pr(Di,c|Gi,c = h) becomes 1. For a nonroot internal node, u, with children y and

z, the partial likelihood is calculated as Lu(g) = arg max
h

Ptwu(g, h)Ly(h)Lz(h) and

the mutation state, mu(g), is set to h that attains the maximum value. For the root

of the tree, mutation state mr = 0 and the mutation state for an internal node, u,

whose parent w’s mutation state is already determined as g, is chosen as mu(g).

After inferring the mutational profiles of the internal nodes, the mutations on a

branch can be found by finding the SNV sites for which the mutational status of

the two nodes at the two ends of the branch differ.
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Clustering of cells

To cluster the cells into subpopulations for the tumor datasets, we used k-medoids

clustering with silhouette scores. A distance matrix was obtained from the ML

tree reconstructed by SiFit, in which, an entry represents the distance between two

cells. The distance between two cells was calculated by summing the branch lengths

on the path that connects the two cells. K-medoids clustering was performed on

the resulting distance matrix using ‘clustering’ library of R (http://www.r-project.

org) and the number of clusters was varied from 2 to 5. In each case, the average

silhouette score was measured and the number of clusters that maximized silhouette

score was reported as the optimal number of clusters.

Software availability

SiFit has been implemented in Java and is freely available at https://bitbucket.org/

hamimzafar/sifit.
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supplementary material of [22, 26] and in Fig. 2f of [24].
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a

Figure 1 Performance comparison on datasets with varying number of cells. SiFit’s tree
reconstruction accuracy is compared against that of SCITE, OncoNEM and MRBAYES. The
y-axis denotes the tree reconstruction error that measures the distance of the inferred tree from
the ground truth. Three points for n = 100, n = 250 and n = 500 are plotted on the x-axis. In
each case, the mean tree reconstruction error over 20 datasets is plotted. The vertical error bar
indicates the standard deviation of tree reconstruction error over 20 datasets. a Performance
comparison for datasets with 20 cells. b Performance comparison for datasets with 40 cells. c
Performance comparison for datasets with 60 cells.
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Figure 2 Effect of SiFit’s SCS error model. SiFit’s tree reconstruction accuracy is compared
under two conditions, in the first case, SiFit employs both the error model and model of evolution,
whereas in the second case, the error model is excluded. The y-axis denotes the tree
reconstruction error that measures the distance of the inferred tree from the ground truth. Three
points for n = 100, n = 250 and n = 500 are plotted on the x-axis. In each case, the mean tree
reconstruction error over 20 datasets is plotted. The vertical error bar indicates the standard
deviation of tree reconstruction error over 20 datasets. The solid lines represent the cases when
SiFit accounts for SCS errors while the dotted lines represent the cases when SiFit does not
account for SCS errors. The blue, red and green lines compare results for datasets with 20, 40 and
60 cells respectively.

a b

c d

Figure 3 Performance comparison on datasets with missing data. SiFit’s tree reconstruction
accuracy is compared against that of SCITE and OncoNEM on datasets with missing data. The
y-axis denotes the tree reconstruction error that measures the distance of the inferred tree from
the ground truth. Three points for n = 100, n = 250 and n = 500 are plotted on the x-axis. In
each case, the mean tree reconstruction error over 20 datasets is plotted. The vertical error bar
indicates the standard deviation of tree reconstruction error over 20 datasets. a Comparison for
datasets without any missing data. b Comparison for datasets with 10% missing data. c
Comparison for datasets with 25% missing data. d Comparison for datasets with 50% missing
data.
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Figure 4 Effect of increase in error rates. SiFit’s tree reconstruction accuracy is compared
against that of SCITE for increasing false negative rate. The y-axis denotes the tree
reconstruction error that measures the distance of the inferred tree from the ground truth. Four
points corresponding to false negative rate = {0.1, 0.2, 0.3, 0.4} are plotted. In each case, the
mean tree reconstruction error over 20 datasets is plotted. The vertical error bar indicates the
standard deviation of tree reconstruction error over 20 datasets.

Figure 5 Estimation of error rates. The ML estimate of false negative rate is compared against
the false negative rate used for generating the data. The red line represents the perfect estimate
(correlation coefficient = 1). The blue dots represent the estimates by SiFit, the green dots
represent the estimates by SCITE.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091595doi: bioRxiv preprint 

https://doi.org/10.1101/091595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zafar et al. Page 26 of 28

2.0

LC.40

LC.45

LC.26

LC.91

LC.8

LC.52

LC.1

LC.43

LC.48

LC.66

LC.63

LC.70

LC.37

LC.90

LC.82

LC.50

LC.74

LC.89

LC.100

LC.6

LN.T1

LC.22

LC.30

LC.97

LC.80

LC.86

LC.88

LC.T1

LC.12

LC.76

LC.78

LC.24

LC.16

LC.36

LC.93

LC.9

LC.73

LC.19

LC.79

LC.7

LC.31

LC.20

LC.72

LC.47

LC.41

LC.56

LC.2

LC.60

LC.61

LC.69

LC.44

LC.54

LC.18

LC.29

LC.3

LC.87

LC.5

LC.94

LC.25

LC.49

NTRK1*	
  
SESN2*	
  
TEKT2	
  
ECD	
  
TMEM106C	
  
KRT83	
  
KRT6C	
  
C14orf49	
  
DNAJC17*	
  
ZNF446	
  
GRIN3B1	
  
GRIN3B2	
  
IMP4	
  
PRR21	
  
ZNF638	
  
C20orf165	
  
PRIC285	
  
LSS	
  
THAP7	
  
GAS2L1	
  
HDAC10	
  
KALRN	
  
DLEC1	
  
PTPN23	
  
DMXL1	
  
GM2A	
  
ADAMTS2	
  
ATAT1	
  
DDR1	
  
FAM115C	
  
ASNS	
  
PABPC1	
  
SOX7	
  
TOP1MT*	
  
ZC3H31	
  
ZC3H32	
  
ZC3H33	
  
PLEC	
  
ANKRD20A2	
  
HLA-­‐C	
  
HLA-­‐B	
  

IGSF3	
  
ESPL1	
  
LILRB3	
  
GIGYF2	
  
ARHGEF5	
  
DEPTOR	
  

LGALS9B	
  
GIGYF2	
  
ANKRD20A4	
  

IGSF3	
  
ARHGAP5	
  
ESRP2	
  
PABPC1	
  

PDE4DIP*	
  
RGPD1	
  
SRP72	
  
ABCB5*	
  

USP32	
  
ANAPC1	
  
ST13*	
  
SYNPO	
  
AMAC1L2	
  

NBPF15	
  
RETSAT	
  

PRB2	
  
CTAGE5	
  
IL32	
  
PABPC1	
   PABPC1	
  

HLA-­‐B	
  
HLA-­‐DQB1	
  

ANKRD20A4	
  

LGALS9B	
  
C6orf106	
  

GIGYF2	
  

MLL3	
  

AMAC1	
  

MLL3	
  

IGSF3	
  
RETSAT	
  
SYNPO	
  
ANKRD20A4	
  

AMAC1L2	
  
SPAG8	
  

C6orf106	
  

HLA-­‐DQA1	
  
ARHGEF5	
  
AMAC1	
  
LILRB3	
  

KRT6C	
  RGPD1	
  
GAS2L1	
  ASNS	
  

LRRC37A3	
  

IL32	
  

PRB2	
  

CYP2F1	
  

AMAC1	
  
GIGYF2	
  

MLL3	
  

C18orf25	
  

CTAGE5	
  
FRG1*	
  

IL32	
  
PABPC1	
  

LRRC37A3	
  
FRG1*	
  
PABPC1	
  

C6orf106	
  
MLL3	
  

PABPC1	
  

GIGYF2	
  

CTAGE5	
  
LRRC37A3	
  
MLL3	
  
C6orf106	
  

ANKRD20A4	
  

PABPC1	
  

HLA-­‐DQA1	
  

RGPD1	
  

AMAC1	
  

NBPF15	
  
ARHGAP5	
  
C18orf25	
  
LILRB3	
  
GIGYF2	
  

CTAGE5	
  
LGALS9B	
  
LRRC37A3	
  
CYP2F1	
  
ASNS*	
  
PABPC1	
  

MLL3	
  

PRB2	
  

C6orf106	
  

HLA-­‐B	
  

SPAG8	
  

Normal 
Tumor Subpopulation A 
Tumor Subpopulation B 
Tumor Subpopulation C 

Figure 6 Maximum Likelihood phylogenetic tree reconstructed by SiFit for JAK2-negative
myeloproliferative neoplasm. LN.T1 represents the normal bulk tissue. All other leaves are single
tumor cells. Non-synonymous mutations are annotated on the branches of the tree. The driver
genes reported in the original study and additional cancer genes are marked in purple.
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Figure 7 Maximum Likelihood phylogenetic tree reconstructed by SiFit for muscle-invasive
bladder transitional cell carcinoma. The leaves with legend marked with “BN” represent the
normal single cells. The leaves with legend marked with “BC” are tumor cells. Nonsynonymous
mutations are annotated on the branches of the tree. The driver genes reported in the original
study and additional cancer genes are marked in purple.
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Figure 8 Maximum Likelihood phylogenetic tree reconstructed by SiFit for Estrogen-receptor
positive (ER+) breast cancer. The leaves marked with ‘n’ are normal cells, the leaves marked
with ‘t’ are tumor cells. Nonsynonymous mutations are annotated on the branches of the tree.
The cancer genes are marked in purple.
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