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Abstract

Induced pluripotent stem cells (iPSCs) are an essential tool for studying cellular differenti-

ation and cell types that are otherwise difficult to access. We investigated the use of iPSCs

and iPSC-derived cells to study the impact of genetic variation across different cell types and

as models for studies of complex disease. We established a panel of iPSCs from 58 well-

studied Yoruba lymphoblastoid cell lines (LCLs); 14 of these lines were further differentiated

into cardiomyocytes. We characterized regulatory variation across individuals and cell types

by measuring gene expression, chromatin accessibility and DNA methylation. Regulatory

variation between individuals is lower in iPSCs than in the differentiated cell types, con-

sistent with the intuition that developmental processes are generally canalized. While most

cell type-specific regulatory quantitative trait loci (QTLs) lie in chromatin that is open only

in the affected cell types, we found that 20% of cell type-specific QTLs are in shared open

chromatin. Finally, we developed a deep neural network to predict open chromatin regions

from DNA sequence alone and were able to use the sequences of segregating haplotypes to

predict the effects of common SNPs on cell type-specific chromatin accessibility.
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Main Text

The differentiation of iPSCs into a wide variety of cell types has become an essential tool

for many research applications, and holds great promise in therapeutics [1]. One potentially

important application is as a tool for studying the effects of common variation in cell types

that are otherwise difficult to obtain.

In recent years it has become clear that much of the genetic basis of complex traits is due

to common variants that affect cell type-specific gene regulation in relevant tissues and cell

types [2, 3]. Consequently, numerous groups have studied variation in gene expression across

panels of individuals in cell lines, in easily accessible primary tissue samples such as blood

or skin [4, 5] or in post-mortem tissues [6]. However many important cell types cannot be

obtained from adult post mortem samples; moreover, such tissues are unsuited for functional

studies and perturbations that require living cells.

To explore the utility of an iPSC-based alternative model system, we generated a panel

of iPSCs from 58 well-characterized Yoruba LCLs. Briefly, LCLs were reprogrammed using

a previously-described episomal approach [7]. After a week in suspension, culture cells

were seeded onto a layer of gelatin and mouse embryonic fibroblasts. A single colony was

obtained from each line and passaged for ten weeks before final characterization, conversion

to feeder-free growth, and collection. Pluripotency and stability were confirmed for each line

(Supplementary Materials). This panel represents the largest stock of characterized non-

European iPSCs to date and is available to other researchers, complementing parallel efforts

in Europeans [8] (see Data Accession in Supplementary Materials).

To study gene regulation in iPSCs, we assayed three molecular phenotypes: mRNA

expression (using RNA-seq; n=58), chromatin accessibility (ATAC-seq; n=57), and DNA

methylation levels (EPIC arrays; n=58). We differentiated 14 iPSC lines into iPSC-derived

cardiomyocytes (iPSC-CMs; Supplementary Materials) and collected RNA-seq and ATAC-
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seq from the 14 iPSC-CMs (Figure 1A). We analyzed these newly collected data jointly with

data previously collected from the same Yoruba LCLs (we also added new ATAC-seq data

for 20 of the LCLs).

In the context of RNA-seq data from a larger panel of tissues and cell types from GTEx

and ENCODE, respectively, gene expression data from our LCLs cluster most closely with

data from ENCODE LCLs, as expected. Similarly, gene expression data from our iPSCs

cluster with data from H1 embryonic stem cell lines from ENCODE, and data from our

iPSC-CMs cluster most closely with gene expression data from GTEx heart tissues (atrial

appendages) (Figure 1B, Supplementary Materials). Thus, our cultured cells broadly reca-

pitulate expected regulatory patterns.

Notably, we observed that chromatin accessibility, gene expression, and DNA methylation

levels were all more homogenous between individuals in iPSCs than in LCLs or iPSC-CMs

(p < 10−5, Figure 1C, Supplementary Figure 1). This is consistent with the notion that

developmental processes are canalized [9] and that regulatory states in embryonic cells are

tightly controlled.

After examining overall properties in our data, we sought to characterize the effect of

genetic variation on gene regulation. While there have been numerous multi-tissue studies

of expression, our data provide the first opportunity to study QTLs for open chromatin in a

cell type other than LCLs.

We first analyzed data from each cell type independently. We identified thousands of

putatively cis genetic associations with all three regulatory phenotypes at 10% FDR (Sup-

plementary Materials; Table S3). Despite the observation that regulatory phenotypes are

associated with lower inter-individual variation in iPSCs compared to LCLs, we found simi-

lar or greater numbers of expression QTLs (eQTLs) in iPSCs when sample sizes are matched

across cell types (e.g. 1,441 eQTLs in iPSCs versus 1,168 in LCLs using 58 individuals). In

addition, using WASP [11], we identified 517 eQTLs and 3,989 chromatin accessibility QTLs
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Figure 1: Systematic measurements of molecular phenotypes across reprogramming and differen-
tiation. (A) Summary of data collection. (B) Correlation matrix of gene expression from our
samples and samples from ENCODE (∗) and GTEx. Our LCL samples cluster most closely with
LCLs samples from ENCODE, while our iPSCs and iPSC-CM lines cluster most closely with H1-
ESC (ENCODE) and heart (GTEx) respectively. Dark purple: GTEx bone marrow. (C) Violin
plots representing per individual log2 of the average square distance from the mean (Supplementary
Materials) for iPSC, LCL, and iPSC-CM gene expression levels. Plots for chromatin accessibility,
and DNA methylation levels are shown in Supplementary Figure 1.

(caQTLs) in the small sample of differentiated iPSC-CMs. In general, we observed a high

degree of QTL sharing between cell types. We found 71% to 91% overlap in eQTLs between

iPSCs and LCLs, using an estimate of sharing that accounts for incomplete power of the

replication tests (Storey’s π0) (Supplementary Figure 3). The proportion of sharing is lower

when considering iPSC-CMs (Supplementary Figure 3), as expected given the difference in

sample size.

The high sharing of regulatory QTLs across cell types notwithstanding, we asked about

the mechanisms by which some genetic variants affect gene regulation in one cell type with

no detectable effect in other cell types. This is of interest given that disease-associated

variants are enriched in open chromatin and particularly in cell type-specific open chromatin

[3]. Indeed, as might be expected, we found that the iPSC-specific caQTLs we identified

(Supplementary Materials) had larger effects on gene expression levels in iPSCs than did
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LCL-specific caQTLs, and conversely (p = 0.01, p = 4.7 × 10−5, respectively, Fisher’s exact

test, Figure 2A). Some of these cell-type-specific caQTLs are located quite far from the

gene they regulate (e.g. 50kb or more), and likely function by affecting distal enhancer or

promoter elements (Supplementary Figure 4).

We further asked about the mechanisms by which genetic variants affect chromatin ac-

cessibility broadly, in multiple cell-types, or specifically in a single cell-type. As expected,

caQTLs that are shared across cell-types lie within regulatory regions that are accessible in

all cell-types, and likely affect the DNA binding of the same factors (Supplementary Fig-

ure 6). In contrast, most cell type-specific caQTLs lie in regions that are accessible in the

affected cell type, but show little or no accessibility in the other cell types (Figure 2B,C).

Thus, most (>70%) cell type-specific caQTLs can be explained simply by cell type-specific

regulatory activity (Figure 2B).

While the notion that cell type-specific caQTLs can often be explained by cell type-

specific chromatin activity is quite intuitive, we also found numerous regions that were

accessible in multiple cell types, but with a regulatory effect in a single cell-type only (Figure

2D,F; Table S6 for a list). In fact, up to 20% of cell-type-specific caQTLs are accessible in

multiple cell-types (Figure 2E). This observation is consistent with the idea that multiple

DNA-binding factors may affect chromatin activity at the same locus by binding to distinct

but nearby motifs [12].

Our observations that cell type-specific open chromatin regions can often explain con-

trasting effects of genetic variants in different cell types motivated us to explore the sequence

features underlying differences in chromatin activity across cell types. In particular, we aimed

to identify DNA sequences that could predict cell type-specific effects of regulatory variants.

We investigated the use of machine learning models to predict the chromatin activity of

regulatory elements across our three cell types using DNA sequence only [13, 14, 15, 16].

We developed a four-layered neural network architecture, OrbWeaver, to predict cell type-
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specific chromatin accessibility of 500bp windows centered at a regulatory locus (Figure 3A,

Supplementary Figure 7). In contrast to popular approaches that learn all the parameters

of the neural network de novo, we used log-transformed position weight matrices (PWMs)

of 1, 320 human transcription factors (Supplementary Materials) [17, 18] as the first layer of

OrbWeaver. As training input, we used 282,088 loci that were identified as accessible in at

least one of the three cell types. When testing our predictions on a held-out dataset of 7,151

loci, we achieved high accuracies in all three cell types: iPSC (AUC = 0.96), LCL (AUC =

0.90), and iPSC-CM (AUC = 0.91) (Fig. 3B; see Supplementary Figure 8 for precision recall

results). We found that the use of transcription factor PWMs as the first layer of OrbWeaver

yielded higher predictive accuracies with a simpler neural network architecture than with

a more complex architecture that did not use transcription factor PWMs (Supplementary

Figure 8).

To identify transcription factors that help predict the shared and cell type-specific regula-

tory activity across loci, we computed DeepLIFT scores [19] with respect to each filter in the

first convolutional layer. Among 1,320 factors for which we had PWMs, the factor with the

highest score for a given locus was assigned to be the most important factor for explaining

the chromatin activity of said locus. Aggregating the key factor across all loci, we recovered

transcription factors that are known to drive cell type-specific chromatin activity (Fig. 3C),

and identified several additional factors that are putatively important for cell type-specific

gene regulation (Table S6). Notably, nearly 40% of iPSC-specific open chromatin loci could

be explained by the OCT3/4 motif alone. In LCLs and iPSC-CM, a larger number of TFs

are needed to explain the same fraction of cell type-specific open chromatin loci. This ob-

servation is consistent with the higher predictive accuracy achieved for iPSCs compared to

LCLs and iPSC-CMs, even with simpler neural network models (Supplementary Figure 8),

and suggests that fewer trans-acting factors establish the chromatin landscape in embryonic

cells than in somatic cells.
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Given our ability to predict cell type-specific chromatin activity genome-wide from DNA

sequence alone, we reasoned that OrbWeaver could also predict cell type-specific effects

of SNPs on chromatin activity (Figure 3D). Prediction of SNP effects on gene regulation,

especially in specific cell types, is a challenging problem, but is an essential task for future

interpretation of personal genomes. Starting with iPSC caQTLs, we found that OrbWeaver

predictions track the observed allelic imbalance ratio with a correlation of 0.50 (p = 6×10−184;

Figure 3E). Considering all tested SNPs in open chromatin peaks (the majority of which

presumably have no true effect on chromatin accessibility) the correlation is more modest,

though highly significant (iPSC correlation 0.12; p < 10−308). Notably, our ability to predict

caQTL effects in one cell type is drastically reduced when using our model for another

cell-type (Supplementary Figure 9), indicating that our model has high cell type-specificity.

Altogether these findings demonstrate our ability to identify trans-acting elements driving

cellular differences in chromatin accessibility and, more importantly, to predict effects of

genetic variation in a cell type-specific manner.

Ultimately, the iPSCs and their differentiated cells may be valuable for developing a

variety of models of human disease, provided that cultured differentiated cells are an effec-

tive system with which to model gene regulation in the corresponding primary tissue. We

evaluated the fidelity of iPSC-CMs as a model for heart tissues and heart-related diseases.

As discussed above, gene expression from iPSC-CMs most closely resembles those in GTEx

heart samples. Furthermore, eQTLs detected in our iPSC-CMs are most enriched with

eQTLs identified in GTEx heart tissues (left ventricle) (Supplementary Figure 2). We used

a polygenic method (Supplementary Materials) to identify enrichments of GWAS signals

associated with genes whose expression shows cell type specificity. Genes more specifically

expressed in iPSC-CMs are enriched for signals from GWAS for body mass index (BMI),

coronary artery disease (CAD), and myocardial infarction (MI), while genes more specifi-

cally expressed in LCLs are enriched for signals from GWAS for multiple sclerosis (MS), and
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rheumatoid arthritis (RA) (Figure 4A).

We also used stratified LD score regression [3] to estimate enrichment of heritability

explained by GWAS signal within open chromatin in the different cell types (Figure 4B). We

found that heritability explained by SNPs in LCL and iPSC-CM ATAC-seq peaks explained

more heritability in autoimmune and heart-related diseases, respectively (all enrichment p ≤

10−2). These observations suggest that cellular reprogramming followed by differentiation

is a promising strategy to generate models of complex disease for which primary tissues are

difficult to obtain.

In summary, we have established a unique resource of 58 fully characterized iPSC lines.

These lines reprogrammed from LCLs obtained from Yoruba individuals originally collected

as part of the HapMap project, represent the largest panel of iPSCs from individuals of

African ancestry. We believe this resource will be of great value. In particular, future studies

using this panel of iPSCs will be able to assay dynamic gene regulation by characterizing

gene expression during differentiation, in multiple cell types from the same individuals, and

in terminally differentiated cell types subjected to experimental perturbations. The move

toward dynamic studies of gene regulation in disease relevant tissues will help to elucidate

mechanisms underlying complex disease that were previously difficult or impossible to study.

The research presented here is a first step towards this goal.
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Figure 2: Mechanisms of cell-type-specific regulatory variation. (A) QQ-plot of LCL and iPSC eQTL
signal conditioned on LCL- and iPSC-specific caQTLs. Higher enrichment of LCL (iPSC) eQTLs among LCL
(iPSC) caQTLs links cell-type-specific regulation of chromatin accessibility to cell-type-specific regulation
of gene expression. (B) Chromatin accessibility signal around cell-specific caQTLs in corresponding cell
types (black rectangles), and in other cell-types. A lack of accessibility in other cell-types suggests that
cell-specific caQTLs often affect cell-specific accessible regions, e.g. example (C). (C–D) Examples of cell-
type-specific regulatory effects of genetic variation. SNP is correlated with accessibility of an iPSC-specific
open chromatin region in iPSCs only (C), or of a non-specific open chromatin region in LCLs only (D). (E)
Scatter plot of iPSC and LCL chromatin accessibility at iPSC-specific caQTLs. About 20% of iPSC-specific
caQTLs are accessible in LCLs. Plot of LCL-specific caQTLs in Supplementary Figure 6. (F) Example of an
iPSC-specific caQTL that is also an iPSC-specific eQTL. SNP rs9367277 is associated with both chromatin
accessibility of a strong enhancer and with expression of the Cd2ap gene in iPSCs. Interestingly, rs9367277
lies in a transposable element of the ERVL family, which are preferentially activated in embryonic stem cells
[10].

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2016. ; https://doi.org/10.1101/091660doi: bioRxiv preprint 

https://doi.org/10.1101/091660
http://creativecommons.org/licenses/by/4.0/


accuracy of OrbWeaver in predicting the chromatin landscape

    in each cell type

significant caQTLs disrupt transcription factor motifs that are informative for predicting chromatin activity

OrbWeaver - neural network architecture key transcription factors relevant for shared 

    and cell-specific chromatin activity

LCL

OCT3/4 (39%)

SOX2/6 (14%)

ZIC4 (5%)

ZEB1 (5%)

RAD21 (27%)

ZEB1 (11%)

SPIB (4%)

TEAD4 (41%)

TEAD3 (14%)

OCT3/4 (6%)

RAD21 (45%)

CTCF (12%)

IRF1 (19%)

IRF6 (16%)

PU.1 (15%)

PEBP (9%)

MEF2A (24%) 

TEAD4 (18%)

GATA2 (18%)

c-FOS (14%)

CAP1 (13%)

FOXH1 (8%)iPSC

iPS-CM

Fangtooth accurately predicts the effect of 

    genetic variation on chromatin activity

7-class logistic regression

iPSC LCL

iPS-CM

DNA sequence

500 bp; one-hot encoded

Convolutional Layer (Fixed)

1320 filters fixed to TF PWMs; 30 width

Max pool; 4 width

Convolutional Layer (Variable)

200 filters; 10 width

Max pool; 5 width

Dense Layer

500 units; Dropout p=0.3

iPSC

LCL

iPS-CM

re
p

ro
g

ra
m

m
in

g
d

if
fe

re
n

ti
a
ti
o

n

A B C

D

E

0.0

1.0

0.0

1.0

-2000 bp 2000 bp
0.0

1.0

-0.5

0.0

-0.5

0.0

-0.5

0.0

YB-1 (in iPSC and LCL)

p-value = 0.83

p-value = 0.0002

A
T
A
C
-s
e
q
 r
e
a
d
 c
o
u
n
t 
(p
e
r 
b
ill
io
n
)

p-value = 0.05

rs7967275

hom. ref. (C/C)
het. (C/G)

hom. alt. (G/G)

∆ pred = 0.036

∆ pred = -0.13

∆ pred = 0.002

in
 s
ili
co
 m

u
ta
g
e
n
e
si
s 
sc
o
re
s

Figure 3: Predicting chromatin activity from sequence using deep neural networks. (A) OrbWeaver
is a 4-layered neural network where the parameters of the first convolutional layer are fixed to known
position weight matrices of human transcription factors. The activation function used in each of
the convolutional and dense layers is the Rectified Linear Unit (ReLU). (B) The OrbWeaver model
for one cell type poorly predicts open chromatin in other cell types (gray), highlighting that the
model captures cell type-specific regulatory elements. (C) Transcription factors important for each
locus were identified using DeepLIFT scores; this panel illustrates the top key TFs for each of the
7 categories of chromatin activity and the fraction of loci explained by them. (D) An example
of a locus that is open in iPSCs and LCLs but was identified to be an iPSC-specific caQTL. The
subpanels on the left show the raw ATAC-seq signal in each cell type stratified by genotype of the
most significant SNP of the iPSC caQTL. The subpanels on the right show the marginal change in
OrbWeaver predictions due to mutating the reference base at each position to an alternate base.
The sequence shown corresponds to the shaded portion on the left subpanels and the reported ∆pred
values correspond to the change between alleles of the most significant SNP. The TF important
for this locus as identified by DeepLIFT is YB-1, a factor highly expressed in all three cell types.
(E) Scatter plot comparing the observed allelic imbalance at iPSC caQTLs, estimated by WASP,
and the predicted difference in median chromatin activity between haplotypes tagged by the two
alleles of the causal SNP. Note that the OrbWeaver model was learned using the reference genome
sequence alone and had no information regarding genetic variation in the population when learning
the model parameters.
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Figure 4: Modeling complex disease using iPSC-derived cells. (A) Heatmap of enrichment p-
values of GWAS signals near genes with cell type-specific expression (Supplementary Materials).
(B) Enrichments of SNPs associated with four different diseases in different partitions of the genome
(computed using LDscore regression; point estimates ±95% confidence intervals). In both analyses,
the autoimmune traits (multiple sclerosis (MS) or Crohn’s disease (CD) and rheumatoid arthritis
(RA)) show enrichment near genes and chromatin that are more active in LCLs, and the heart-
related traits (coronary artery disease (CAD) and myocardial infarction (MI)) are enriched in
iPSC-CM active regions.
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