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Abstract

Background: Computational biology provides widely used and powerful software
tools for testing and making inferences about biological data. In the face of
rapidly increasing volumes of data, heuristic methods that trade software speed
for accuracy may be employed. We are have studied these trade-offs using the
results of a large number of independent software benchmarks, and evaluated
whether external factors are indicative of accurate software.

Method: We have extracted accuracy and speed ranks from independent
benchmarks of different bioinformatic software tools, and evaluated whether the
speed, author reputation, journal impact, recency and developer efforts are
indicative of accuracy.

Results: We found that software speed, author reputation, journal impact,
number of citations and age are all unreliable predictors of software accuracy.
This is unfortunate because citations, author and journal reputation are
frequently cited reasons for selecting software tools. However, GitHub-derived
records and high version numbers show that the accurate bioinformatic software
tools are generally the product of many improvements over time, often from
multiple developers.

Discussion: We also find that the field of bioinformatics has a large excess of
slow and inaccurate software tools, and this is consistent across many
sub-disciplines. Meanwhile, there are few tools that are middle-of-road in terms
of accuracy and speed trade-offs. We hypothesise that a form of publication-bias
influences the publication and development of bioinformatic software. In other
words, software that is intermediate in terms of both speed and accuracy may be
difficult to publish - possibly due to author, editor and reviewer practices. This
leaves an unfortunate hole in the literature as the ideal tools may fall into this
gap. For example, high accuracy tools are not always useful if years of CPU time
are required, while high speed is not useful if the results are also inaccurate.

Background
Computational biology software is widely used and has produced some of the most

cited publications in the entire scientific corpus [1, 2, 3]. These highly-cited software

tools include implementations of methods for sequence alignment and homology in-

ference [4, 5, 6, 7], phylogenetic analysis [8, 9, 10, 11, 12], biomolecular structure

analysis [13, 14, 15, 16, 17], and visualization and data collection [18, 19]. However,

the popularity of a software tool does not necessarily mean that it is accurate or
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computationally efficient; instead usability, ease of installation, operating system

support or other indirect factors may play a greater role in a software tool’s pop-

ularity. Indeed, there have been several notable incidences where convenient, yet

inaccurate software has caused considerable harm [20, 21, 22].

Progress in the biological sciences is increasingly limited by the ability to analyse

large volumes of data, therefore the dependence of biologists on software is also in-

creasing [23]. There is an increasing reliance on technological solutions for automat-

ing biological data generation (e.g. next-generation sequencing, mass-spectroscopy,

cell-tracking and species tracking), therefore the biological sciences have become

increasingly dependent upon software tools for processing large quantities of data

[23]. As a consequence, the computational efficiency of data processing and analysis

software is of great importance to decrease the energy, climate impact, and time

costs of research [24]. Furthermore, as datasets become larger even small error rates

can have major impacts on the number of false inferences [25].

The gold-standard for determining accuracy is for researchers independent of in-

dividual tool development to conduct benchmarking studies; these benchmarks can

serve a useful role in reducing the over-optimistic reporting of software accuracy

[26, 27, 28] and the self-assessment trap [29, 30]. Benchmarking typically involves

the use a number of positive and negative control datasets, so that predictions from

different software tools can be partitioned into true or false groups, allowing a va-

riety of metrics to be used to evaluate performance [31, 32, 28]. The aim of these

benchmarks is to robustly identify tools that make acceptable compromises in terms

of balancing speed with discriminating true and false predictions, and are therefore

suited for wide adoption by the community.

For common computational biology tasks, a proliferation of software-based solu-

tions often exists [33, 34, 35]. While this is a good problem to have, and points to

a diversity of options from which practical solutions can be selected, having many

possible options creates a dilemma for users. In the absence of any recent gold-

standard benchmarks, how should scientific software be selected? In the following

we presume that the “biological accuracy” of predictions is the most desirable fea-

ture for a software tool. Biological accuracy is the degree to which predictions or

measurements reflect the biological truths based on expert-derived curated datasets

(see Methods for the mathematical definition used here).

A number of possible predictors of software quality are used by the community of

computational biology software users [36, 37, 38]. Some accessible, quantifiable and

frequently used proxies for identifying high quality software include: 1. Recency:

recently published software tools may have built upon the results of past work,

or be an update to an existing tool. Therefore these may be more accurate and

faster. 2. Wide adoption: a software tool may be widely used because it is fast

and accurate, or because it is well-supported and user-friendly. In fact,“large user

base”, “word-of-mouth”, “wide-adoption”, “personal recommendation”, and “rec-

ommendation from a close colleague”, were frequent responses to surveys of “how

do scientists select software?” [36, 37, 38]. 3. Journal impact: many believe that

high profile journals are run by editors and reviewers who carefully select and curate

the best manuscripts. Therefore, high impact journals may be more likely to select

manuscripts describing good software [39]. 4. Author/group reputation: the key
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to any project is the skills of the people involved, including maintaining a high col-

lective intelligence [37, 40, 41]. As a consequence, an argument could be made that

well respected and high-profile authors may write better software [42, 43]. 5. Speed:

software tools frequently trade accuracy for speed. For example, heuristic software

such as the popular homology search tool, BLAST, compromises the mathematical

guarantee of optimal solutions for more speed [4, 7]. Some researchers may naively

interpret this fact as implying that slower software is likely to be more accurate.

But speed may also be influenced by the programming language [44], and the level

of hardware optimisation [45, 46]; however, the specific method of implementation

generally has a greater impact (e.g., brute-force approaches versus rapid and sensi-

tive pre-filtering [47, 48, 49]). 6. Effective software versioning: With the wide

adoption of public version-control systems like GitHub, quantifiable data on soft-

ware development time and intensity indicators, such as the number of contributors

to code, number of code changes and versions is now available [50, 51, 52].

In the following study, we explore factors that may be indicative of software

accuracy. This, in our opinion, should be one of the prime reasons for selecting a

software tool. We have mined the large and freely accessible PubMed database [53]

for benchmarks of computational biology software, and manually extracted accuracy

and speed rankings for 499 unique software tools. For each tool, we have collected

measures that may be predictive of accuracy, and may be subjectively employed by

the research community as a proxy for software quality. These include relative speed,

relative age, the productivity and impact of the corresponding authors, journal

impact, number of citations and GitHub activity.

Results
We have collected relative accuracy and speed ranks for 499 distinct software tools.

This software has been developed for solving a broad cross-section of computational

biology tasks. Each software tool was benchmarked in at least one of 69 publications

that satisfy the Boulesteix criteria [54]. In brief, the Boulesteix criteria are: 1. the

main focus of the article is a benchmark. 2. the authors are reasonably neutral. 3.

the test data and evaluation criteria are sensible.

For each of the publications describing these tools, we have (where possible) col-

lected the journal’s H5-index ( Google Scholar Metrics ), the maximum H-index

and corresponding M-indices [42] for the corresponding authors for each tool, and

the number of times the publication(s) associated with a tool has been cited using

Google Scholar (data collected over a 6 month period in late 2020). Note that cita-

tion metrics are not static and will change over time. In addition, where possible we

also extract the version number, the number of commits, number of contributors

total number “issues”, the proportion of issues that remain open, the number of

pull requests, and the number of times the code was forked from public GitHub

repositories.

We have computed the Spearman’s correlation coefficient for each pairwise combi-

nation of the mean normalised accuracy and speed ranks, with the year published,

mean relative age (compared to software in the same benchmarks), journal H5 met-

rics, the total number of citations, the relative number of citations (compared to

software in the same benchmarks) and the maximum H- and corresponding M-

indices for the corresponding authors, version number, and the GitHub statistics
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Figure 1: A. A heatmap indicating the relationships between different features of

bioinformatic software tools. Spearman’s rho is used to infer correlations between

metrics such as citations based metrics, the year and relative age of publication,

version number, GitHub derived activity measures, and the mean relative speed

and accuracy rankings. Red colours indicate a positive correlation, blue colours

indicate a negative correlation. Correlations with a P-value less than 0.05 (cor-

rected for multiple-testing using the Benjamini-Hochberg method) are indicated

with a ‘"’ symbol. The correlations with accuracy are illustrated in more de-

tail in B, the relationship between speed and accuracy is shown in more detail

in Figure 2. B. Violin plots of Spearman’s correlations for permuted accuracy

ranks and different software features. The unpermuted correlations are indicated

with a red asterisk. For each benchmark, 1,000 permuted sets of accuracy and

speed ranks were generated, and the ranks were normalised to lie between 0 and

1 (see Methods for details). Circled asterisks are significant (empirical P-value

< 0.05, corrected for multiple-testing using the Benjamini-Hochberg method).

commits, contributors, pull requests, issues, % open issues and forks. The results are

presented in Figure 1A&B, and Additional file 1: Figures S5&S6. We find significant

associations between most of the citation-based metrics (journal H5, citations, rel-

ative citations, H-index and M-index). There is also a negative correlation between

the year of publication, the relative age and many of the citation-based metrics.

Data on the number of updates to software tools from GitHub such as the version

number, and numbers of contributors, commits, forks and issues was significantly

correlated with software accuracy (respective Spearman’s rhos = 0.15, 0.21, 0.22,

0.23, 0.23 and respective Benjamini & Hochberg corrected P-values = 5.4 × 10−4,

1.1 × 10−3, 7.9 × 10−4, 3.4 × 10−4, 3.2 × 10−4, Additional file 1: Figures S6). The

significance of these features was further confirmed with a permutation test (Fig-

ure 1B). These features were not correlated with speed however (see Figure 1A &

Additional file 1: Figures S5&S6). We also found that reputation metrics such as

citations, author and journal H-indices, and the age of tools were generally not

correlated with either tool accuracy or speed (Figure 1A&B).

In order to gain a deeper understanding of the distribution of available bioinfor-

matic software tools on a speed versus accuracy landscape, we ran a permutation
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test. The ranks extracted from each benchmark were randomly permuted, generat-

ing 1,000 randomized speed and accuracy ranks. In the cells of a 3×3 grid spanning

the normalised speed and accuracy ranks we computed a Z-score for the observed

number of tools in a cell, compared to the expected distributions generated by 1,000

randomized ranks. The results of this are shown in Figure 2. We identified 4 of 9

bins where there was a significant excess or dearth of tools. For example, there was

an excess of “slow and inaccurate” software (Z=3.39, P-value=3.5 × 10−4), with

more moderate excess of “slow and accurate” and “fast and accurate” software

(Z=2.49 & 1.7, P=6.3× 10−3 & 0.04 respectively). We find that only the “fast and

inaccurate” extreme class is at approximately the expected proportions based upon

the permutation test (Figure 2B).
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Figure 2: A. A heatmap indicating the relative paucity or abundance of software

in the range of possible accuracy and speed rankings. Redder colours indicate

an abundance of software tools in an accuracy and speed category, while bluer

colours indicate scarcity of software in an accuracy and speed category. The abun-

dance is quantified using a Z-score computation for each bin, this is derived from

1,000 random permutations of speed and accuracy ranks from each benchmark.

Mean normalised ranks of accuracy and speed have been binned into 9 classes (a

3× 3 grid) that range from comparatively slow and inaccurate to comparatively

fast and accurate. Z-scores with a P-value less than 0.05 are indicated with a

‘"’. B. The z-score distributions from the permutation tests (indicated with the

wheat coloured violin plots) compared to the z-score for the observed values for

each of the corner and middle square of the heatmap.

The largest difference between the observed and expected software ranks is the

reduction in the number of software tools that are classed as intermediate in terms

of both speed and accuracy based on permutation tests (see Methods for details,

Figure 2). The middle cell of Figure 2A and left-most violin plot of Figure 2B

highlight this extreme, (Z=-6.38, P-value=9.0 × 10−11).
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Conclusion
We have gathered data on the relative speeds and accuracies of 499 bioinformatic

tools from 69 benchmarks published between 2005 and 2020. Our results provide

significant support for the suggestion that there are major benefits to the long-term

support of software development [55]. The finding of a strong relationship between

the number of commits and code contributors to GitHub (i.e. software updates)

and accuracy, highlights the benefits of long-term or at least intensive development.

Our study finds little evidence to support that impact-based metrics have any

relationship with software quality, which is unfortunate, as these are frequently

cited reasons for selecting software tools [38]. This implies that high citation rates

for bioinformatic software [1, 2, 3] is more a reflection of other factors such as

user-friendliness or the Matthew Effect [56, 57] other than accuracy. Specifically,

software tools published early are more likely to appear in high impact journals due

to their perceived novelty and need. Yet without sustained maintenance these may

be outperformed by subsequent tools, yet early publications still accrue citations

from users, and all subsequent software publications as tools need to be compared in

order to publish. Subsequent tools are not perceived to be as novel, hence appear in

“lower” tier journals, despite being more reliable. Hence, the “rich” early publishers

get richer in terms of citations. Indeed, citation counts are mainly predictive of age

(Figure 1A).

We found the lack of a correlation between software speed and accuracy surpris-

ing. The slower software tools are over-represented at both high and low levels of

accuracy, with older tools enriched in this group (Figure 2 and Additional file 1:

Figure S7). In addition, there is an large under-representation of software that has

intermediate levels of both accuracy and speed. A possible explanation for this is

that bioinformatic software tools are bound by a form of publication-bias [58, 59].

That is, the probability that a study being published is influenced by the results it

contains [60]. The community of developers, reviewers and editors may be unwilling

to publish software that is not highly ranked on speed or accuracy. If correct, this

may have unfortunate consequences as these tools may nevertheless have further

uses.

While we have taken pains to mitigate many issues with our analysis, nevertheless

some limitations remain. For example, it has proven difficult to verify if the gap

in medium accuracy and medium speed software is genuinely the result of publi-

cation bias, or due to additional factors that we have not taken in to account. In

addition, all of the features we have used here are moving targets. For example,

as software tools are refined, their relative accuracies and speeds will change, the

citation metrics, ages, and version control derived measures also change over time.

Here we report a snapshot of values from 2020. The benchmarks themselves may

also introduce biases into the study. For example, there are issues with a potential

lack of independence between benchmarks (e.g., shared datasets, metrics and tools),

there are heterogeneous measures of accuracy and speed and often unclear processes

for including different tools.

We propose that the full spectrum of software tool accuracies and speeds serves a

useful purpose to the research community. Like negative results, if honestly reported

this information, illustrates to the research community that certain approaches
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are not practical research avenues [61]. The current novelty-seeking practices of

many publishers, editors, reviewers and authors of software tools therefore may be

depriving our community of tools for building effective and productive workflows.

Indeed, the drive for novelty may be an actively harmful criteria for the software

development community, just as it is for reliable and reproducible research [62].

Novelty-criteria for publication may, in addition, discourage continual, incremental

improvements in code post-publication in favour of splashy new tools that are likely

to accrue more citations.

In addition we suggest that further efforts be made to encourage continual up-

dates to software tools. To paraphrase some of the suggestions of Siepel (2019),

these efforts may include more secure positions for developers, institutional promo-

tion criteria include software maintenance, lower publication barriers for significant

software updates, encourage further funding for software maintenance and improve-

ment - not just new tools [55]. If these issues were recognised by research managers,

funders and reviewers, then perhaps the future bioinformatic software tool land-

scape will be much improved.

The most reliable way to identify accurate software tools is through neutral soft-

ware benchmarks [54]. We are hopeful that this, along with steps to reduce the

publication-bias we have described, will reduce the over-optimistic and misleading

reporting of tool accuracy [26, 27, 29].

Methods
In order to evaluate predictors of computational biology software accuracy, we mined

the published literature, extracted data from articles, connected these with biblio-

metric databases, and tested for correlates with accuracy. We outline these steps in

further detail below.

Criteria for inclusion: We are interested in using computational biology bench-

marks that satisfy Boulesteix’s (ALB) three criteria for a “neutral comparison

study” [54]. Firstly, the main focus of the article is the comparison and not the

introduction of a new tool as these can be biased [30]. Secondly, the authors should

be reasonably neutral, which means that the authors should not generally have

been involved in the development of the tools included in the benchmark. Thirdly,

the test data and evaluation criteria should be sensible. This means that the test

data should be independent of data that tools have been trained upon, and that

the evaluation measures appropriately quantify correct and incorrect predictions.

In addition, we excluded benchmarks with too few tools ≤ 3, or those where the

results were inaccessible (no supplementary materials or poor figures).

Literature mining: We identified an initial list of 10 benchmark articles that

satisfy the ALB-criteria. These were identified based upon previous knowledge of

published articles and were supplemented with several literature searches (e.g.,

[“benchmark” AND “cputime”] was used to query both GoogleScholar and Pubmed

[53, 63]). We used these articles to seed a machine-learning approach for identify-

ing further candidate articles and to identify new search terms to include. This is

outlined in Additional file 1: Figure S1.

For our machine-learning-based literature screening, we computed a score, s(a),

for each article that tells us the likelihood that it is a benchmark. In brief, our

approaches uses 3 stages:
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1 Remove high frequency words from the title and abstract of candidate articles

(e.g. ‘the’, ‘and’, ‘of’, ‘to’, ‘a’, . . . )

2 Compute a log-odds score for the remaining words

3 Use a sum of log-odds scores to give a total score for candidate articles

For stage 1, we identified a list of high frequency (e.g. f(word) > 1/10, 000) words

by pooling the content of two control texts [64, 65].

For stage 2, in order to compute a log-odds score for bioinformatic words, we com-

puted the frequency of words that were not removed by our high frequency filter

in two different groups of articles: bioinformatics-background and bioinformatics-

benchmark articles. The text from bioinformatics-background articles were drawn

from the bioinformatics literature, but these were not necessarily associated with

benchmark studies. For background text we used Pubmed [53, 63] to select 8,908

articles that contained the word “bioinformatics” in the title or abstract and were

published between 2013 and 2015. We computed frequencies for each word by com-

bining text from titles and abstracts for the background and training articles. A

log-odds score was computed for each word using the following formula:

lo(word) = log2

ftr(word) + δ

fbg(word) + δ

Where δ was a pseudo-count added for each word (δ = 10−5, by default),

fbg(word) and ftr(word) were the frequencies of a word in the background and

training datasets respectively. Word frequencies were computed by counting the

number of times a word appears in the pool of titles and abstracts, the counts were

normalised by the total number of words in each set. Additional file 1: Figure S2

shows exemplar word scores.

Thirdly, we also collected a group of candidate benchmark articles by mining

Pubmed for articles that were likely to be benchmarks of bioinformatic software,

these match the terms: “((bioinformatics) AND (algorithms OR programs OR soft-

ware)) AND (accuracy OR assessment OR benchmark OR comparison OR perfor-

mance) AND (speed OR time)”. Further terms used in this search were progressively

added as relevant enriched terms were identified in later iterations. The final query

is given in Additional file 1.

A score is computed for each candidate article by summing the log-odds scores for

the words in title and abstract, i.e. s(a) =
∑N

i lo(wi). The high scoring candidate

articles are then manually evaluated against the ALB-criteria. Accuracy and speed

ranks were extracted from the articles that met the criteria, and these were added

to the set of training articles. The evaluated candidate articles that did not meet

the ALB-criteria were incorporated into the set of background articles. This process

was iterated and resulted in the identification of 69benchmark articles, containing

134 different benchmarks. Together these ranked 499 distinct software packages.

There is a potential for bias to have been introduced into this dataset. Some

possible forms of bias include converging on a niche group of benchmark studies

due to the literature mining technique that we have used. A further possibility is

that benchmark studies themselves are biased, either including very high performing

or very low performing software tools. To address each of these concerns we have
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attempted to be as comprehensive as possible in terms of benchmark inclusion, as

well as including comprehensive benchmarks (i.e., studies that include all available

software tools that address a specific biological problem).

Data extraction and processing: for each article that met the ALB-criteria

and contained data on both the accuracy and speed from their tests, we extracted

ranks for each tool. Until published datasets are made available in consistent,

machine-readable formats this step is necessarily a manual process – ranks were

extracted from a mixture of manuscript figures, tables and supplementary materi-

als, each data source is documented in Additional file 2: Table S1. In addition, a

variety of accuracy metrics are reported e.g. “accuracy”, “AUROC”, “F-measure”,

“Gain”, “MCC”, “N50”, “PPV”, “precision”, “RMSD”, “sensitivity”, “TPR”, “tree

error”, etc. Our analysis makes the necessarily pragmatic assumption that highly

ranked tools on one accuracy metric will also be highly ranked on other accuracy

metrics. Many articles contained multiple benchmarks, in these cases we recorded

ranks from each of these, the provenance of which is stored with the accuracy met-

ric and raw speed and accuracy rank data for each tool (Additional file 2: Table

S1). In line with rank-based statistics, the cases where tools were tied were resolved

by using a midpoint rank (e.g., if tools ranked 3 and 4 are tied, the rank 3.5 was

used) [66]. Each rank extraction was independently verified by at least one other

co-author to ensure both the provenance of the data could be established and that

the ranks were correct. The ranks for each benchmark were then normalised to

lie between 0 and 1 using the formula 1 − r−1
n−1 where ‘r’ is a tool’s rank and ‘n’

is the number of tools in the benchmark. For tools that were benchmarked mul-

tiple times with multiple metrics (e.g., BWA was evaluated in 6 different articles

[67, 68, 69, 70, 71, 72]) a mean normalised rank was used to summarise the accuracy

and speed performance. Or, more formally:

accuracy =
∑

i=1..N

1 − raccuracyi − 1

ni − 1
,

speed =
∑

i=1..N

1 − rspeedi − 1

ni − 1

For each tool we identified the corresponding publications in GoogleScholar; the

total number of citations was recorded, the corresponding authors were also identi-

fied, and if they had public GoogleScholar profiles, we extracted their H-index and

calculated a M-index (H−index
y ) where ‘y’ is the number of years since their first pub-

lication. The journal quality was estimated using the H5-index from GoogleScholar

Metrics.

The year of publication was also recorded for each tool. “Relative age” and “rela-

tive citations” were also computed for each tool. For each benchmark, software was

ranked by year of first publication (or number of citations), ranks were assigned

and then normalised as described above. Tools ranked in multiple evaluations were

then assigned a mean value for “relative age” and “relative citations”.

The papers describing tools were checked for information on version numbers and

links to GitHub. Google was also employed to identify GitHub repositories. When
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a repository was matched with a tool, the number of “commits” and number of

“contributors” was collected, when details of version numbers were provided, these

were also harvested. Version numbers are inconsistently used between groups, and

may begin at either 0 or 1. To counter this issue we have added ‘1’ to all versions

less than ‘1’, for example, version 0.31 become 1.31. In addition, multiple point

releases may be used e.g. ‘version 5.2.6’, these have been mapped to the nearest

decimal value ‘5.26’.

Statistical analysis: For each tool we manually collected up to 12 different

statistics from GoogleScholar, GitHub and directly from literature describing tools

(1. corresponding author’s H-index, 2. corresponding author’s M-index, 3. journal

H5 index, 4. normalised accuracy rank, 5. normalised speed rank, 6. number of

citations, 7. relative age, 8. relative number of citations, 9. year first published, 10.

version 11. number of commits to GitHub, 12. number of contributors to GitHub).

These were evaluated in a pairwise fashion to produce Figure 1 A&B, the R code

used to generate these is given in a GitHub repository (linked below).

For each benchmark of three or more tools, we extracted the published accuracy

and speed ranks. In order to identify whether there was an enrichment of certain

accuracy and speed pairings we constructed a permutation test. The individual

accuracy and speed ranks were reassigned to tools in a random fashion and each new

accuracy and speed rank pairing was recorded. For each benchmark this procedure

was repeated 1,000 times. These permuted rankings were normalised and compared

to the real rankings to produce the ‘"’ points in Figure 1B and the heatmap and

histograms in Figure 2. The heatmap in Figure 2 is based upon Z-scores (Z = x−x̄
s ).

For each cell in a 3×3 grid a Z-score (and corresponding P-value is computed, either

with the ‘pnorm’ distribution function in R (Figure 2A) or empirically (Figure 2B))

is computed to illustrate the abundance or lack of tools in a cell relative to the

permuted data.

The distributions for each feature and permuted accuracy or speed ranks are

shown in Additional file 1: Figures S3&S4. Scatter-plots for each pair of features is

shown in Additional file 1: Figure S5. Plots showing the sample sizes for each tool,

and feature are shown in Additional file 1: Figure S8, illustrates a power analysis

to show what effect sizes we are likely to detect for our sample sizes.
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