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Abstract

1. Forests provide critical habitat for many species, essential ecosystem services, and are coupled to

atmospheric dynamics through exchanges of energy, water and gases. One of the most important

changes produced in the biosphere is the replacement of forest areas with human dominated landscapes.

This usually leads to fragmentation, altering the sizes of patches, the structure and function of the

forest. Here we studied the distribution and dynamics of forest patch sizes at a global level, examining

signals of a critical transition from an unfragmented to a fragmented state.

2. We used MODIS vegetation continuous field to estimate the forest patches at a global level and de-

fined wide regions of connected forest across continents and big islands. We search for critical phase

transitions, where the system state of the forest changes suddenly at a critical point in time; this

implies an abrupt change in connectivity that causes an increased fragmentation level. We studied the

distribution of forest patch sizes and the dynamics of the largest patch over the last fourteen years,

as the conditions that indicate that a region is near a critical fragmentation threshold are related to

patch size distribution and temporal fluctuations of the largest patch.

3. We found some evidence that allows us to analyze fragmentation as a critical transition: most regions

followed a power-law distribution over the 14 years. We also found that the Philippines region probably

went through a critical transition from a fragmented to an unfragmented state. Only the tropical forest

of Africa and South America met the criteria to be near a critical fragmentation threshold.

4. This implies that human pressures and climate forcings might trigger undesired effects of fragmentation,
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such as species loss and degradation of ecosystems services, in these regions. The simple criteria

proposed here could be used as an early warning to estimate the distance to a fragmentation threshold

in forest around the globe and a predictor of a planetary tipping point.
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Introduction

Forests are one of the most important biomes on earth, providing habitat for a large proportion of species

and contributing extensively to global biodiversity (Crowther et al., 2015). In the previous century human

activities have influenced global bio-geochemical cycles (Bonan, 2008; Canfield et al., 2010), with one of

the most dramatic changes being the replacement of 40% of Earth’s formerly biodiverse land areas with

landscapes that contain only a few species of crop plants, domestic animals and humans (Foley et al., 2011).

These local changes have accumulated over time and now constitute a global forcing (Barnosky et al., 2012).

Another global scale forcing that is tied to habitat destruction is fragmentation, which is defined as the

division of a continuous habitat into separated portions that are smaller and more isolated. Fragmentation

produces multiple interwoven effects: reductions of biodiversity between 13% and 75%, decreasing forest

biomass, and changes in nutrient cycling (Haddad et al., 2015). The effects of fragmentation are not only

important from an ecological point of view but also that of human activities, as ecosystem services are deeply

influenced by the level of landscape fragmentation (Mitchell et al., 2015).

Ecosystems have complex interactions between species and present feedbacks at different levels of organiza-

tion (Gilman et al., 2010), and external forcings can produce abrupt changes from one state to another, called

critical transitions (Scheffer et al., 2009). These abrupt state shifts cannot be linearly forecasted from past

changes, and are thus difficult to predict and manage (Scheffer et al., 2009). Such ‘critical’ transitions have

been detected mostly at local scales (Drake & Griffen, 2010; Carpenter et al., 2011), but the accumulation

of changes in local communities that overlap geographically can propagate and theoretically cause an abrupt

change of the entire system at larger scales (Barnosky et al., 2012). Coupled with the existence of global

scale forcings, this implies the possibility that a critical transition could occur at a global scale (Rockstrom

et al., 2009; Folke et al., 2011).

Complex systems can experience two general classes of critical transitions (Solé, 2011). In so-called first

order transitions, a catastrophic regime shift that is mostly irreversible occurs because of the existence of

alternative stable states (Scheffer et al., 2001). This class of transitions is suspected to be present in a variety

of ecosystems such as lakes, woodlands, coral reefs (Scheffer et al., 2001), semi-arid grasslands (Bestelmeyer

et al., 2011), and fish populations (Vasilakopoulos & Marshall, 2015). They can be the result of positive

feedback mechanisms (Martín et al., 2015); for example, fires in some forest ecosystems were more likely to

occur in previously burned areas than in unburned places (Kitzberger et al., 2012).

The other class of critical transitions are continuous or second order transitions (Solé & Bascompte, 2006).

In these cases, there is a narrow region where the system suddenly changes from one domain to another,
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with the change being continuous and in theory reversible. This kind of transitions were suggested to be

present in tropical forest (Pueyo et al., 2010), semi-arid mountain ecosystems (McKenzie & Kennedy, 2012),

tundra shrublands (Naito & Cairns, 2015). The transition happens at a critical point where we can observe

a distinctive spatial pattern: scale invariant fractal structures characterized by power law patch distributions

(Stauffer & Aharony, 1994).

There are several processes that can convert a catastrophic transition to a second order transitions (Martín

et al., 2015). These include stochasticity, such as demographic fluctuations, spatial heterogeneities, and/or

dispersal limitation. All these components are present in forest around the globe (Seidler & Plotkin, 2006;

Filotas et al., 2014; Fung et al., 2016), and thus continuous transitions might be more probable than

catastrophic transitions. Moreover there is some evidence of recovery in some systems that supposedly

suffered an irreversible transition produced by overgrazing (Zhang et al., 2005) and desertification (Allington

& Valone, 2010).

The spatial phenomena observed in continuous critical transitions deal with connectivity, a fundamental

property of general systems and ecosystems from forests (Ochoa-Quintero et al., 2015) to marine ecosystems

(Leibold & Norberg, 2004) and the whole biosphere (Lenton & Williams, 2013). When a system goes from

a fragmented to a connected state we say that it percolates (Solé, 2011). Percolation implies that there is a

path of connections that involves the whole system. Thus we can characterize two domains or phases: one

dominated by short-range interactions where information cannot spread, and another in which long range

interactions are possible and information can spread over the whole area. (The term “information” is used

in a broad sense and can represent species dispersal or movement.)

Thus, there is a critical “percolation threshold” between the two phases, and the system could be driven

close to or beyond this point by an external force; climate change and deforestation are the main forces

that could be the drivers of such a phase change in contemporary forests (Bonan, 2008; Haddad et al.,

2015). There are several applications of this concept in ecology: species’ dispersal strategies are influenced

by percolation thresholds in three-dimensional forest structure (Solé et al., 2005), and it has been shown

that species distributions also have percolation thresholds (He & Hubbell, 2003). This implies that pushing

the system below the percolation threshold could produce a biodiversity collapse (Bascompte & Solé, 1996;

Solé et al., 2004; Pardini et al., 2010); conversely, being in a connected state (above the threshold) could

accelerate the invasion of forest into prairie (Loehle et al., 1996; Naito & Cairns, 2015).

One of the main challenges with systems that can experience critical transitions—of any kind—is that the

value of the critical threshold is not known in advance. In addition, because near the critical point a small

change can precipitate a state shift of the system, they are difficult to predict. Several methods have been
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developed to detect if a system is close to the critical point, e.g. a deceleration in recovery from perturbations,

or an increase in variance in the spatial or temporal pattern (Hastings & Wysham, 2010; Carpenter et al.,

2011; Boettiger & Hastings, 2012; Dai et al., 2012).

In this study, our objective is to look for evidence that forests around the globe are near continuous critical

point that represent a fragmentation threshold. We use the framework of percolation to first evaluate if

forest patch distribution at a continental scale is described by a power law distribution and then examine

the fluctuations of the largest patch. The advantage of using data at a continental scale is that for very large

systems the transitions are very sharp (Solé, 2011) and thus much easier to detect than at smaller scales,

where noise can mask the signals of the transition.

Methods

Study areas definition

We analyzed mainland forests at a continental scale, covering the whole globe, by delimiting land areas with

a near-contiguous forest cover, separated with each other by large non-forested areas. Using this criterion,

we delimited the following forest regions. In America, three regions were defined: South America temperate

forest (SAT), subtropical and tropical forest up to Mexico (SAST), and USA and Canada forest (NA). Europe

and North Asia were treated as one region (EUAS). The rest of the delimited regions were South-east Asia

(SEAS), Africa (AF), and Australia (OC). We also included in the analysis islands larger than 105 km2. The

mainland region has the number 1 e.g. OC1, and the nearby islands have consecutive numeration (Appendix

S4, figure S1-S6).

Forest patch distribution

We studied forest patch distribution in each defined area from 2000 to 2014 using the MODerate-resolution

Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) Tree Cover dataset version 051

(DiMiceli et al., 2015). This dataset is produced at a global level with a 231-m resolution, from 2000 onwards

on an annual basis. There are several definition of forest based on percent tree cover (Sexton et al., 2015);

we choose a 30% threshold to convert the percentage tree cover to a binary image of forest and non-forest

pixels. This was the definition used by the United Nations’ International Geosphere-Biosphere Programme

(Belward, 1996), and studies of global fragmentation (Haddad et al., 2015). This definition avoids the errors

produced by low discrimination of MODIS VCF between forest and dense herbaceous vegetation at low forest
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cover (Sexton et al., 2015). Patches of contiguous forest were determined in the binary image by grouping

connected forest pixels using a neighborhood of 8 forest units (Moore neighborhood).

Percolation theory

A more in-depth introduction to percolation theory can be found elsewhere (Stauffer & Aharony, 1994) and

a review from an ecological point of view is available (Oborny et al., 2007). Here, to explain the basic

elements of percolation theory we formulate a simple model: we represent our area of interest by a square

lattice and each site of the lattice can be occupied—e.g. by forest—with a probability p. The lattice will be

more occupied when p is greater, but the sites are randomly distributed. We are interested in the connection

between sites, so we define a neighborhood as the eight adjacent sites surrounding any particular site. The

sites that are neighbors of other occupied sites define a patch. When there is a patch that connects the

lattice from opposite sides, it is said that the system percolates. When p is increased from low values, a

percolating patch suddenly appears at some value of p called the critical point pc.

Thus percolation is characterized by two well defined phases: the unconnected phase when p < pc (called

subcritical in physics), in which species cannot travel far inside the forest, as it is fragmented; in a general

sense, information cannot spread. The second is the connected phase when p > pc (supercritical), species

can move inside a forest patch from side to side of the area (lattice), i.e. information can spread over the

whole area. Near the critical point several scaling laws arise: the structure of the patch that spans the area

is fractal, the size distribution of the patches is power-law, and other quantities also follow power-law scaling

(Stauffer & Aharony, 1994).

The value of the critical point pc depends on the geometry of the lattice and on the definition of the

neighborhood, but other power-law exponents only depend on the lattice dimension. Close to the critical

point, the distribution of patch sizes is:

(1) ns(pc) ∝ s−α

where ns(p) is the number of patches of size s. The exponent α does not depend on the details of the

model and it is called universal (Stauffer & Aharony, 1994). These scaling laws can be applied for landscape

structures that are approximately random, or at least only correlated over short distances (Gastner et al.,

2009). In physics this is called “isotropic percolation universality class”, and corresponds to an exponent

α = 2.05495. If we observe that the patch size distribution has another exponent it will not belong to this

universality class and some other mechanism should be invoked to explain it. Percolation thresholds can

also be generated by models that have some kind of memory (Hinrichsen, 2000; Ódor, 2004): for example, a
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patch that has been exploited for many years will recover differently than a recently deforested forest patch.

In this case, the system could belong to a different universality class, or in some cases there is no universality,

in which case the value of α will depend on the parameters and details of the model (Corrado et al., 2014).

To illustrate these concepts, we conducted simulations with a simple forest model with only two states:

forest and non-forest. This type of model is called a “contact process” and was introduced for epidemics

(Harris, 1974), but has many applications in ecology (Solé & Bascompte, 2006; Gastner et al., 2009). A site

with forest can become extinct with probability e, and produce another forest site in a neighborhood with

probability c. We use a neighborhood defined by an isotropic power law probability distribution. We defined

a single control parameter as λ = c/e and ran simulations for the subcritical fragmentation state λ < λc,

with λ = 2, near the critical point for λ = 2.5, and for the supercritical state with λ = 5 (see supplementary

data, gif animations).

Patch size distributions

We fitted the empirical distribution of forest patch areas, based on the MODIS-derived data described above,

to four distributions using maximum likelihood estimation (Goldstein et al., 2004; Clauset et al., 2009).

The distributions were: power-law, power-law with exponential cut-off, log-normal, and exponential. We

assumed that the patch size distribution is a continuous variable that was discretized by remote sensing data

acquisition procedure.

We set a minimal patch size (Xmin) at nine pixels to fit the patch size distributions to avoid artifacts at patch

edges due to discretization (Weerman et al., 2012). Besides this hard Xmin limit we set due to discretization,

the power-law distribution needs a lower bound for its scaling behavior. This lower bound is also estimated

from the data by maximizing the Kolmogorov-Smirnov (KS) statistic, computed by comparing the empirical

and fitted cumulative distribution functions (Clauset et al., 2009). We also calculated the uncertainty of the

parameters using a non-parametric bootstrap method (Efron & Tibshirani, 1994), and computed corrected

Akaike Information Criteria (AICc) and Akaike weights for each model (Burnham & Anderson, 2002). Akaike

weights (wi) are the weight of evidence in favor of model i being the actual best model given that one of the

N models must be the best model for that set of N models.

Additionally, we computed the goodness of fit of the power-law model following the bootstrap approach

described by Clauset et. al (2009), where simulated data sets following the fitted model are generated, and a

p-value computed as the proportion of simulated data sets that has a KS statistic less extreme than empirical

data. The criterion to reject the power law model suggested by Clauset et. al (2009) was p ≤ 0.1, but as we
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have a very large n, meaning that negligible small deviations could produce a rejection (Klaus et al., 2011),

we chose a p ≤ 0.05 to reject the power law model.

To test for differences between the fitted power law exponent for each study area we used a generalized least

squares linear model (Zuur et al., 2009) with weights and a residual auto-correlation structure. Weights were

the bootstraped 95% confidence intervals and we added an auto-regressive model of order 1 to the residuals

to account for temporal autocorrelation.

Largest patch dynamics

The largest patch is the one that connects the highest number of sites in the area. This has been used

extensively to indicate fragmentation (Gardner & Urban, 2007; Ochoa-Quintero et al., 2015). The relation

of the size of the largest patch Smax to critical transitions has been extensively studied in relation to

percolation phenomena (Stauffer & Aharony, 1994; Bazant, 2000; Botet & Ploszajczak, 2004), but seldom

used in ecological studies (for an exception see Gastner et al. (2009)). When the system is in a connected

state (p > pc) the landscape is almost insensitive to the loss of a small fraction of forest, but close to the

critical point a minor loss can have important effects (Solé & Bascompte, 2006; Oborny et al., 2007), because

at this point the largest patch will have a filamentary structure, i.e. extended forest areas will be connected

by thin threads. Small losses can thus produce large fluctuations.

One way to evaluate the fragmentation of the forest is to calculate the proportion of the largest patch against

the total area (Keitt et al., 1997). The total area of the regions we are considering (Appendix S4, figures

S1-S6) may not be the same than the total area that the forest could potentially occupy, thus a more accurate

way to evaluate the weight of Smax is to use the total forest area, that can be easily calculated summing all

the forest pixels. We calculate the proportion of the largest patch for each year, dividing Smax by the total

forest area of the same year: RSmax = Smax/
∑

i Si. This has the effect of reducing the Smax fluctuations

produced due to environmental or climatic changes influences in total forest area. When the proportion

RSmax is large (more than 60%) the largest patch contains most of the forest so there are fewer small forest

patches and the system is probably in a connected phase. Conversely, when it is low (less than 20%), the

system is probably in a fragmented phase (Saravia & Momo, 2017).

The RSmax is a useful qualitative index that does not tell us if the system is near or far from the critical

transition; this can be evaluated using the temporal fluctuations. We calculate the fluctuations around the

mean with the absolute values ∆Smax = Smax(t) − ⟨Smax⟩, using the proportions of RSmax. To characterize

fluctuations we fitted three empirical distributions: power-law, log-normal, and exponential, using the same
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methods described previously. We expect that large fluctuation near a critical point have heavy tails (log-

normal or power-law) and that fluctuations far from a critical point have exponential tails, corresponding

to Gaussian processes (Rooij et al., 2013). As the data set spans 15 years, we do not have enough power to

reliably detect which distribution is better (Clauset et al., 2009). To improve this we performed the goodness

of fit test described above for all the distributions. We generated animated maps showing the fluctuations

of the two largest patches to aid in the interpretations of the results.

A robust way to detect if the system is near a critical transition is to analyze the increase in variance of

the density (Benedetti-Cecchi et al., 2015). It has been demonstrated that the variance increase in density

appears when the system is very close to the transition (Corrado et al., 2014), thus practically it does

not constitute an early warning indicator. An alternative is to analyze the variance of the fluctuations of

the largest patch ∆Smax: the maximum is attained at the critical point but a significant increase occurs

well before the system reaches the critical point (Corrado et al., 2014). In addition, before the critical

fragmentation, the skewness of the distribution of ∆Smax should be negative, implying that fluctuations

below the average are more frequent. We characterized the increase in the variance using quantile regression:

if variance is increasing the slopes of upper or/and lower quartiles should be positive or negative.

All statistical analyses were performed using the GNU R version 3.3.0 (R Core Team, 2015), using code

provided by Cosma R. Shalizi for fitting the power law with exponential cutoff model and the poweRlaw

package (Gillespie, 2015) for fitting the other distributions. For the generalized least squares linear model we

used the R function gls from package nlme (Pinheiro et al., 2016); and we fitted quantile regressions using

the R package quantreg (Koenker, 2016). Image processing was done in MATLAB r2015b (The Mathworks

Inc.). The complete source code for image processing and statistical analysis, and the patch size data files

are available at figshare http://dx.doi.org/10.6084/m9.figshare.4263905.

Results

The figure 1 shows an example of the distribution of the biggest 200 patches for years 2000 and 2014, this

distribution is highly variable, but the biggest patch usually maintains its place. Sometimes the biggest

patch breaks and then big fluctuations in its size are observed, as we will analyze below. Smaller patches

can merge or break more easily so they enter or leave the list of 200, and this is why there is a color change

across years.

The power law distribution was selected as the best model in 92% of the cases (Appendix S4, Figure S7).

In a small number of cases (1%) the power law with exponential cutoff was selected, but the value of the
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Figure 1: Forest patch distributions for continental regions for the years 2000 and 2014. The images are
the 200 biggest patches, showed at a coarse pixel scale of 2.5 Km. The regions are: a) & b) southeast Asia;
c) & d) South America subtropical and tropical and e) & f) Africa mainland, for the years 2000 and 2014
respectively.
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parameter α was similar by ±0.02 to the pure power law. Additionally the patch size where the exponential

tail begins is very large, thus we used the power law parameters for this cases (See Appendix S4, Figure S2,

region EUAS3). In finite-size systems the favored model should be the power law with exponential cutoff,

because the power-law tails are truncated to the size of the system (Stauffer & Aharony, 1994). Here the

regions are so large that the cutoff is practically not observed.

There is only one region that did not follow a power law: Eurasia mainland, which showed a log-normal

distribution, representing 7% of the cases. The log-normal and power law are both heavy tailed distributions

and difficult to distinguish, but in this case Akaike weights have very high values for log-normal (near 1),

meaning that this is the only possible model. In addition, the goodness of fit tests clearly rejected the power

law model in all cases for this region (Appendix S4, table S1, region EUAS1). In general the goodness of fit

test rejected the power law model in fewer than 10% of cases. In large forest areas like Africa mainland (AF1)

or South America tropical-subtropical (SAST1), larger deviations are expected and the rejections rates are

higher so the proportion is 30% or less (Appendix S4, Table S1).

Taking into account the bootstrapped confidence intervals of each power law exponent (α) and the temporal

autocorrelation, there were no significant differences between α for the regions with the biggest (greater than

107 km2) forest areas (Figure 2 and Appendix S4, Figure S8). There were also no differences between these

regions and smaller ones (Appendix S4, Tables S2 & S3), and all the slopes of α were not different from

0 (Appendix S4, Table S3). This implies a global average α = 1.908, with a bootstrapped 95% confidence

interval between 1.898 and 1.920.

The proportion of the largest patch relative to total forest area RSmax for regions with more than 107 km2

of forest is shown in figure 3. South America tropical and subtropical (SAST1) and North America (NA1)

have a higher RSmax of more than 60%, and other big regions 40% or less. For regions with less total

forest area (Appendix S4, figure S9 & Table 1), the United Kingdom (EUAS3) has a very low proportion

near 1%, while other regions such as New Guinea (OC2) and Malaysia/Kalimantan (OC3) have a very high

proportion. SEAS2 (Philippines) is a very interesting case because it seems to be under 30% until the year

2005, fluctuates in the range 30-60%, and then stays over 60% (Appendix S4, figure S9).

We analyzed the distributions of fluctuations of the largest patch relative to total forest area ∆RSmax

and the fluctuations of the largest patch ∆Smax. The model selection for ∆Smax resulted in power law

distributions for all regions (Appendix S4, table S6). For ∆RSmax instead some regions showed exponential

distributions: Eurasia mainland (EUAS1), New Guinea (OC2), Malaysia (OC3), New Zealand (OC6, OC8)

and Java (OC7), all others were power laws (Appendix S4, Table S7).The goodness of fit test (GOF) did

not reject power laws in any case, but neither did it reject the other models except in a few cases; this was
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Figure 2: Power law exponents (α) of forest patch distributions for regions with total forest area > 107

km2. Dashed horizontal lines are the fitted generalized least squares linear model, with 95% confidence
interval error bars estimated by bootstrap resampling. The regions are AF1: Africa mainland, EUAS1:
Eurasia mainland, NA1: North America mainland, SAST1: South America subtropical and tropical, SEAS1:
Southeast Asia mainland. For EUAS1 the best model is log-normal but the exponents are included here for
comparison.
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Figure 3: Largest patch proportion relative to total forest area RSmax, for regions with total forest area
> 107 km2. Dashed lines are averages across time. The regions are AF1: Africa mainland, EUAS1: Eura-
sia mainland, NA1: North America mainland, SAST1: South America tropical and subtropical, SEAS1:
Southeast Asia mainland.
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due to the small number of observations. We only considered fluctuations to follow a power law when this

distribution was selected for both absolute and relative fluctuations.

The animations of the two largest patches (see supplementary data, largest patch gif animations) qualitatively

shows the nature of fluctuations and if the state of the forest is connected or not. If the largest patch is

always the same patch over time, the forest is probably not fragmented; this happens for regions with RSmax

of more than 40% such as AF2 (Madagascar), NA1 (North America), and OC3 (Malaysia). In the regions

with RSmax between 40% and 30% the identity of the largest patch could change or stay the same in time.

For OC7 (Java) the largest patch changes and for AF1 (Africa mainland) it stays the same. Only for EUAS1

(Eurasia mainland) we observed that the two largest patches are always the same, implying that this region

is probably composed of two independent domains and should be divided in further studies. The regions

with RSmax less than 25%: SAST2 (Cuba) and EUAS3 (United Kingdom), the largest patch always changes

reflecting their fragmented state. In the case of SEAS2 (Philippines) a transition is observed, with the

identity of the largest patch first variable, and then constant after 2010.

The results of quantile regressions are identical for ∆RSmax and ∆Smax (Appendix S4, table S4). Among the

biggest regions, Africa (AF1) has upper and lower quantiles with significantly negative slopes, but the lower

quantile slope is lower, implying that negative fluctuations and variance are increasing (Figure 4). Eurasia

mainland (EUAS1) has only the upper quantile significant with a positive slope, suggesting an increase in the

variance. North America mainland (NA1) exhibits a significant lower quantile with positive slope, implying

decreasing variance. Finally, for mainland Australia, all quantiles are significant, and the slope of the lower

quantiles is greater than the upper ones, showing that variance is decreasing (Appendix S4, figure S10).

These results are summarized in Table 1.

The conditions that indicate that a region is near a critical fragmentation threshold are that patch size

distributions follow a power law; temporal ∆RSmax fluctuations follow a power law; variance of ∆RSmax is

increasing in time; and skewness is negative. All these conditions were true only for Africa mainland (AF1)

and South America tropical & subtropical (SAST1).
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Figure 4: Largest patch fluctuations for regions with total forest area > 107km2 across years. The patch sizes
are relative to the total forest area of the same year. Dashed lines are 90%, 50% and 10% quantile regressions,
to show if fluctuations were increasing. The regions are AF1: Africa mainland, EUAS1: Eurasia mainland,
NA1: North America mainland, SAST1: South America tropical and subtropical, SEAS1: Southeast Asia
mainland.
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Table 1: Regions and indicators of closeness to a critical fragmentation threshold. Where, RSmax is the
largest patch divided by the total forest area, ∆RSmax are the fluctuations of RSmax around the mean,
skewness was calculated for RSmax and the increase or decrease in the variance was estimated using quantile
regressions, NS means the results were non-significant. The conditions that determine the closeness to a
threshold are: power law distributions in patch sizes and ∆RSmax; increasing variance of ∆RSmax and
negative skewness.

Region Description

Average

RSmax

Patch Size

Distrib ∆RSmax Distrib. Skewness Variance

AF1 Africa mainland 0.36 Power Power -1.8630 Increase

AF2 Madagascar 0.65 Power Power -0.2478 NS

EUAS1 Eurasia, mainland 0.36 LogNormal Exp 0.4016 Increase

EUAS2 Japan 0.94 Power Power 0.0255 NS

EUAS3 United Kingdom 0.07 Power Power 2.1330 NS

NA1 North America, mainland 0.71 Power Power -1.5690 Decrease

NA5 Newfoundland 0.87 Power Power -0.7411 NS

OC1 Australia, Mainland 0.28 Power Power 0.0685 Decrease

OC2 New Guinea 0.97 Power Exp 0.1321 Decrease

OC3 Malaysia/Kalimantan 0.97 Power Exp -0.9633 NS

OC4 Sumatra 0.92 Power Power 1.3150 Increase

OC5 Sulawesi 0.87 Power Power -0.3863 NS

OC6 New Zealand South Island 0.76 Power Exp -0.6683 NS

OC7 Java 0.38 Power Exp -0.1948 NS

OC8 New Zealand North Island 0.75 Power Exp 0.2940 NS

SAST1 South America, Tropical and

subtropical forest up to Mexico

0.68 Power Power -2.7760 Increase

SAST2 Cuba 0.21 Power Power 0.2751 NS

SAT1 South America, Temperate forest 0.60 Power Power -1.5070 Decrease

SEAS1 Southeast Asia, Mainland 0.40 Power Power 3.0030 NS

SEAS2 Philippines 0.54 Power Power 0.3113 Increase

Discussion

We found that the forest patch distribution of most regions of the world followed power laws spanning

seven orders of magnitude. These include tropical rainforest, boreal and temperate forest. Power laws have

previously been found for several kinds of vegetation, but never at global scales as in this study. Interestingly,

Eurasia does not follow a power law, but it is a geographically extended region, consisting of different domains

(as we observed in the largest patch animations, see supplementary data). It is known that the union of two

independent power law distributions produces a lognormal distribution (Rooij et al., 2013). Future studies

should split this region into two or more new regions, and test if the underlying distributions are power laws.

Several mechanisms have been proposed for the emergence of power laws in forest: the first is related self

organized criticality (SOC), when the system is driven by its internal dynamics to a critical state; this has
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been suggested mainly for fire-driven forests (Zinck & Grimm, 2009; Hantson et al., 2015). Real ecosystems

do not seem to meet the requirements of SOC dynamics (Sole et al., 2002; Pueyo et al., 2010; McKenzie &

Kennedy, 2012). A second possible mechanism, suggested by Pueyo et al. (2010), is isotropic percolation,

when a system is near the critical point power law structures arise. This is equivalent to the random forest

model that we explained previously, and requires the tuning of an external environmental condition to carry

the system to this point. We did not expect forest growth to be a random process at local scales, but it

is possible that combinations of factors cancel out to produce seemingly random forest dynamics at large

scales. If this is the case the power law exponent should be theoretically near α = 2.055; this is close but

outside the confidence interval we observed (1.898 - 1.920). The third mechanism suggested as the cause of

pervasive power laws in patch size distribution is facilitation (Manor & Shnerb, 2008; Irvine et al., 2016): a

patch surrounded by forest will have a smaller probability of been deforested or degraded than an isolated

patch. We hypothesize that models that include facilitation could explain the patterns observed here. The

model of Scanlon et al. (2007) showed an α = 1.34 which is also different from our results. Another model

but with three states (tree/non-tree/degraded), including local facilitation and grazing, was also used to

obtain power laws patch distributions without external tuning, and exhibited deviations from power laws at

high grazing pressures (Kéfi et al., 2007). The values of the power law exponent α obtained for this model

are dependent on the intensity of facilitation, when facilitation is more intense the exponent is higher, but

the maximal values they obtained are still lower than the ones we observed. The interesting point is that

the value of the exponent is dependent on the parameters, and thus the observed α might be obtained with

some parameter combination.

It has been suggested that a combination of spatial and temporal indicators could more reliably detect

critical transitions (Kéfi et al., 2014). In this study, we combined five criteria to detect the closeness to a

fragmentation threshold. Two of them were spatial: the forest patch size distribution, and the proportion

of the largest patch relative to total forest area (RSmax). The other three were the distribution of temporal

fluctuations in the largest patch size, the trend in the variance, and the skewness of the fluctuations. Each

one of these is not a strong individual predictor, but their combination gives us an increased degree of

confidence about the system being close to a critical transition.

We found that only the tropical forest of Africa and South America met all five criteria, and thus seem to

be near a critical fragmentation threshold. This confirms previous studies that point to these two tropical

areas as the most affected by deforestation (Hansen et al., 2013). Africa seems to be more affected, because

the proportion of the largest patch relative to total forest area (RSmax) is near 30%, which could indicate

that the transition is already started. Moreover, this region was estimated to be potentially bistable, with
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the possibility to completely transform into a savanna (Staver et al., 2011). The main driver of deforestation

in this area was smallholder farming.

The region of South America tropical forest has a RSmax of more than 60%, suggesting that the fragmentation

transition is approaching but not yet started. In this region, a striking decline in deforestation rates has

been observed in Brasil, which hosts most of the biggest forest patch, but deforestation rates have continued

to increase in surrounding countries (Argentina, Paraguay, Bolivia, Colombia, Peru) thus the region is still

at a high risk.

The monitoring of biggest patches is also important because they contain most of the intact forest landscapes

defined by Potapov et al. (2008), thus a relatively simple way to evaluate the risk in these areas is to use

RSmax index. The analysis of RSmax reveals that the island of Philippines (SEAS2) seems to be an example

of a critical transition from an unconnected to a connected state, the early warning signals can be qualitatively

observed: a big fluctuation in a negative direction precedes the transition and then RSmax stabilizes over

60% (Figure S9). In addition, there was a total loss of forest cover of 1.9% from year 2000 to 2012 (Hansen et

al., 2013) and deforestation rates were not substantially reduced in 1990-2014; this could be the results of an

active intervention of the government promoting conservation and rehabilitation of protected areas, ban of

logging old-growth forest, reforestation of barren areas, community-based forestry activities, and sustainable

forest management in the country’s production forest (Lasco et al., 2008). This confirms that the early

warning indicators proposed here work in the correct direction.

The region of Southeast Asia was also one of the most deforested places in the world, but was not detected

as a region near a fragmentation threshold. This is probably due to the forest conservation and restoration

programs implemented by the Chinese government, which bans logging in natural forests and monitor illegal

harvesting (Viña et al., 2016). The MODIS dataset does not detect if native forest is replaced by agroindus-

trial tree plantations like oil palms, that are among the main drivers of deforestation in this area (Malhi et

al., 2014). To improve the estimation of forest patches, data sets as the MODIS cropland probability and

others about land use, protected areas, forest type, should be incorporated (Hansen et al., 2014; Sexton et

al., 2015).

Deforestation and fragmentation are closely related. At low levels of habitat reduction species population

will decline proportionally; this can happen even when the habitat fragments retain connectivity. As habitat

reduction continues, the critical threshold is approached and connectivity will have large fluctuations (Brook

et al., 2013). This could trigger several negative synergistic effects: populations fluctuations and the possibil-

ity of extinctions will rise, increasing patch isolation and decreasing connectivity (Brook et al., 2013). This

positive feedback mechanism will be enhanced when the fragmentation threshold is reached, resulting in the
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loss of most habitat specialist species at a landscape scale (Pardini et al., 2010). Some authors argue that

since species have heterogeneous responses to habitat loss and fragmentation, and biotic dispersal is limited,

the importance of thresholds is restricted to local scales or even that its existence is questionable (Brook et

al., 2013). Fragmentation is by definition a local process that at some point produces emergent phenomena

over the entire landscape, even if the area considered is infinite (Oborny et al., 2005). In addition, after a

region’s fragmentation threshold connectivity decreases, there is still a large and internally well connected

patch that can maintain sensitive species (Martensen et al., 2012). What is the time needed for these large

patches to become fragmented, and pose a real danger of extinction to a myriad of sensitive species? If a

forest is already in a fragmented state, a second critical transition from forest to non-forest could happen,

this was called the desertification transition (Corrado et al., 2014). Considering the actual trends of habitat

loss, and studying the dynamics of non-forest patches—instead of the forest patches as we did here—the risk

of this kind of transition could be estimated. The simple models proposed previously could also be used to

estimate if these thresholds are likely to be continuous and reversible or discontinuous and often irreversible

(Weissmann & Shnerb, 2016), and the degree of protection (e.g. using the set-asides strategy Banks-Leite et

al. (2014)) than would be necessary to stop this trend.

The effectiveness of landscape management is related to the degree of fragmentation, and the criteria to direct

reforestation efforts could be focused on regions near a transition (Oborny et al., 2007). Regions that are in

an unconnected state require large efforts to recover a connected state, but regions that are near a transition

could be easily pushed to a connected state; feedbacks due to facilitation mechanisms might help to maintain

this state. Crossing the fragmentation critical point in forests could have negative effects on biodiversity and

ecosystem services (Haddad et al., 2015), but it could also produce feedback loops at different levels of the

biological hierarchy. This means that a critical transition produced at a continental scale could have effects

at the level of communities, food webs, populations, phenotypes and genotypes (Barnosky et al., 2012). All

these effects interact with climate change, thus there is a potential production of cascading effects that could

lead to a global collapse. Therefore, even if critical thresholds are reached only in some forest regions at a

continental scale, a cascading effect with global consequences could still be produced, and may contribute to

reach a planetary tipping point (Reyer et al., 2015). The risk of such event will be higher if the dynamics of

separate continental regions are coupled (Lenton & Williams, 2013). Using the time series obtained in this

work the coupling of the continental could be further investigated. It has been proposed that to assess the

probability of a global scale shift, different small scale ecosystems should be studied in parallel (Barnosky et

al., 2012). As forest comprises a major proportion of such ecosystems, we think that the transition of forests

could be used as a proxy for all the underling changes and as a successful predictor of a planetary tipping
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point.

Supporting information

Appendix

Table S1: Proportion of Power law models not rejected by the goodness of fit test at p ≤ 0.05 level.

Table S2: Generalized least squares fit by maximizing the restricted log-likelihood.

Table S3: Simultaneous Tests for General Linear Hypotheses of the power law exponent.

Table S4: Quantile regressions of the proportion of largest patch area vs year.

Table S5: Unbiased estimation of skewness for absolute largest patch fluctuations and relative fluctuations.

Table S6: Model selection using Akaike criterion for largest patch fluctuations in absolute values

Table S7 : Model selection for fluctuation of largest patch in relative to total forest area.

Figure S1: Regions for Africa (AF), 1 Mainland, 2 Madagascar.

Figure S2: Regions for Eurasia (EUAS), 1 Mainland, 2 Japan, 3 United Kingdom.

Figure S3: Regions for North America (NA), 1 Mainland, 5 Newfoundland.

Figure S4: Regions for Australia and islands (OC), 1 Australia mainland; 2 New Guinea; 3 Malaysia/Kalimantan;

4 Sumatra; 5 Sulawesi; 6 New Zealand south island; 7 Java; 8 New Zealand north island.

Figure S5: Regions for South America, SAST1 Tropical and subtropical forest up to Mexico; SAST2 Cuba;

SAT1 South America, Temperate forest.

Figure S6: Regions for Southeast Asia (SEAS), 1 Mainland; 2 Philippines.

Figure S7 : Proportion of best models selected for patch size distributions using the Akaike criterion.

Figure S8: Power law exponents for forest patch distributions by year.

Figure S9: Largest patch proportion relative to total forest area RSmax, for regions with total forest area

less than 107 km2.

Figure S10: Fluctuations of largest patch for regions with total forest area less than 107 km2. The patch

sizes are relativized to the total forest area for that year.
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Data Accessibility

Csv text file with model fits for patch size distribution, and model selection for all the regions; Gif Animations

of a forest model percolation; Gif animations of largest patches; patch size files for all years and regions

used here; and all the R and Matlab scripts are available at figshare http://dx.doi.org/10.6084/m9.figshare.

4263905.
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