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Abstract 
 
A genome-wide association study (GWAS) seeks to identify genetic variants that contribute to 
the development and progression of a specific disease. Over the past 10 years, new 
approaches using mixed models have emerged to mitigate the deleterious effects of population 
structure and relatedness in association studies. However, developing GWAS techniques to 
effectively test for association while correcting for population structure is a computational and 
statistical challenge. Our review motivates the problem of population structure in association 
studies using laboratory mouse strains and how it can cause false positives associations. We 
then motivate mixed models in the context of unmodeled factors. 
 
 
Introduction 
 
Genetics studies have identified thousands of variants implicated in dozens of common human 
diseases (Manolio et al. 2009; Purcell et al. 2009; Stram 2013; Yang et al. 2010). These 
variants are locations in the human genome where genetic content differ among individuals in a 
population. A genome-wide association study (GWAS) seeks to identify genetic variants that 
contribute to the development and progression of a specific disease. 
 
Association studies discover these genetic factors by correlating an individual’s genetic variation 
with a disease status or disease-related trait. At the genome-wide scale, association studies 
typically focus on statistical relationships between single-nucleotide polymorphisms (SNPs) and 
disease traits. SNPs are the most common genetic variants underlying susceptibility to disease, 
and associated SNPs are considered to mark the region of a human genome that influences 
disease risk. A GWAS identifies a SNP as a significant, and therefore ​associated​ , variant when 
the specific genome sequence at the SNP is correlated with a disease trait or disease status. 
For example, a GWAS study may find that individuals with a specific sequence (or allele) at a 
SNP have higher blood pressure on average than individuals with a different sequence at the 
SNP.  If a SNP has a significant correlation with a trait or disease status, the association study 
suggests that presence of the particular variant may increase an individual’s risk for disease. 
 
Typical analytical strategies for performing association studies rely on standard regression 
techniques, which assume the data have an identically and independently distributed (​i.i.d.​ ) 
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property. If data have ​iid​ , all variables are mutually independent since each random variable 
shares the same probability distribution with others. Association study methodology was 
originally designed for populations comprised of unrelated individuals, and standard approaches 
assume this property is true (Risch and Merikangas 1996). However, the big genomic datasets 
available today inevitably contain distantly related individuals. This genetic relatedness prevents 
standard association studies from correctly identifying the causal variants and induces 
identification of many false positive associations (or ​spurious associations​ ). 
 
Two types of relatedness may produce high rates of false positive associations: population 
structure and cryptic relatedness. “Population structure” refers to different ancestry among 
individuals in a study. “Cryptic relatedness” exists when some individuals are closely related, but 
this shared ancestry is unknown to the investigators. Large (n=>5000) population cohorts 
inevitably contain individuals who have common ancestry from different populations. In either 
case, individuals who share ancestry are more related than individuals from different ancestries. 
These ancestry differences induce a self-organizing population structure effect, which causes 
the statistical methodology to assign strong association signals to variants that are not actually 
causal for the trait or disease. In many cases, applying standard association study techniques to 
population cohorts with population structure produces a high rate of false positive associations. 
These associations may appear to be significant, but they are driven by the cohort’s relatedness 
rather than variants that truly affect trait or disease risk. 
 
Developing GWAS techniques to effectively test for association while correcting for population 
structure is a computational and statistical challenge.  This challenge is relevant to human 
association studies as well as genetic studies in any organism, including model organisms such 
as mice. Mouse studies are widely used to study human disease and, because of the particular 
history of the laboratory mouse strains, have complex patterns of genetic relatedness that can 
cause false positives in association studies.  
 
Over the past 10 years, new approaches using mixed models have emerged to mitigate the 
deleterious effects of population structure and relatedness in association studies (Zhou and 
Stephens 2012; Kang et al. 2008, 2010; Listgarten et al. 2012).  These approaches were 
originally developed in the context of mouse studies and later applied to human studies.  In this 
review, we explicitly characterize population structure as a confounding factor in order to 
explore the root cause of false positives in association studies. We trace the development of 
these methods in mouse studies and describe how these methods were adapted to human 
studies, particularly where they are applied to correct for population structure in large-scale 
genomic datasets. 
 
Standard Genome Wide Association Studies (GWAS) 
 
Genetic association studies attempt to identify single-nucleotide polymorphisms (SNPs) that are 
responsible for differences in trait or phenotype values within an individual. A SNP is a single 
position in the human genome sequence where individuals in the population have different 
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genetic content. These differing forms of the same gene are referred to as alleles, and SNPs 
are the most common form of genetic variation.  
 
SNPs are ideal targets for association testing, because they are the most common form of 
genetic variants and are so prevalent that they are correlated with other forms of variation. To 
conduct a typical single-SNP test, we first collect genetic information at the SNP in a set of 
individuals (referred to as genotypes). Next, we measure the association (or correlation) with the 
trait values (or phenotypes) of the individuals (see Figure 1a). In this Figure, it is intuitively clear 
that the first SNP appears to be associated, but the second SNP does not appear to be 
associated. 
 
In order to evaluate if the association between a SNP and a phenotype is statistically significant, 
we can test two hypotheses using the collected data. The null hypothesis assumes a model 
where the SNP does not affect the phenotype (see Figure 1b). In this hypothesis, the 
phenotypes ( ​) are only affected by the population mean ( ​) and the environment ( ​). Unless 
data indicate otherwise, we assume that the null hypothesis is true and the SNP does not 
influence the phenotype (i.e., the individual’s disease risk). 
 
An alternative hypothesis provides a model of the SNP being significantly associated with the 
phenotype (see Figure 1c). In this case, the phenotypes ( ​) are affected not only by the 
population mean ( ​) and environment ( ​), but they are also affected by the genotype ( ​). In 
other words, presence of the SNP suggests an individual is likely to have the trait or disease 
risk. Here, the quantitative measurement of strength that the genotype has on the phenotype is 
referred to as the effect size ( ​). If the effect size ( ​) is equal to 0, we consider the two models 
equivalent. The SNP is determined to be significantly associated with the phenotype when the 
data fits the alternative hypothesis beyond a specific threshold. 
 

 
Figure 1.​ Standard genetic association study applied to blood pressure data. (a) The left SNP 
appears to be more strongly associated with blood pressure than the right SNP. (b) We test two 
hypotheses against each other to evaluate whether the association between a SNP and a 
phenotype is statistically significant. By default, a null hypothesis assumes that the SNP does 
not affect the phenotype. (c) If the data fits the alternative hypothesis beyond a certain 
threshold, the SNP is described as significantly associated with the phenotype. 
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We mathematically express the null and the alternative hypotheses in order to perform a 
single-SNP test. We denote the kth genotype of the jth individual ​ where the genotype is in 
the set {0,1,2}, which is the number of copies of the kth variant that the jth individual has on their 
two chromosomes. Here, a “0” denotes the genotype that does not contain the variant in either 
chromosome, while a “1” or “2” denotes the genotype presence in one or two of the 
chromosomes, respectively. In order to simplify the equations for association studies, we 
normalize the genotypes by subtracting the population mean and dividing by the variance. The 
frequency of a variant in the population is denoted as ​,​ ​ which is the average genotype 
frequency in the population.   The normalized genotypes can be expressed as  

. 
 
Once we have calculated the normalized genotypes, a typical single-SNP test can be used to 
identify variants associated with traits. A standard regression technique estimates the 
relationship among variables, including a dependent variable ( ​), any independent variables (
), and unknown variables ( ​). Using regression, these simple linear models can correlate the 
genetic variation with the trait, allowing us to assess whether the data best fits the null or 
alternative hypothesis. 
 
The equation  
 

 
 
models the phenotype, where ​ is an individual in the study. Here, the effect of each variant on 
the phenotype is ​, the model mean is ​, and the contribution of the environment on the 
phenotype is ​. The environment’s effect on a phenotype ( ​) is assumed to be normally 

distributed with variance ​, denoted ​. 
 
Converting known quantities into vectors allows us to scale these variants for genome-wide 
studies. In vector notation, we can model the phenotypes of all of the individuals 
 

(1) 
 
with the phenotypes of all of the individuals in the dataset denoted as column vector ​, a 
column containing the genotypes for the ith variant in the population denoted as ​, and a 
vector containing the environments denoted as e. 1 is a column vector of 1s.  We draw the 
random vector ​ from the distribution ​).  We note that each element of ​ is 

independent of the others, hence, the variance-covariance matrix is a diagonal matrix ( ​). 
 
Using the observed data, we can estimate the values of the population mean and the effect of 
the true variant by using the following equations: 
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The reason the equations are so simple is because the genotypes are normalized.  The 
resulting value is the association between an SNP and phenotype. We can then test the 
significance of this association by using the statistic 
 

(2) 
 
This statistic is normally distributed with a mean that depends on the effect of the SNP on the 
trait, the environmental variance, and the number of individuals.  The variance of the statistic is 
1.  If the SNP does not have an effect on the trait, the the statistic will follow the null distribution 

 
which is a standard normal distribution.  We can then use this null distribution to determine 
whether the association is significant. This statistic is significant with a significance level of ​ if 
 

  or   
 
, in which case the variant is considered to be associated (see Figure 2).  We use the notation 

 to denote the significance level that we need to achieve at any SNP which in human studies 
is typically ​. 
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Figure 2. ​Significance testing in association studies. The null distribution is shown which is the 
standard normal distribution and the expected distribution of the association statistics under the 
assumption that the effect size is 0. For each variant, that association statistic in equation (3) is 
computed and its significance is evaluated using the null distribution. If the statistic falls in the 
significance region of the distribution, the variant is declared associated. In this example, S1 is 
not significant and S2 and S3 are significant. The exact location of the threshold is dened as the 
location on the x-axis where the tail probability area equals the significance threshold (s). This is 
denoted using the quantile of the standard normal � ​. 
 
 
True Genetic Model 
 
Theoretically, the single-SNP test will tell us if a SNP is responsible for the differences we 
observe in an individual’s trait or phenotype expression values. However, this simple linear 
model is an unrealistic model for identifying variants associated with traits in today’s large 
genomic datasets that contain a high degree of relatedness. In real populations, the true effect 
of a single SNP is influenced by multiple variants that are affecting the trait. A ‘hypothetical’ true 
genetic model takes into account the effect of all SNPs on the trait.  
 
Here, the vector notation 
 

 
 
models the phenotypes of all the individuals in the dataset denoted as column vector ​. Again, 
the effect of the ​th variant on the phenotype is ​, the mean is ​, and the contribution of the 
environment on the phenotype is denoted by ​. Here, the number of variants is ​.  
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The true genetic model takes into account the true effect of all SNPs, including the effect of the 
SNP being tested for association with a trait. When testing SNP ​, we are using equation (1) 
the actual data is generated from 
 

 (2) 
 
In applying the simple linear model to data, we observe a mismatch between the model used for 
testing and the assumed underlying generative model. Here, any term that is missing in the 
testing model when compared to the generative model is called an unmodeled factor. The 

unmodeled factor is exactly ​. 
 
In this case, the unmodeled factor is the effect of variants in a genome other than the variant 
being tested. This factor can significantly affect the results of an association study.  If the 
individuals in the study are related to each other, the unmodeled factor may produce a high rate 
of false positive associations. In an association study, relatedness among individuals is referred 
to as population structure. 
 
Over the past few years, there have been many methods which have been developed to 
mitigate the effect of population structure in association studies.  One of the most commonly 
utilized approaches today, mixed models, was originally popularized in mouse studies and is 
now the standard approach for analyzing human GWAS studies.  In this review, we motivate the 
problem of population structure in association studies utilizing laboratory mouse strains and how 
it can cause false positives associations.  We then motivate mixed models in the context of 
unmodeled factors . 
 
An example of Population Structure Confounding from  Mouse Genetics 
 
Genetic mapping using inbred strains of mice provides a good example of why it is necessary to 
control for population structure. Mice strains pose particular problems that mixed models are 
developed to solve, and the basic ideas behind mixed models can be clearly demonstrated with 
mice genetics. Today’s classical inbred laboratory mouse strains descend from a relatively small 
number of genetic founders (mostly fancy mice originally kept as pets) and are characterized by 
several population bottlenecks (Frazer et al. 2007; Yang et al. 2007).  A second group of 
laboratory strains are referred to as “wild-derived” strains.  These strains are mouse strains 
captured from the wild and inbred mice. These strains were never kept as pets and do not share 
the population history of classical laboratory strains. A simple way to visualize the relationship 
between multiple ancestral groups and traits in the mouse genome is by using a phylogenetic 
tree that can be computed from the genetic information (Figure 3). This tree visualizes the 
genetic relationships between 32 classical inbred strains and 6 wild derived strains (we had 
genetic variant information at 140,000 SNPs for each strain).  
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We observe that the two groups are close to each other in the phylogeny and there is a long 
branch length (denoted with a dotted line), which represents the many genetic differences 
between the groups. We also have the measurements for the body weight and liver weight for 
each of the strains. Not surprisingly, the body weights of the classical strains are much larger 
than the body weights of the wild derived strains (Figure 4). This is due to the different selective 
pressure on the two groups.  
 

 
Figure 3. ​Phylogeny of 38 inbred mouse strains using 140,000 mouse HapMap SNPs. Green 
strains represent wild-derived non-domesticus mice, and purple strains represent classical 
inbred mice. 
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Figure 4. ​Body weight phenotypes of 38 inbred mouse strains from the Mouse Phenome 
Database generated by The Jackson Laboratory. The distribution of mice body weights shows 
two clades of mice have very different body weights. 
 
 
We attempted to use this dataset to identify which genetic variants are associated with body 
weight by applying the linear model described above to the 140,000 SNPs.  In general, we 
expect association study results to indicate very few significant associations between particular 
SNPs and a trait. One common way to visualize the results of an association study is through a 
Manhattan plot.  In a Manhattan plot, the mouse genome is plotted against the x-axis, and the 
measure of significance of correlation between the genome and trait is plotted against the 
y-axis. Each red spike represents a SNP at a particular genomic position, and the height of the 
spike represents the strength of the association. The green horizontal line represents the 
significance threshold. Any SNP which crosses this line is considered a significant association. 
We expect to observe a Manhattan plot similar to the one in Figure 5, where there would be a 
number of SNPs affecting the phenotypes and thus at a few locations in the genome, would we 
observe signals that cross the threshold, but most of the SNPs will not be associated with the 
phenotype.  
 
Another way to visualize the results of an association study is with a cumulative p-value 
distribution plot (b) and a quantile-quantile (Q-Q) plot (c), graphical techniques for determining if 
multiple datasets come from populations with common distribution. Here, the cumulative p-value 
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distribution plot shows the quantiles of the p-values, which assess the probable significance of 
association between a genotype and trait; the Q-Q plot shows the distribution of the same data 
log-transformed. Since we expect most SNPs not be to associated, most p-values will be 
uniformly distributed and only a small fraction of the SNPs to have signals stronger than 
expected at the tail of the distribution.  This will result in a cumulative p-value distribution close 
to the diagonal line (Figure 5b) and a Q-Q plot that follows the line for the beginning of the curve 
(as shown in Figure 5c). 
 

 
Figure 5. ​Expected distribution in a typical (a) Manhattan plot, (b) genome-wide association 
plot, and (c) Q-Q plot. 
 
 
However, when we applied standard linear models to the inbred mouse dataset, we observed 
strong signals in many locations in the genome (Figure 6a). The cumulative p-value distribution 
and the Q-Q plots are shown in Figure 6b and 6c.  In our results, we observe that nearly 50% of 
the SNPs are significantly associated with the phenotype. There are far more significant 
associations (red line) than expected associations (yellow line). 
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Figure 6.​ Observed distribution in a (a) Manhattan plot, (b) genome-wide association plot, and 
(c) Q-Q plot. 
 
 
Why We Observe False Positives in Mouse Genetic Studies 
 
We can explain why we observe the excess amount of strong association by examining the data 
for one of the red peaks from the Manhattan plot (Figure 6) in Figure 7a. Here, the big circles 
are body weight values, and the small circles are genome-wide SNPs. When we look at the 
distribution of body weight values and SNPs, it appears that green SNPs correspond to mice 
with small body weight and pink SNPs correspond to mice with heavy body weight. Clearly there 
is a very strong correlation between the SNP and the body weight and it is no surprise that we 
observe a very significant p-value.  
 
However, if we lay the phylogenetic tree over the pattern of SNPs and body weight values, we 
see that the separation of the population into classical and wild derived strains is strongly 
correlated with the body weight and the SNP differentiates these two groups. The length of each 
branch in the tree corresponds to the amount of genetic differences between the two groups 
separated by the branch. The long branch length between the two classical and wild strains 
signifies that there are many SNPs that separate these two groups and each of them has a 
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strong signal. This correlation between groups causes the large amount of observed 
associations.  
 
Clearly there are genetic differences between these two groups that affect body weight, but not 
every genetic difference between the two groups affects body weight. However, the simple 
linear model will associate every SNP that separates these two groups with body weight. Thus, 
most of the associations that we observe are for SNPs that are not actually affecting body 
weight. These associations are referred to as spurious associations. 
 
 

 
Figure 7. ​Body weight phenotypes of 38 inbred mouse strains from the Mouse Phenome 
Database. (a) When we look at only SNP distribution, it appears that green SNPs correspond to 
small mice and purple SNPs correspond to large mice. (b) When we look at SNP distribution 
and phylogeny together, we see that many SNPs segregate two clades due to a long, shared 
breeding history. 
 
 
Another way to understand the effect of population structure on association is through graphical 
models.  We consider SNPs and traits in Figure 8a.  In general, we will perform an association 
test on a SNP.  If we observe an association, this gives evidence that the SNP affects the trait. 
On the other hand, if we don’t observe the association, this suggests that either the SNP does 
not affect the trait, or that the effect is too small for our study to detect.  However, if there is 
population structure present (Figure 8b), there will be many SNPs directly correlated with 
population structure (straight dark line) due to shared histories.  In addition, phenotypes, such 
as body weight, are also highly correlated with the population structure (straight dark line).  This 
will induce correlation between many SNPs and the phenotype (dotted line) including but not 
limited to the SNPs that are actually responsible for variants. 
 
This phenomenon of association due to relatedness is exactly related to Equation (3). Here, the 

genetic history shared between mouse strains is the unmodeled factor ​. Since the 
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shared genetic history is missing from the testing model, we consider population structure the 
unmodeled factor. 
 
Using Mixed Model Methods to in Mouse Association Studies 
 
We have shown that population structure can bias association study results. Our mouse 
examples show that we must correct for population structure in order to accurately identify 
specific genetic variants involved in disease risk. Several challenges presently limit usefulness 
of genome association studies for implicating genetic variants. First, unmodeled factors are not 
known and cannot be accounted for in computational methods that match traits with 
phenotypes. Second, we do not know the exact ways that unmodeled factors interact with 
population structure to bias output. Finally, many studies ignore dependency among these 
unmodeled factors. 
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Figure 8. ​(a) The SNP and Phenotype are independent under the null hypothesis ( ​) and 
correlated under the alternative hypothesis ( ​).  (b) In the case of population structure, the 
structure will influence many SNPs and the phenotype.  In this case, correlation between SNPs 
and the phenotype will be induced in both the null and alternate hypothesis. 
 
 
The effects of these SNPs are the unmodeled factor in the equation shown in equation (3)  and 
they confound our ability to perform association studies.  There are many SNPs that lie on the 
long branching line (Figure 7, dashed line) and affect the phenotype. While we cannot know 
which specific SNPs comprise the unmodeled factor, we can use available knowledge about 
similarities between the genomes of individuals in our studies to estimate the unmodeled factor. 
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Figure 9.​ In a true model of association, the unmodeled factors cannot be known. We can 
estimate the unmodeled factors when (a) genomes are similar or (b) genomes share few causal 
variants. 
 
 
Using our mouse example, we consider two different strains, B6 and C3H. These two strains are 
both classical inbred mice derived from domesticated mice and have similar genomes.  In 
Figure 9a, we show a toy example considering the genomes of the two strains. Here, the 
genomes are very similar; nine out of ten SNPs are shared between B6 and C3H.  In our 
example, let us assume that the even numbered SNPs are causal variants that affect the 
phenotype.  For those variants, their corresponding effect size ( ​) will be non-zero. We neither 
know the actual effect sizes nor the resulting value for the unmodeled factor. However, because 
they share the same allele as these SNPs, we do know that the two strains will have a similar 
value for the unmodeled factor.  
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Next, we consider two very different strains pairwise (Figure 9b): the classic inbred mouse strain 
B6 and the wild mouse strain CAST. In this case, the strains have different alleles present at 
many SNPs. If any of these SNPs affect the trait, the value of the unmodeled factor will differ by 
the effect size. Thus, we expect the two strains to have different values for the unmodeled 
factor.  
 
The amount of pairwise sharing of alleles between strains can be used to capture the similarity 
between the values of the unmodeled factor among strains. In order to do this, we make a 
matrix that contains all SNPs shared between the paired genomes (Figure 10). This matrix 
allows us to “model” the values of the unmodeled factors among the individuals in our study, 
and it shows us which pairs have similar sharing of alleles and which pairs have dissimilar 
values. 
 
The principle underlying mixed models is that we incorporate this “model” of unmodeled factors 
into the association test. We incorporate the unknown factors into the model of association 
using what is called a “random effect” or a variance component. Our model is called a “mixed 
model,” because it combines a random effect to model population structure with the effect sizes 
of the SNPs we are testing (referred to as “fixed effects”). 
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Figure 10. ​The true model ignores dependency among unmodeled factors and produces false 
associations. The mixed model reduces false associations by accounting for the dependency 
among SNPs correlated with phenotypes due to population structure. 
 
 
One key step in using a mixed model to identify causal variation is to establish these fixed 
parameters and random effect components. A linear mixed model (LMM) uses the information 
from the matrix to account for the unmodeled factor. We extend the simple, hypothetical true 
model 
 

 
 
to include a term that captures the unmodeled factors. The term ​ in 
 

 
 
is a random vector that depends on the amount of shared genome in terms of pairwise 
differences. In practice this can be computed from the genotypes using the equation 

 and we assume that ​.  Each entry of K estimates the pairwise 
similarity between the genomes of the individuals in the study which follows the intuition of 
Figures 9 and 10.  
 
The standard estimation equations above cannot be used to estimate the values of the 
parameters because due to the random effect ​, the phenotypes of the individuals are no 
longer independent of each other which is an assumption of the previous methods. 
 

However, if we know the values of  ​ and ​, we can then apply the following “mixed model 
trick”.  We note that the phenotypes will follow the distribution 
 

 
 

where ​. If we transform the then multiply the phenotypes and genotypes by 
, we then get 

 

. 
 
In the transformed data, the individuals are now independent of each other and we can apply 
the estimation equations presented above to estimate the values for ​ and the association 
statistics. 
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In this case, we assume that the ​ values are drawn from a normal distribution with a mean 

zero as effect size and ​ as the variance. 
 

Estimating the values of ​ and ​ is a difficult computational problem referred to as estimating 
the variance components. We developed Efficient Mixed Model Association (Kang et al. 2008), 
an efficient algorithm for estimating these parameters. Since we first presented EMMA, many 
other groups have developed similar efficient algorithms (Kang et al. 2010; Lippert et al. 2011; 
Zhou and Stephens 2012).  
 
We applied EMMA to the same mouse association data analyzed using a standard LMM 
approach (see Figure 6). With these computational improvements, we almost completely 
reduced the inflation of false positives and obtained nearly uniform p-value distribution for most 
SNPs (Figure 11). Here, the strongest peak, which is not significant,  falls into a region of the 
genome on chromosome 8 which is known to be associated with body weight.  These regions 
are referred to as Quantitative Trait Loci (QTL). 
 
We also applied EMMA to other phenotypes from the same mouse strain datasets including a 
liver weight phenotype. Here, we see that the inflation of false positives is reduced and a strong 
signal at chr2 is more pronounced after the correction (Figure 12). Here, EMMA correctly 
identifies the QTLs for Lvrq1 (liver weight), Orgwq2 (organ weight), Splq1 (spleen weight), Hrtq1 
(heart weight), Lbm1 (lean body mass). These SNPs are not correlated with population 
structure, and correcting for the background population structure helps the mixed model 
correctly prioritize signal strength. Studies have since revealed that the chr2 region falls into 
known QTLs for liver weight (Rocha et. al. 2004). 
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Figure 11.​ (a) The conventional GWAS test applied to mouse body weight phenotypes 
produces numerous false positions. (b) The mixed model approach using EMMA almost 
completely reduced the inflation of false positives and identifies a strong peak (chr8) that falls 
into a known body weight QTL. 
 
 

 
Figure 12.​ (a) The conventional GWAS test applied to mouse liver weight phenotypes produces 
numerous false positions. (b) The mixed model approach using EMMA reduces inflation of false 
positives and correctly produces a stronger signal at chr2, a region that is located in known 
QTLs for liver weight. 
 
Population Structure and Mixed Models in Human Association Studies 
 
At the time that mixed models were starting to be used in mouse studies, the problem of 
relatedness in human studies was becoming apparent and was causing difficulties in analyzing 
human GWAS studies.  At that time, there was no single approach to handle relatedness and 
instead different types of relatedness were explicitly modeled and association study methods 
were adapted to those scenarios. There is an entire class of methods designed to handle 
relatedness when there are closely related individuals in the genetic study and the genetic 
relationships are known. These include methods for multigenerational families, twins, and 
siblings (Freimer and Sabatti 2004; ​Van Dongen et al. 2012)​.  
 
A complication in human association studies is when the relationships are unknown. One of the 
most common types of relatedness among individuals in human studies is due to ancestry. 
Ancestry refers to the population that an individual descended from.  Many individuals are 
admixed, which means they are descended from ancestors in different populations.  If an 
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association study contains individuals from different populations or differing degrees of 
admixture, the individual will have different degrees of relatedness among them. In other words, 
individuals with the same ancestry are slightly more related to each other than individuals with 
different ancestries.  It is well documented that these ancestry differences can induce false 
positive associations (​Helgason et al. 2005).  ​Association studies that analyzed individuals with 
differences in ancestry typically utilized an approach to predict the ancestry for each individual 
and then incorporated this information as a covariate in the model (Pritchard et al. 2000). An 
alternate approach was to estimate principal components over the genotype data, which could 
be interpreted as a proxy for association studies and included in the model as covariates (Price 
et al. 2006). In the human genetics literature, ancestry differences are sometimes referred to as 
population structure. In this review, we use the term ancestry differences separately from the 
term population structure, which we use to describe the general phenomenon of relatedness in 
a sample. 
 
A second type of relatedness is cryptic relatedness (Voight and Pritchard 2005). Since GWAS 
are applied to extremely large samples, there are often individuals included in the study who 
happen to be related--but this relatedness is unknown the both the individuals and the 
investigators.  Cryptic relatedness is typically handled by screening the association study for 
related individuals and computing the genetic similarity between each pair of individuals.  
 
A general purpose approach to correct for population structure or any type of confounding in 
association studies is genomic control (Devlin and Roeder 1999; Bacanu et al. 2002).  The idea 
behind genomic control is that we can measure the extent that population structure (or other 
confounders) is affecting the association statistics by examining the cumulative p-value 
distribution plot .  Specifically, we consider the deviation of the plot from what is expected at the 
median.  Since we expect the vast majority of variants not to be associated with the trait, we 
expect the median observed p-value to be close to 0.5.  Typically, due to population structure 
the observed median p-value will be more significant.   Genomic control computes a  correction 
factor referred to as ​, which is a scaling factor used to scale all of the observed p-values so 
that the corrected median p-value is then 0.5.  The ​ is on the ​ scale meaning that the 

median p-value is converted to a ​ value and the ratio is computed relative to the ​ value 
corresponding to a p-value of 0.5 which is 0.545.  The observed association p-values are 
converted from p-values to ​ statistics, scaled by ​ and then converted back to p-values.  We 
can also use the value of the ​ as a measure of the extent of the effect of confounding on the 
association statistics.  Genomic control ​’s are widely utilized to compare different correction 
approaches.   A ​ of 1.0 shows that there is no inflation.  A value greater than 1.0 is evidence 
that there is inflation of the association statistics.  Typically the 95% confidence interval of the  
in GWAS studies is 0.02.  Thus, any lambda of 1.03 or higher suggests that there is some 
inflation.  We note that more recent thinking about polygenicity or the amount of causal variants 
for a trait suggest that there are many more causal variants than originally expected and the  
values should actually be higher than 1.0 (Yang et al. 2011).   We discuss this perspective in the 
Discussion. 
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While in the literature, ancestry differences and cryptic relatedness are referred to as distinct 
phenomenon, in fact they can be thought of as different degrees of relatedness in the sample. 
Consider in Figure 13a which shows a potential pedigree that relates all of the individuals in an 
association study sample.   Ancestry differences can be thought of relatedness near the top of 
the tree (Figure 13b) and cryptic relatedness can be thought of relatedness in a more recent 
portion of the tree (Figure 13c).  
 

 
Figure 13. ​All of the individuals in a genetic study are somehow related through a large 
pedigree or family tree (a).  This tree can produce two forms of hidden relatedness: cryptic 
relatedness (b) and ancestry (c), where the box represents the level of the pedigree that causes 
that type of relatedness.. 
 
 
Mixed models can handle nearly arbitrary genetic relationships between individuals and this 
made them a natural approach to apply to human studies.  The advantage of mixed models is 
that they could be applied without needing to explicitly identify the ancestry and relatedness 
within the sample.  They also enabled the analysis of datasets with particularly complex genetic 
relationships such as isolate populations where the population is descended from a small 
number of founder individuals (​Kenny et al. 2010​).  For isolate populations, the previous 
methods were not able to fully account for the population structure.  
 
In human studies, mixed models were first applied to the Northern Finnish Birth Cohort (Sabatti 
et al. 2009) where they were applied to 331,475 SNPs in 5,326 individuals who were 
phenotypes for 10 traits (Kang et al. 2010).  These traits include C-reactive protein (CRP), 
triglyceride (TG), insulin plasma levels, (INS), diastolic blood pressure (DBP), body mass index 
(BMI), glucose (GLU), high-density lipoprotein (HDL), systolic blood pressure (SBP) and low 
density lipoprotein A (LDL).  Individuals within this cohort both have some ancestry differences 
due to their origin from different parts of Finland as well has having genetic relationships 
between them. 
 
Table 1 shows the results of mixed models on the traits.  Each entry in the table shows the  
value for the analysis of that phenotype.  The first column shows the results of the uncorrected 
analysis.  We can see that there are very large ​ factors, particularly for height.  In fact, the 
associations with height were not reported in the original Sabatti et al. (2009) manuscript 
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because of this reason.   The second column shows the ​ factors after eliminating cryptically 
related individuals.  This was done by computing the pairwise relationships between individuals 
and filtering out one of any pair that was closely related.  This filter resulted in filtering out 611 
individuals.   The third column shows the ​ factors after using 100 principal components as 
covariates.  Each component included decreases the ​ and using 100 components is an 
absurdly large number of components, well beyond what is typically utilized in any type of 
association study.  This was done to show the limit of the principal component approach in 
correcting for population structure.  The last column shows the ​ for mixed models.  Each of 
these ​ values are within the 95% confidence interval around 1.0 suggesting the mixed models 
can correct for all of the population structure including cryptic relatedness and ancestry 
differences in the sample.  As shown in Table 1, only mixed models adequately correct for 
population structure in this sample. 
 
Table 1​. Results of analysis ( ​ values) on NFBC66 data. 

Traits Uncorrected IBD<0.1 100PC EMMAX 

BMI 1.036 1.028 1.024 1.001 

CRP 1.012 1.020 1.020 0.994 

DBP 1.033 1.025 1.029 1.010 

GLU 1.045 1.025 1.030 1.009 

HDL 1.054 1.041 1.037 1.003 

INS 1.026 1.026 1.015 1.005 

LDL 1.093 1.089 1.040 1.002 

SBP 1.063 1.054 1.021 1.004 

TG 1.024 1.021 1.018 0.999 

HEIGHT 1.193 1.152 1.080 1.002 

 

Mixed models became important in human GWAS analysis because the estimates of  ​ and  
can be used to estimate the heritability of the trait which suggested that common variants 
explain a large proportion of the variance of complex traits than previously thought(Purcell et al. 
2009; Yang et al. 2010; Eskin 2015). 
 
 
Discussion 
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Over the past decade, association studies have identified thousands of variants implicated in 
dozens of common human diseases. The traditional approach to association studies assumes 
that individuals are unrelated to each other. However, in practice, individuals in genetic studies 
are related to each other in complex ways. In this review, we demonstrate how these 
relationships cause false positives in the association studies and how mixed models can correct 
for these confounding genetic relationships. 
 
This review covers only the basic principles of mixed models and population structure. Since the 
original EMMA paper in 2008, mixed models have become an active research area. Many 
groups have published papers exploring various aspects of mixed models and their application 
to complex genomic problems. 
 
Many approaches have been developed to improve the efficiency of mixed models, including 
the methods Fast-LMM (Lippert et al. 2011) and GEMMA (Zhou and Stephens 2012).  More 
recently, a method called BOLT-LMM (Loh et al. 2015) was developed for scaling analyses to 
handle cohorts in the hundreds of thousands of individuals.  
 
Another direction of method development has been extending mixed models to handle case 
control studies. These approaches typically assume a liability threshold model where there is an 
underlying continuous phenotype; if the phenotype is above a threshold, the individual has a 
disease and if it is below, the individual does not have the disease (Zaitlen et al. 2012). These 
types of studies are also complicated by a phenomenon of selection bias, because the cases 
are oversampled from the population. At present, such mixed model extensions to case/control 
setting result in challenging computational problems (​Hayeck et al. 2015; Weissbrod et al., 
2015​). 
 
Some mixed models are developed based on observation of a particular bias inherent to 
standard approaches. Namely, that the SNP being tested was used in the computation of the 
kinship matrices (Listgarten et al. 2012). This bias motivated the idea that, when applying mixed 
models, the kinship matrix should not contain the SNP being tested. As a result, the Leave One 
Chromosome Out (LOCO) approach constructs a different kinship matrix for testing each 
chromosome, leaving out the SNPs on the chromosome being tested (Yang et al. 2014). This 
approach is also motivated by the observation that many complex traits are highly polygenic, 
suggesting that there are hundreds (if not thousands) of loci that influence some traits (Yang et 
al. 2011). Some traits, such as height, are known to be highly polygenic. In this case, it is not 
clear what the actual value of ​ should be for a polygenic trait as it is expected to have a 
contribution from both confounding effects as well as polygenicity.  More recently, a method 
called LD score regression has been developed that attempts to differentiate between these two 
components (​Bulik-Sullivan et al. 2015).  
 
From their origins in non-human organisms to powering large scale human genome wide 
association studies today, mixed models play an important role in the analysis of genetic data, 
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particularly in correcting for population structure.  Research in improving and extending mixed 
model approaches is now an active research area in the field. 
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