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Abstract 19 

 20 

Structural variants (SVs) in human genome are implicated in a variety of human 21 

diseases. Long-read sequencing (such as those from PacBio) delivers much longer 22 

read lengths than short-read sequencing (such as those from Illumina) and may greatly 23 

improve SV detection. However, due to the relatively high cost of long-read sequencing, 24 

users are often faced with issues such as what coverage is needed and how to 25 

optimally use the aligners and SV callers. Here, we evaluated SV calling performance of 26 

three SV calling algorithms (PBHoney-Tails, PBHoney-Spots and Sniffles) under 27 

different PacBio coverages on two personal genomes, NA12878 and HX1. Our results 28 

showed that, at 10X coverage, 76% ~ 84% deletions and 80% ~ 92 % insertions in the 29 

gold standard set can be detected by PBHoney-Spots. Combining both PBHoney-Spots 30 

and Sniffles greatly increased sensitivity, especially under lower coverages such as 6X. 31 

We further evaluated the Mendelian errors on an Ashkenazi Jewish trio dataset with 32 

low-coverage whole-genome PacBio sequencing. In addition, to automate SV calling, 33 

we developed a computational pipeline called NextSV, which integrates PBhoney and 34 

Sniffles and generates the union (high sensitivity) or intersection (high specificity) call 35 

sets. Our results provide useful guidelines for SV identification from low coverage 36 

whole-genome PacBio data and we expect that NextSV will facilitate the analysis of SVs 37 

on long-read sequencing data.  38 

  39 
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Introduction 40 

 41 

Structural variants (SVs), including large variations such as deletions, insertions, 42 

duplications, inversions, and translocations, make an important contribution to human 43 

diversity and disease susceptibility1,2. Many inherited diseases and cancers have been 44 

associated with a large number of SVs in recent years3-8. Recent advances in next-45 

generation sequencing (NGS) technologies have facilitated the analysis of variations 46 

such as SNPs and small Indels in unprecedented details, but the discovery of SVs using 47 

short reads still remains challenging 9. Single-molecule, real-time (SMRT) sequencing 48 

developed by Pacific Biosciences (PacBio) offers a long read length, making it 49 

potentially well-suited for SV detection in personal genomes9,10. Most recently, Merker 50 

et al. reported the application of low coverage whole genome PacBio sequencing to 51 

identify pathogenic structural variants from a patient with autosomal dominant Carney 52 

complex, for whom targeted clinical gene testing and whole genome short-read 53 

sequencing were negative 11. 54 

 55 

Two SV software tools have been developed specifically for long-read sequencing: 56 

PBhoney 12 and Sniffles (https://github.com/fritzsedlazeck/Sniffles). PBhoney identifies 57 

genomic variants via two algorithms, long-read discordance (PBhoney-Spots) and 58 

interrupted mapping (PBhoney-Tails). Sniffles is a SV caller written in C++ and it detects 59 

SVs using evidence from split-read alignments, high-mismatch regions, and coverage 60 

analysis. Due to the relative high cost of PacBio sequencing, users are often faced with 61 

issues such as what coverage is needed and how to get the best use of the available 62 

SV callers. In addition, it is unclear which software performs the best in low-coverage 63 

settings, and whether the combination of software tools can improve performance of SV 64 

calls. Finally, the execution of these software tools is often not straightforward and 65 

requires careful re-parameterization given specific coverage of the source data. 66 

 67 

Recently, the Genome in a Bottle (GIAB) consortium hosted by National Institute of 68 

Standards and Technology (NIST) distributed a set of high-confidence SV calls for the 69 

NA12878 genome, an extensively sequenced genome by different platforms, enabling 70 
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benchmarking of SV callers13. They also published sequencing data of seven human 71 

genomes, including PacBio data of an Ashkenazi Jewish family trio14. Previously, we 72 

sequenced a Chinese individual HX1 on the PacBio platform, and generated assembly-73 

based SV call sets15. Using data sets of NA12878, HX1 and the AJ trio, we compared 74 

the performance of PBhoney-Spots, PBhoney-Tails, Sniffles and their combination 75 

under different PacBio coverages. In addition, we provided NextSV, an automated SV 76 

calling pipeline using PBHoney-Spots, PBHoney-Tails and Sniffles. NextSV 77 

automatically execute these three other software tools with optimized parameters for the 78 

specific coverage that user specified, then integrates results of each caller and 79 

generates the union (high sensitivity) or intersection (high specificity) call sets. We 80 

expect that NextSV will facilitate the detection and analysis of SVs on long-read 81 

sequencing data. 82 

 83 

Materials and Methods 84 

PacBio data sets used for this study 85 

Five whole-genome PacBio sequencing data sets were used to test the performance of 86 

SV calling pipelines (Table 1). Data sets of NA12878 and HX1 genome were obtained 87 

from NCBI SRA database.  Data sets of the Ashkenazi Jewish (AJ) family trio were 88 

downloaded from ftp site of NIST (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/). 89 

After we obtained raw data, we extracted subreads using the SMRT Portal software 90 

(Pacific Biosciences, Menlo Park, CA) with default settings. The subreads were mapped 91 

to the reference genome using BLASR 16 or BWA-MEM 17. The bam files were down-92 

sampled to different coverages using SAMtools (samtools view -s). The down-sampled 93 

coverages and mean read lengths of the data sets are shown in Table 1. 94 

 95 

SV detection using PBHoney 96 

PacBio subreads were iteratively aligned with the human reference genome (GRCh38 97 

for HX1, GRCh37 for NA12878 and AJ trio genomes, depending on the reference of 98 

gold standard set) using the BLASR aligner (parameter: -bestn 1).  Each read’s single 99 

best alignment was stored in the SAM output. Unmapped portions of each read were 100 

extracted from the alignments and remapped to the reference genome. The alignments 101 
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in SAM format were converted to BAM format and sorted by SAMtools. PBHoney-Tails 102 

and PBHoney-Spots were run with slightly modified parameters (minimal read support 2, 103 

instead of 3 and consensus polishing disabled) to increase sensitivity and discover SVs 104 

under low coverages (2~15X).  105 

 106 

SV detection using Sniffles 107 

PacBio subreads were aligned to the reference genome, using BWA-MEM with 108 

parameters modified for PacBio reads (bwa mem -M -x pacbio), to generate the BAM 109 

file. The BAM file was used as input of Sniffles. Sniffles was run with slightly modified 110 

parameters (minimal read support 2, instead of 10) to increase sensitivity and discover 111 

SVs under low fold of coverages (2~15X). 112 

 113 

Comparing two SV call sets 114 

Calls which reciprocally overlapped by more than 50% (bedtools intersect -f 0.5 -r) were 115 

considered to be the same SV and merged into a single call. For insertion calls, a 116 

padding of 500 bp was added before intersection. When merging two SVs, the average 117 

start and end positions were used. 118 

 119 

Gold standard SV call set 120 

The gold standard SV call set for NA12878 was retrieved from the GIAB consortium 13, 121 

in which most of the calls were refined by experimental validation or other independent 122 

technologies. For the HX1 genome, we used the SV calls from a previously validated 123 

local assembly approach10, as the initial high-quality calls. We also detected SVs on 124 

100X coverage PacBio data set of the HX1 genome using PBHoney-Tails, PBHoney-125 

Spots and Sniffles. The initial high-quality calls that overlapped with one of the three 126 

100X call sets (PBHoney-Tails, PBHoney-Spots or Sniffles) were retained as final gold 127 

standard calls. SVs with length less than 200 bp were not considered. Number of SVs in 128 

the gold standard sets is shown in Table 2. 129 

 130 

Performance Evaluation of SV callers 131 
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The SV calls of each caller were compared with the gold standard SV set. Precision, 132 

recall, and F1 score were used to evaluate the performance of the callers. Precision, 133 

recall, and F1 were calculated as 134 

Precision 	  
��

�����
, 135 

Recall 	  
��

�����
, 136 

F1 	  2 ·
���	
�
�
·��	���

���	
�
�
���	���
, 137 

where TP is the number of true positives (variants called by a variant caller and 138 

matching the gold standard set), FP is the number of false positives (variants called by 139 

a variant caller but not in the gold standard set), and FN is the number of false 140 

negatives (variants in the gold standard set but not called by a variant caller).  141 

 142 

Results 143 

Performance of SV calling under different PacBio coverage 144 

To determine what sequencing coverage is needed for SV detection using PacBio data, 145 

we evaluated the performance of SV callers under several different coverages. We 146 

downloaded a recently published 22X PacBio data set of NA12878 18 and down-147 

sampled the data set to 2X, 4X, 6X, 8X, 10X, 12X, and 15X. SV calling was performed 148 

using PBHoney and Sniffles under each coverage. The resulting calls were compared 149 

with the gold standard SV set (including 2094 deletion calls and 68 insertion calls) from 150 

the Genome In A Bottle (GIAB) consortium18.  151 

 152 

First, we examined how many calls in the gold set can be discovered. As shown in 153 

Figure 1A and 1B, the recall increased rapidly before 6X coverage but the slope of 154 

increase slowed down after 10X. Among the three callers, PBHoney-Spots discovered 155 

more SV calls than Sniffles and PBHoney-Tails. At 10X coverage, PBHoney-Spots 156 

detected 76% of deletions and 80% insertions in the gold standard set; Sniffles 157 

discovered 63% deletions and 25% insertions in the gold standard set; PBHoney-Tails 158 

recalled 26% deletions and 3% insertions. At 15X coverage, the recall of PBHoney-159 

Spots was 80% for deletion calls and 87% for insertion calls, which is only 6% ~ 9% 160 

higher than the recall at 10X.  161 
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 162 

Second, we examined the precision and F1 scores of callers under different coverage. 163 

We calculated precision as the fraction of detected SVs that matching the gold standard 164 

set. As shown in Figure 1C, Sniffles has higher precision than PBHoney-Spots and 165 

PBHoney-Tails. The precision of Sniffles for deletion calls was 70% at 6X coverage, and 166 

decreased slightly as the coverage increased. F1 score, the harmonic mean of precision 167 

and recall, increased before 10X and then kept stable at higher coverage (Figure 1D). 168 

Precision for insertion calls was not assessed because there were only 86 insertion 169 

calls in the GIAB gold standard set, which was one order of magnitude smaller than the 170 

number of deletion calls, with potentially high false negative rates. 171 

 172 

To verify the performance of SV detection on different individuals, we also did 173 

evaluation on a Chinese genome HX1, which was sequenced by us recently15 at 103X 174 

PacBio coverage. The genome was sequenced using a newer version of chemical 175 

reagents and thus the mean read length of HX1 was 40% longer than that of NA12878 176 

(Table 1). The total data set was down-sampled to 6X, 10X and 15X coverage. For each 177 

coverage data set, SVs were called and compared to the gold standard set. The results 178 

(Figure 3) were similar to those of the NA12878 data set. At 10X coverage, 84% 179 

deletions and 92% insertions in the gold standard set can be detected by PBHoney-180 

Spots. The precisions at 10X coverage range from 54% ~ 60% for deletion calls and 31% 181 

~ 43% for insertion calls. At 15X coverage, the recall increased slightly but precision 182 

decreased. Thus, 10X may be an optimal coverage to use in practice, considering the 183 

sequencing costs and the balance of recall and precision.  184 

 185 

Performance of SV calling using a combination of PBHoney and Sniffles 186 

Although PBHoney-Spots detected most of the variants, we examined whether we can 187 

improve the recall rates by running both PBHoney-Spots and Sniffles, especially under 188 

low fold coverages. As shown in Figure 2, at 6X coverage, the union set of both callers 189 

discovered 77% deletions in the NA12878 gold standard set, which was 23% more than 190 

running PBHoney-Spots alone at 6X coverage and comparable to running PBHoney-191 
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Spots alone at 10X. At 15X coverage, the union set recalled 93% deletions and 88% 192 

insertions.  193 

 194 

In addition, we tested whether we can get high confidence calls by running both callers. 195 

We evaluated precision of the intersection call sets of both callers on 6X, 10X and 15X 196 

data sets of the HX1 genome (Figure 3 B, D). The precision of the intersection sets was 197 

87% ~ 90% for deletion calls and 64% ~ 73% for insertion calls, which was half to one-198 

fold higher than that of PBHoney-Spots only.  199 

 200 

Evaluation on Mendelian Errors 201 

As the germline mutation rate is very low 19,20, Mendelian errors are more likely a result 202 

of genotyping errors and can be used as a quality control criteria in genome sequencing 203 

21.  Here, we evaluated the errors of allele drop-in (ADI), which means that an offspring 204 

presents an allele that does not appear in either parent, using a whole genome 205 

sequencing data set of an Ashkenazi Jewish (AJ) family trio released by NIST 14. The 206 

sequencing data of AJ son, AJ father and AJ mother was down-sampled to 10X 207 

coverage. SVs were called using PBHoney-Tails, PBHoney-Spots and Sniffles. The 208 

calls from AJ son were compared with calls from AJ father and AJ mother. ADI rate was 209 

calculated as the proportion of calls in offspring not matching any call from either parent. 210 

The result shows that PBHoney-Spots returns the most calls. For deletion calls, 211 

PBHoney-Spots gives us a lowest ADI rate (14.1%), while the ADI rates for insertion 212 

calls are considerable higher (31.8% ~ 41.8). Therefore, further validation or manual 213 

inspection of the calls is needed when analyzing SVs that may be associated with 214 

diseases with low coverage sequencing. 215 

 216 

Automated pipeline for SV calling using PBhoney and Sniffles 217 

Although we can get highly confident calls at low PacBio coverage using PBhoney and 218 

Sniffles, there are still challenges for installation, execution and integration of the 219 

aligners and SV callers for average users. Therefore, we developed NextSV, an 220 

automated computational pipeline that allows SV calling from PacBio sequencing data 221 

using PBhoney and Sniffles. The workflow of NextSV is shown in Figure 4. Two 222 
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mapping tools (BWA-MEM, BLASR), three SV callers (PBHoney-Tails, PBHoney-Spots 223 

and Sniffles) and some accessory programs (such as SAMtools, BEDtools) were 224 

included in NextSV. NextSV takes FASTA or FASTQ files as input. Once the SV caller 225 

is selected, NextSV automatically chooses the compatible aligner and performs 226 

mapping. The alignments will be automatically sorted and then presented to the SV 227 

caller with appropriate parameters. When the analysis is finished, NextSV will examine 228 

the FASTA/FASTQ, BAM, and result files and generate a report showing various 229 

statistics. If more than one caller is selected, NextSV will format the raw result files 230 

(.tails, .spots, or .vcf files) into bed files and generate the intersection or union call set 231 

for the purpose of higher accuracy or sensitivity. In addition, NextSV also supports 232 

analyzing high coverage samples via Sun Grid Engine (SGE), a popular batch-queuing 233 

system in cluster environment. NextSV splits the input FASTA/FASTQ file into several 234 

files of equal sizes and generates mapping task for each file. The mapping tasks are 235 

then submitted to the queue. After mapping is done, the alignments are automatically 236 

merged and subjected to the caller.  237 

 238 

Computational Performance of NextSV 239 

To evaluate the computational resources consumed by NextSV, we used the whole 240 

genome sequencing data set of HX1 (10X coverage) for benchmarking. All aligners and 241 

SV callers in NextSV were tested using a machine equipped with 12-core Intel Xeon 242 

2.66 GHz CPU and 48 Gigabytes of memory. As shown in Table 5, mapping is the most 243 

time-consuming step. BLASR takes about 80 hours to map the reads, whereas BWA-244 

MEM needs 27 hours. The SV calling step is much faster. PBHoney-Spots and Sniffles 245 

take about 1 hour, while PBHoney-Tails needs 0.27 hours. In total, the BLASR / 246 

PBHoney-Spots pipeline takes 80.8 hours while the BWA-MEM / Sniffles pipeline takes 247 

28.1 hours, two thirds less than the former one. Since the BLASR/PBHoney-Spots 248 

pipeline has improved performance on SV calling and the BWA-MEM/Sniffles pipeline is 249 

faster and complementary of PBHoney, we suggest running both to get the best results 250 

in practice.  251 

 252 

 253 
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Discussion 254 

Depth of coverage is often a key consideration in genomic analyses 22. In this study, we 255 

evaluated SV calling performance of three SV calling algorithms, PBHoney-Tails, 256 

PBHoney-Spots and Sniffles, at various PacBio coverages of 2 ~ 15X. Our results 257 

showed that, at 10X coverage, 76% ~ 84% deletions and 80% ~ 92 % insertions were 258 

detected by running PBHoney-Spots. By running both PBHoney-Spots and Sniffles, 259 

comparable recall can be achieved at coverage as low as 6X. At more than 10X 260 

coverage, the recall slightly increased. Thus, 10X can be an optimal PacBio coverage 261 

for efficient SV detection, yet 6X may also be an economic choice under limited budget.  262 

 263 

Given the long read length, structural variants can be spanned by reads. In our results, 264 

the “Spots” algorithm of PBHoney, which was specifically designed for detection of intra-265 

read SV events, uncovered the most calls among the three algorithms. Sniffles was a 266 

newly designed SV caller, and its pre-publication release version was tested in our 267 

study. There are several advantages of running both PBHoney and Sniffles. First, the 268 

overlapping calls are more accurate. In our results, the precisions of the intersection 269 

sets were half to one-fold higher than those of PBHoney-Spots only. The recall of the 270 

intersection set was 45% at 10X coverage, meaning that 45% calls can be detected at a 271 

very high accuracy. Second, more calls can be discovered by running both, especially 272 

for deletion calls. In our results, under 6X coverage, the union call set of two callers 273 

covered 77% deletions in the NA12878 gold standard set, which was 23% more than 274 

the call set of PBHoney-Spots alone. In addition, by running both BLASR/PBHoney and 275 

BWA-MEM/Sniffles, we can have two BAM files for necessary manual inspection, 276 

potentially eliminating the mapping artifacts that are specific to one aligner.  277 

 278 

Besides installation of the aligners and callers, several steps are required to perform SV 279 

detection using the combination of PBHoney and Sniffles, including quality check, 280 

mapping, sorting, SV calling, generating union/intersection call set, and generating 281 

summary statistics. In addition, several issues need to be considered during analysis. 282 

PBHoney typically takes alignments from BLASR as input but Sniffles requires output 283 

from BWA-MEM. The output files of PBHoney in tails or spots format should be 284 
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converted to standard format (such as bed or vcf) for the convenience of further 285 

analysis. When two calls are merged, original information from each caller should be 286 

retained. Therefore, we developed NextSV, a comprehensive solution to address this. 287 

NextSV is available at http://github.com/Nextomics/NextSV. We believe that NextSV will 288 

facilitate the detection of structural variants from low fold of PacBio sequencing data.  289 
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Figure and Tables 354 

 355 

 356 

 357 

Figure 1. SV calling performance for each SV caller under different coverage on the 358 

NA12878 genome.  359 
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 360 

 361 

Figure 2. SV calling performance for the union call set of PBHoney-Spots and Sniffles 362 

under different coverage on the NA12878 genome. 363 

 364 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 17, 2016. ; https://doi.org/10.1101/092544doi: bioRxiv preprint 

https://doi.org/10.1101/092544


 15 
 

 365 

Figure 3. SV calling performance on the HX1 genome. Recalls and precisions of 366 

PBHoney-Tails, PBHoney-Spots , Sniffles and the intersection set of the latter two are 367 

shown. 368 

  369 
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 370 

 371 

Figure 4. Scheme of NextSV workflow.  372 

 373 

 374 

  375 
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 376 

Table 1. Description of PacBio data sets used for this study. 377 

Data Source / 
Accession Genome Down-sampled 

Coverage 
Mean Read 

Length Reference 

SRX627421 NA12878 2~15X 4.9 kb 18 
SRX1424851 HX1 6~15X 7.0 kb 15 

NIST AJ son 10X 8.0 kb 14 
NIST AJ father 10X 7.3 kb 14 
NIST AJ mother 10X 7.8 kb 14 

 378 

 379 

Table 2. Number of calls in gold standard SV set 380 

Genome Platform Number of Deletions 
 (≥ 200bp) 

Number of Insertions  
(≥ 200bp) 

Reference 

NA12878 Illumina 2094 68 13 
HX1 PacBio 2976 2944 15 

 381 
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Table 3. Mendelian error of deletion calls under 10X coverage 383 

 PBhoney-Tails PBhoney-Spots  Sniffles Union set 
No. of calls (AJ father) 775 2944 2206 4020 
No. of calls (AJ mother) 789 3091 2178 4165 
No. of calls (AJ son) 728 3121 2198 4090 
No. of calls inherited from father 370 1867 1006 2356 
No. of calls inherited from mother 375 2095 987 2539 
No. of ADI 282 441 814 937 
ADI rate 38.6% 14.1% 37.0% 22.9% 
 384 

 385 

Table 4. Mendelian error of insertion calls under 10X coverage 386 

 PBhoney-Tails PBhoney-Spots Sniffles Union set 
No. of calls (AJ father) 168 6691 1096 6952 
No. of calls (AJ mother) 148 7183 1181 7476 
No. of calls (AJ son) 151 7522 1148 7778 
No. of calls inherited from father 104 2952 452 3897 
No. of calls inherited from mother 87 3541 476 3986 
No. of ADI 49 2721 479 2911 
ADI rate 31.8% 36.2% 41.8% 37.4 
 387 
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Table 5. Time consumption for each steps in the NextSV pipeline for 10X PacBio data set 390 

SV 
caller Aligner 

CPU 
(number of 

threads) 

Alignment time 
(hour) 

SV calling time 
(hour) 

Total Time 
(hour) 

PBhoney BLASR 12 79.6 
0.27 (Tails) 
0.96 (Spots) 80.8 

Sniffles BWA-
MEM 12 27.0 1.08 28.1 
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