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ABSTRACT  
 
Alternative splicing events (ASE) cause expression of a variable repertoire of potential 
protein products that are critical to carcinogenesis. Current methods to detect ASEs in tumor 
samples compare mean expression of gene isoforms relative to that of normal samples. 
However, these comparisons may not account for heterogeneous gene isoform usage in 
tumors. Therefore, we introduce Splice Expression Variability Analysis (SEVA) to detect 
differential splice variation, which accounts for tumor heterogeneity. This algorithm compares 
the degree of variability of junction expression profiles within a population of normal samples 
relative to that in tumor samples using a rank-based multivariate statistic that models the 
biological structure of ASEs. Simulated data show that SEVA is more robust to tumor 
heterogeneity and its candidates are more independent of differential expression than 
EBSeq, DiffSplice, and rMATS. SEVA analysis of head and neck tumors identified 
differential gene isoform usage robust in cross-study validation. The algorithm observes 
substantial differences in gene isoform usage between head and neck tumor subtypes, with 
greater inter-tumor heterogeneity in HPV-negative tumors with alterations to genes that 
regulate RNA splice machinery. Thus, SEVA is well suited for differential ASE analysis and 
assessment of ASE inter-tumor heterogeneity in RNA-seq data from primary tumor samples. 
 
INTRODUCTION 
 
Cancer is a disease of genetic disruption. Integrated analyses of DNA and RNA sequencing 
data identify clusters of tumor samples with common gene expression changes but lack 
consistent DNA alterations1. It is essential to find the hidden sources of molecular alterations 
that drive gene expression changes in heterogeneous tumor populations. Alternative splicing 
events (ASE) results in expression of different transcript isoforms and consequently a more 
variable repertoire of potential protein products2. ASEs are a significant component of 
expression alterations in cancer, and have been demonstrated to be critical to the 
development of malignant phenotypes in a variety of solid and liquid tumors3.  Expression of 
alternative gene isoforms, even in a small set of genes grouped into common pathways, 
represents a relatively unexplored source of tumor-driving alterations.  
 
Recent bioinformatics tools have demonstrated the ability to identify expressed gene 
isoforms from RNA-seq reads for a single sample4-9.  These tools can systematically 
evaluate the gene isoforms that are expressed in a sample. Other techniques have been 
developed to utilize isoforms as cancer biomarkers10. Nonetheless, in order to characterize 
the landscape of splicing events specific to cancer, it is essential to perform analysis to 
identify splice variants that are uniquely expressed in RNA-seq data from tumor samples 
compared to normal tissue. Most reported techniques to define differential ASE expression 
rely on comparing mean expression values to determine differences in ASE expression 
between clinical variables, such as normal and tumor samples8,11-14. In spite of the breadth of 
available ASE algorithms, few have been validated in primary tumor samples15.  
 
In primary tumors, splice variant patterns may be variable within tumors of the same subtype 
while ultimately having the same impact on the function of a gene or common pathway. A 
similar concept is observed in DNA mutations, where individual tumors can harbor differing 
mutations that are mutually exclusive and act within a common pathway16,17.  Therefore, 
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altered splicing patterns seen in tumors may result in a variable gene isoform profiles across 
tumor samples. Current algorithms rely on statistics that identify differential mean expression 
in the isoform of a gene between sets. These algorithms may be appropriate in cases where 
tumors have homogeneous gene isoform usage relative to normal samples.  However, these 
methods are insufficient to account for inter-tumor heterogeneity of gene isoform usage.  
 
In this paper, we develop a novel algorithm called Splice Expression Variability Analysis 
(SEVA) for differential gene isoform usage in cancer from RNA-seq data implemented in the 
R/Bioconductor package GSReg. SEVA simultaneously account for tumor heterogeneity and 
mitigate confounding of ASEs with differentially expressed genes. This algorithm uses a 
multivariate, non-parametric variability statistic to compare the heterogeneity of expression 
profiles for gene isoforms in tumor relative to normal samples. The performance of SEVA 
was compared with three existing algorithms designed for differential splice variant 
expression analysis, EBSeq11, DiffSplice12, and rMATS, in simulated RNA-seq data 
generated with Polyester18.  We show that SEVA had the most robust performance in 
heterogeneous test samples, which are representative of primary tumor samples. SEVA was 
unique in identifying alternative splicing events independent of overall gene expression 
differences when there is heterogeneity in simulated cancer samples. Additional validation 
was performed using cross-study validation with publically available RNA-seq data for 
primary tumor data from HPV+ head and neck squamous cell carcinoma (HNSCC) tumors 
and normal samples. In addition to finding differential alternative splicing events, SEVA can 
also uniquely quantify the relative heterogeneity of gene isoform usage for each phenotype 
among those genes. SEVA finds greater inter-tumor heterogeneity in ASEs specific to 
OPSCC tumor samples that include experimentally validated splice variants in HNSCC from 
a previously microarray study19. SEVA does not observe differences of heterogeneity in 
gene isoform usage between the dominant HNSCC subtypes: HPV+ and HPV-. Nonetheless, 
it observes greater inter-tumor heterogeneity in gene isoform usage among HPV- HNSCC 
tumors that have genetic alterations in genes that regulate RNA splicing machinery20. 
Therefore, SEVA represents a robust algorithm that is well suited to find inter-tumor 
heterogeneity in gene isoform usage relative to normal samples.  
 
MATERIAL AND METHODS 
 
Splice Expression Variation Analysis (SEVA)  
 
Expression of alternative splice variants in a cancer sample can alter the expression pattern 
of all the isoforms of that gene. Since the ASE variants can be specific to individual tumors, 
expression of ASEs can be be more variable in tumors than normal samples. We call a gene 
with such differential variability in exon junction expression Differentially Spliced (DS).  
	
Recently, a novel statistical method, EVA, was introduced for differential variability analysis 
of gene expression profiles21. This current study adapts the two inputs to EVA to account for 
the multivariate changes of gene isoform expression patterns between phenotypes resulting 
in a new algorithm called SEVA. In the case of ASEs, expression in junctions between exons 
or from exons to a retained intro measured with RNA-seq data provides direct evidence of 
gene isoform expression in each sample (Fig 1a). Therefore, SEVA takes the profile of 
junction expression of each gene as input. Briefly, SEVA quantifies the relative dissimilarity 
between profiles of junction expression in samples from the same phenotype by computing 
the average dissimilarity between all pairs of samples (denoted by D). Then, given two 
phenotypes, the algorithm tests whether there is a statistically significant difference in the 
level of variability of the expression profiles between the two phenotypes using an 
approximation from U-Statistics theory22 (Fig 1b, Supplemental File 1).  
 
In alternative splicing, the multivariate distribution of the set of junction expression can 
quantify gene-level dysregulation that can be associated with an ASE. Moreover, junctions 
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between exons form a splice graph that delineates all feasible gene isoforms4,12,23. Therefore, 
SEVA computes the dissimilarity using expression profiles of the sets of "competing" 
junctions within a gene (Fig 1a). Previously, we showed that the Kendall-τ dissimilarity, a 
ranked-based metric, can quantify the relative variability of the multivariate distribution of a 
profile of gene expression for such dysregulation to model inter-tumor heterogeneity21. SEVA 
calculates a gene-level dissimilarity measure for each phenotype by summing the measures 
obtained for each junction within a gene (shown for normal samples in Fig 1c). Using a rank-
based dissimilarity normalizes differences in junction expression from overexpression of a 
gene, and makes the analysis blind to whether the gene is differentially expressed.  
 

 
In silico data 
 
To simulate isoform expression, we used the expression of isoforms from the HPV+ RNA-
seq data from 24. For efficiency of the simulations, we selected genes in chromosome 1 
whose expression 4 to 9 in log scale in normal samples (600 genes). We generated a 
dataset of 25 tumor and 25 normal simulated samples. To simulate normal samples, we 
calculated the average isoform expression for these genes in normal samples and input 
these values to Polyester with default values to simulate inter-sample variation18. Genes in 
tumor samples are simulated as DS by exchanging junction expression from the normal 
samples randomly between junctions in isoforms of the gene, analogous to previous 
differential gene isoform simulation studies25,26. Genes were simulated as differentially 
expressed by introducing a log fold change of 1 to all isoforms relative to the values in 
normal samples. In the simulation, 150 genes are differentially spliced, 150 differentially 
expressed, 150 both, and 150 neither. The number of tumor samples with alternative splice 
variant usage and differential expression varies to model inter-tumor heterogeneity.  
 
HPV+ HNSCC and normal RNA-seq datasets  
 
We use RNA-seq data for 46 HPV+ OPSCC and 25 independent normal samples from 
uvulopalatopharyngoplasty previously described in 24 and 44 HPV+ HNSCC and 16 matched 
normal tissues from the freeze set for TCGA HNSCC27. 
 
RNA-sequencing data normalization and mutation calls 
 
All in silico and real RNA-seq data are normalized with the RNA-seq v2 pipeline from 
TCGA27. Junction expression is obtained directly from the MapSplice9 output for each 
sample, setting expression values to zero for junctions that are not detected from MapSplice 
in a given sample. Simulated data is also aligned with TopHat2 version 2.1.028 and junction 
data is obtained similarly to MapSplice. Gene and isoform expression data from TCGA were 

Fig 1 SEVA schematic. (a) 
Exons, retained introns, and 
junctions for gene with alternative 
isoform usage. (b) SEVA 
compares the expected 
dissimilarity of the expression for 
JAC to JDF in normal samples 
(blue) to that in tumor samples 
(red). (c) SEVA dissimilarity is the 
sum of Kendall-τ dissimilarity for 
each query junction (green in a) 
using a set of competing junctions 
(blue in a), excluding non-
competing junctions (black in a 
and greyed in heatmap).  
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obtained from the level 3 normalized data, but junction expression was obtained by 
rerunning MapSplice to perform de novo junction identification to compare with the training 
RNA-seq data from 24. Comparisons between HPV-positive and HPV-negative HNSCC are 
made for level 3 junction data for previously annotated junctions for TCGA samples available 
on FireBrowse. TCGA samples with mutations or copy number alterations any of the SF3B1, 
SF1, SF3A1, SRSF2, U2AF1, U2AF2, ZRSR2, or PRPF40B genes in cBioPortal29 are said 
to have altered RNA splice machinery based upon annotations in 20. 
 
Implementation and software 
 
SEVA is implemented in the R/Bioconductor package GSReg21. The analyses presented in 
this study remove genes with less than three junctions from analysis. Additional filtering 
criterion are described in the vignette, but not used. The SEVA analysis of junction 
expression is computationally efficient. All of the SEVA computations for simulated data 
completed on a Lenovo Thinkpad with Core (TM) i7-3720QM Intel CPU @2.6 GHz in less 
than an hour. Genes with Bonferroni adjusted p-values below 1% are statistically significant. 
 
EBSeq is performed with the R/Bioconductor package EBSeq version 3.311.  Isoform 
expression for all genes is the input in the EBSeq analysis. Isoforms with posterior 
probability above 99% were called significantly differentially spliced. EBSeq was also applied 
to gene expression values, and genes with a posterior probability above 99% were 
significantly differentially expressed. DiffSplice 0.1.2 beta version12 is run directly on aligned 
RNA-seq data obtained from the MapSplice alignment. Default parameters were used, with a 
false discovery rate of 0.01. Because DiffSplice requires equal numbers of samples of each 
group, we select a random subset of 14 HPV+ OPSCC and 14 normal samples from the 
dataset in 24. rMATS version 3.2.514 is run on TopHat228 aligned simulated data. 
 
We perform cross study validation by comparing whether statistics in on cohort are 
significantly enriched in the other using the function wilcoxGST in LIMMA version 3.24.15.   
 
RESULTS 
 
SEVA has greater accuracy than DiffSplice or EBSeq in identifying differential ASE 
candidates in simulated gene expression data with inter-tumor heterogeneity 

	
We generate in silico RNA-seq data with known gene isoform usage to benchmark the 
performance of SEVA relative to EBSeq11, DiffSplice12, and rMATS14 in detecting true 
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differential alterative splice events in populations of tumor and normal samples. We select 
these algorithms for analysis comparison because they can be run on MapSplice9 aligned 
data in TCGA27, and therefore do not introduce the alignment algorithm as an additional 
variable in the comparison study. In total, four simulated datasets are created with 10, 15, 20, 
or 25 of the total 25 tumor samples containing the differentially expressed and / or 
differentially spliced genes to test the recall of the algorithms to inter-tumor heterogeneity of 
gene isoform usage. We use these results to estimate the precision (positive predictive value) 
and recall (sensitivity) of different algorithms. 
 
We apply SEVA, EBSeq, DiffSplice, and rMATS to detect DS status of genes in each 
simulated dataset. SEVA's precision remains around 95% while that of DiffSplice fluctuates 
around 90% and the precision of EBSeq's ranges is 60%-80%. These results are 
independent of the number of cancer samples containing the alternative gene isoform 
expression (Fig 2a). The precision of both SEVA and DiffSplice is independent of whether 
the gene is differentially expressed in addition to differentially spliced. EBSeq has lower 
precision for detecting DS status among differentially expressed genes compared that 
among a mixed pool of differentially and non-differentially expressed genes. rMATS has low 
precision for both non-differentially expressed (6%) and differentially expressed genes (5%).  
  
SEVA has the highest recall when alternative gene isoform expression occurs in fewer than 
20 of the tumor samples, but drops sharply in the more homogeneous population of 25 
tumor samples all containing the same gene isoform usage (Fig 2b). This performance is 
consistent with the construction of SEVA to specifically identify genes with high relative 
heterogeneity of gene isoform usage between sample phenotypes, in contrast to other 
algorithms that seek genes with homogeneous differential gene isoform usage. The recall for 
EBSeq remains consistently higher among differentially expressed genes than among a 
mixed pool of genes, and increases with the number of tumor samples containing the 
alternative isoform usage. On the other hand, EBSeq has lower recall for differentially 
spliced genes among the mixed pool than that among genes only differentially expressed 
genes, and remains below 50% regardless of the number of tumor samples with alternative 
splice events. Taken together, the simulations suggest that the performance of SEVA is 
particularly robust to heterogeneity in gene isoform usage in cancer samples. Both DiffSplice 
(below 50% for non-differentially expressed genes and approximately 40% for differentially 
expressed) and rMATS (60% for non-differentially expressed genes and 50% differentially 
expressed) have modest recall independent of tumor heterogeneity in the simulations. 
 
SEVA identifies a robust set of ASEs in non-differentially expressed genes from RNA-
sequencing data for HPV+ OPSCC tumors and normal samples 

	
We use RNA-seq data for 46 HPV+ OPSCC and 25 normal samples from 24 as a benchmark 
for empirical analysis of SEVA in real sequencing data. SEVA identified 274 genes as having 
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Fig 3. Comparison of differential gene isoform usage algorithms in real HPV+ HNSCC RNA-seq 
data. (a) Variability of junction expression profiles in corresponding to gene isoforms. Each point 
represents a gene, x-axis and y-axis its variability computed for SEVA in normal vs cancer, 
respectively. The red points represent significantly differentially (DS) spliced genes identified with 
SEVA, and blue genes that were not significantly spliced (non-DS). (b) Venn diagram comparing 
differentially spliced genes identified by SEVA and EBSeq, as well as differential expression status of 
each gene. (c) Comparison of SEVA and DiffSplice as described in (b).  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/091637doi: bioRxiv preprint 

https://doi.org/10.1101/091637
http://creativecommons.org/licenses/by-nc/4.0/


significant alternative gene isoform usage in cancer. In addition to identifying the altered 
gene isoforms in each class, the statistics underlying SEVA enable quantification of relative 
variation in isoform usage for each gene in each of the phenotypes that are compared in the 
analysis.  We plot these statistics to compare variation of isoform usage in all genes and the 
genes that SEVA calls statistically significant to test our central hypothesis that gene isform 
usage is more variable in tumor than normal samples (Fig 3a). Consistent with our 
hypothesis, the variation in all genes is shifted towards higher variation in tumor samples. 
Moreover, more of these significant genes have more variable gene isoform usage in tumor 
samples than in normal samples (Fig 3a).  
 
We also apply EBSeq and DiffSplice to these same data to compare with EVA (Fig 3b and c). 
EBSeq and DiffSplice methods both identify far more genes with alternative isoform 
expression than SEVA (n=2439 and n=2535), which makes them more prone to false 
positives and hinders candidate selection for further experimental validation. Moreover, 
EBSeq identifies higher portion of differentially expressed genes as differentially spliced 
(40%) than either SEVA (5%) or DiffSplice (13%), indicating the potential for more false-
positives hits for alternative splicing events. However, the proportion of differential expressed 
genes among the identified genes are similar between EBSeq (87%) and SEVA (84%) and 
lower in DiffSplice (30%). Since the ground truth is unknown in this real data, we cannot 
assess the true independence of differentially spliced and differentially expressed genes.   
 
SEVA analysis finds greater variation in tumor than normal samples in previously 
validated HNSCC-specific splice variants TP63, LAMA3, and DST 

 
Recent data suggests that the 
majority of ASE in HNSCC 
(39%) are classified as 
alternative start sites 
(manuscript under review), 
which can be recognized by 
ASE-detection algorithms as 
insertion and/or deletion 
alternative splicing events. 
Indeed, alternative start site 
splice events in six genes 
(VEGFC, DST, LAMA3, SDHA, 
TP63, and RASIP1) were 
recently observed as being 
unique to HNSCC samples 
from microarray data19. Three 
of these genes (DST, LAMA3 
and TP63) were also confirmed 
as differentially spliced in 
HNSCC tumors with 
experimental validation in an 
independent cohort of samples, 
while the other three genes 
(VEGFC, SDHA, and RASIP1) 
were not confirmed19. SEVA 
identified all three validated 
DST (p-value 3x10-10), LAMA3 
(p-value 1x10-10), and TP63 (p-
value 6x10-10) genes, as well 
as RASIP1 (5x10-7) as 
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Fig 4. Multidimensional scaling (MDS) plot of modified 
Kendall-τ distances in real HPV+ HNSCC junction 
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differentially spliced genes. Splicing of SDHA and VEGFC were found non-significant in 
agreement with experiments. Notably, EBSeq only identifies VEGFC to be differentially 
spliced (p-value 3x10-6) that was not validated and DiffSplice identified none.  
 
In Fig 4, we create multi-dimensional scaling (MDS) plots of the modified Kendall-τ distance 
of the significant genes in SEVA. The closer two samples in this MDS plot, the less variable 
their junction expression profiles. As a result, these figures enable us to visually test the 
hypothesis that the modified Kendall-τ distance enables SEVA to identify more variable gene 
isoform usage in tumor than normal samples. The differentially spliced genes identified with 
SEVA (DST, LAMA3, RASIP1, and TP63) confirm that the normal samples are closer to 
each other than cancer samples to each other, as hypothesized, and therefore not significant 
in EBSeq (Fig 4). On the other hand, VEGFC has consistent variability in cancer and normal 
samples and was not detected by SEVA. Therefore, SEVA is ideally suited to detect genes 
with more variable gene isoform usage in tumor relative to normal samples as hypothesized. 

 
SEVA candidates in the training set are significantly enriched in cross-study 
validation on TCGA data  
 
We also apply SEVA to independent RNA-seq data for 44 HPV+ HNSCC and 16 normal 
samples in TCGA27 to cross-validate the ASE candidates in the training data from 24. 32% 
(70 out of 220 the gene candidates) of the hits are statistically significant in the SEVA 
analysis of the TCGA data. 43 of the genes identified on the training set were not expressed 
on the TCGA set. To test the significance of the list of genes and consistency of SEVA 
across two data sets, we check whether the ASE candidates from training set are 
significantly enriched on the TCGA data. To do so, we calculate the SEVA p-values for all 
genes on the TCGA test set. A mean-rank gene set analysis indicates that the candidate 
genes identified on training are enriched among all genes with p-value 2.2e-12.  
 
SEVA identifies more heterogeneity in splice variant usage in HPV- HNSCC samples 
with mutations in splice machinery genes 
 

Fig 5. Comparison 
of differential gene 
isoform in TCGA 
HNSCC RNA-seq 
data. (a) Variability 
of junction 
expression profiles 
for genes 
significantly DS from 
SEVA in HPV+ vs 
HPV-, respectively. 
(b) As for (a) 
comparing HPV- 
samples with and 
without alterations in 
RNA splice 
machinery genes. 

 
HNSCC tumors have two predominant subtypes: HPV+ and HPV-. HPV- tumors have 
greater genomic heterogeneity than HPV+27,30. Therefore, we apply SEVA to test whether 
there is higher inter-tumor heterogeneity in splice variant usage in these tumor subgroups. 
SEVA observes many genes as having alternative gene isoform usage between the two 
HNSCC subtypes, but no difference in relative heterogeneity (Fig 5a). This finding occurs 
although a larger number of samples HPV- tumors (44 of 243, 18%) have alterations to 
genes in the splice variant machinery in contrast to HPV+ (3 of 36 with sequencing data, 
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8%). We further apply SEVA to compare inter-tumor heterogeneity of gene isoform usage in 
HPV- tumors with and without genetic alterations to the splice machinery. We observe far 
fewer significant genes than in this comparison (Fig 5b). Nonetheless, the significant genes 
from this analysis have greater variability in samples with alterations in the splice variant 
machinery. These findings suggest that the introduction of heterogeneous splice variant 
machinery arise from differences in tumorigenesis in the two subtypes, and can be 
enhanced within a subtype by gene alterations to the splice variant machinery.  

 
DISCUSSION 
 
In this study, we develop SEVA to identify holistic and multivariate changes in isoform 
expression in tumor samples with heterogeneous gene isoform usage. Consistent with its 
formulation, we observe that SEVA has higher precision than EBSeq31, DiffSplice12, or 
rMATS14 in simulated datasets that reflect this tumor heterogeneity. The precision of SEVA, 
DiffSplice, and rMATS remain independent of the heterogeneity of gene isoform usage in the 
tumor samples, whereas that of EBSeq decreases with increasing homogeneity in gene 
isoform usage in the tumor samples.  In addition, SEVA finds candidates that are 
independent of the differential expression status of the gene in contrast to EBSeq or 
DiffSplice in simulated data. Therefore, we hypothesize that ASE candidates from SEVA are 
uniquely independent of differential expression status of genes when the independence 
between these events is the ground truth. Whereas the other algorithms compare mean 
expression, the ranked-based nature of the modified Kendall-τ in SEVA is blind to such 
coordinated changes without further normalization of gene expression values11. Moreover, 
this property assures that SEVA has a lower false positive rate (i.e., a higher specificity) 
reducing the number of candidates for biological validation of alternative splice events.  
 
While SEVA retains a lower false positive rate in the simulated data, the recall depends on 
the heterogeneity of gene isoform usage. In our simulations, as the ratio of disrupted 
samples in the cancer batch increases, the recall of SEVA reduces dramatically (from 0.7 to 
0.2). DiffSplice and rMATS show almost constant recall (around 40-50% and 50-60%, 
respectively). While EBSeq recall increases with the homogeneity in gene isoform usage, 
SEVA loses its recall. SEVA performs relatively best in the case of high heterogeneity of 
junction expression in the tumor population. Notably, as the number of cancers with an ASE 
increases the junction expression profiles are more homogeneous and therefore not 
accurately detected with SEVA. We hypothesize that SEVA will have lower recall than 
techniques based upon differential isoform expression in populations with homogeneous 
isoform usage. However, many studies have shown cancer samples are more 
heterogeneous and encompasses a bigger spectrum of subtypes21,32,33. In practice, we 
hypothesize that differentially spliced genes show multiple patterns of isoform expression in 
tumors in multiple different cancer subtypes. Therefore, based upon the simulated data, we 
hypothesize that SEVA is uniquely suited to identify inter-tumor heterogeneity in gene 
isoform usage in tumors and their subtypes.  
 
SEVA, EBSeq, and DiffSplice were all applied to RNA-seq data24 normalized with 
MapSplice9 to enable cross-study validation with the TCGA normalized data. SEVA inputs 
junction expression to use direct evidence of alternative splice usage and intron retention. It 
is also directly applicable to estimates of percent spliced25 in place of junction expression, 
which also be compared in future studies. While there are numerous other algorithms for 
such differential splice analysis, many rely on data obtained from distinct alignment and 
normalization pipelines4,11,13. These preprocessing techniques may introduce additional 
variables into the differential splice variant analysis, complicating the direct comparisons of 
gene candidates on in silico and RNA-seq datasets presented in this paper. Therefore, 
future studies are needed to compare the performance of such differential splice variant 
algorithms across normalization pipelines on real biological datasets with known ground truth 
of gene isoform usage. Nonetheless, the SEVA algorithm is applicable for differential splice 
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variant analysis from junction expression from any alignment algorithm and its rank-based 
statistics make it likely to be independent of the normalization procedure34,35.  
 
SEVA has uniformly high precision relative to EBSeq and DiffSplice in detecting ASEs from 
in silico data. Our simulations suggest that SEVA performs better in scenarios that cancer 
samples have higher degree of heterogeneity compared to normal samples. As further 
validation, genes with alternative splicing events in HPV+ OPSCC from 24 were significantly 
enriched in cross-study validation on RNA-seq data for HPV+ HNSCC samples in TCGA27.  
Moreover, the modified Kendall-τ dissimilarity metric used in SEVA also accurately 
characterizes higher heterogeneity of gene isoform usage in tumors relative to normal in the 
confirmed HNSCC-specific ASEs DST, LAMA3, and TP63, and also RASIP1 identified in 
previous microarray analysis19. Therefore, SEVA is a novel algorithm adept at inferring ASEs 
in tumor samples with heterogeneous gene isoform usage relative to normal samples. 
 
SEVA is also unique in its ability to quantify which phenotype has more variable gene 
isoform usage. The algorithm observes higher inter-tumor heterogeneity in splice variant 
usage in HPV+ HNSCC tumors relative to normal samples, consistent with the hypothesis of 
inter-tumor heterogeneity that lead to the development of the algorithm. In addition, HNSCC 
is divided into two primary subtypes (HPV- and HPV+). Of these, HPV- tumors are 
established as having more variable genetic alterations than HPV+ tumors27,30. Nonetheless, 
SEVA analysis identifies no difference in the heterogeneity of splice variant usage between 
the tumor types. This similarity is observed in spite of different samples sizes (44 HPV+ and 
235 HPV-), suggesting that the SEVA statistics are robust to imbalanced study design. 
Nonetheless, HPV- samples have a greater rate of genetic alterations to genes regulating 
the splice variant machinery. SEVA identifies that HPV- HNSCC tumors with alterations in 
these genes have greater variation in isoform usage than those that do not. Together, these 
analyses suggest that the mechanisms of tumorigenesis introduce substantial inter-tumor 
heterogeneity in splice variant usage specific to each cancer subtype. Variation in splice 
variant usage is further enhanced by genetic alterations to the splice variant machinery20 
within a specific cancer subtype. Further pan-cancer and pan-genomics analyses are 
essential to distinguish the relative impact of tumorigenesis and alterations to splice variant 
machinery on tumor-specific alternative gene isoform usage in cancer and the functional 
impact of these splice variants on tumor progression and therapeutic response. 
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SUPPLEMENTAL FILE 1: Supplemental Methods 
 
Kendall-τ and modified Kendall-τ distances 
	
Kendall-τ distance (also known as "bubble distance") was introduced by Maurice Kendall 
and is a measure of the disparity between the orderings of two lists of numbers. If 
A=(a1,a2,...,am) and B=(b1,b2,...,bm) are two profiles, then Kendall-τ distance between them is: 

D!"#$%&&-! A,B =
1
m
2

I I a! < a! ≠ I b! < b!
!!!

. 

In this equation, I() is the indicator function that has a value of 1 when the argument is true 
and zero otherwise. Therefore, I I a! < a! ≠ I b! < b! = 1 if either i) a! < a! and b! > b! or 
ii) a! > a! and b! < b!.  
 
In the modified version of Kendall-τ used for the SEVA algorithm in this paper, the Kendall-τ 
distance is computed between the set of junctions annotated to a gene. In this modified 
distance metric, the only comparisons considered are those between the set of competing 
junctions C. If C={(i,j)|i,j compete, i<j}, then the modified Kendall-τ becomes:  

D!"#$%$&#-!"#$%&&-! A,B =
1
|C|

I I a! < a! ≠ I b! < b! .
(!,!)∈!

 

 
EVA and SEVA Variance Estimation 
  
The EVA statistic compares the average dissimilarity or distance (denoted by D) between 
any two random samples from a normal population and the same quantity for a tumor 
population. The calculation of this statistic relies on the two corresponding sample-based 
empirical average distances, denoted by DN and DT. Fortunately, U-Statistics provides a 
well-established mathematical theory to compare such quantities. Perhaps the main result of 
the U-statistics theory for application to EVA is that DN and DT converge asymptotically to 
normal distributions as the sample sizes increase. This convergence assumes that D is 
bounded, which occurs for the Kendall-τ distance and modified Kendall-τ distance used in 
EVA and SEVA, respectively. More precisely, if nN is the number of normal samples and 
E(DN) is the mean of the distance between independent normal samples n!(D!-E(D!)) 
converges to a mean zero normal distribution with variance σ!!  as nN grows to infinity. The 
same holds true for the tumor population: n!(D!-E(D!)) is asymptotically normal with mean 
zero and some variance σ!! , described in further detail below. A simple calculation reveals 
that under the null hypothesis that the variability of the distance between two normal and two 
cancer samples are equal, i.e. E D! = E(D!), the sample adjusted difference 

n! + n!(D!-D!) converges to zero mean normal with variance σ! = !!
!

!!
+ !!

!

!!
 where 

λ! =
!!

!!!!!
,  the fraction of normal samples, and λ! =

!!
!!!!!

, the fraction of tumor samples. 
 
Hence, the core of the EVA and SEVA algorithms is estimating the parameters σ!!  and σ!! . 
The theory of U-Statistics provides an asymptotical approximation for 
σ!! → 4Cov(D X, X' ,D(X, X'') where X, X' and X'' are independent and identically distributed 
profiles from normal population. Applying a similar formula to profiles from the tumor 
population approximates σ!! . In practice, we estimate the above covariance terms from our 
data. Clearly, estimating these covariances which involve three random variables, is more 
difficult than in the standard case of variance estimation for a single random variable. To 
reduce the variance of our estimates, we use a modified estimator which avoids certain 
degeneracy which appears in U-Statistics.  
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