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Abstract 21 

Background: Structural variants (SVs) in human genomes are implicated in a variety of human 22 

diseases. Long-read sequencing delivers much longer read lengths than short-read sequencing and 23 

may greatly improve SV detection. However, due to the relatively high cost of long-read 24 

sequencing, it is unclear what coverage is needed and how to optimally use the aligners and SV 25 

callers.  26 

Results: In this study, we developed NextSV, a meta-caller to perform SV calling from low 27 

coverage long-read sequencing data. NextSV integrates three aligners and three SV callers and 28 

generates two integrated call sets (sensitive/stringent) for different analysis purposes. We 29 

evaluated SV calling performance of NextSV under different PacBio coverages on two personal 30 

genomes, NA12878 and HX1. Our results showed that, compared with running any single SV 31 

caller, NextSV stringent call set had higher precision and balanced accuracy (F1 score) while 32 

NextSV sensitive call set had a higher recall. At 10X coverage, the recall of NextSV sensitive call 33 

set was 93.5% to 94.1% for deletions and 87.9% to 93.2% for insertions, indicating that ~10X 34 

coverage might be an optimal coverage to use in practice, considering the balance between the 35 

sequencing costs and the recall rates. We further evaluated the Mendelian errors on an Ashkenazi 36 

Jewish trio dataset.  37 

Conclusions: Our results provide useful guidelines for SV detection from low coverage whole-38 

genome PacBio data and we expect that NextSV will facilitate the analysis of SVs on long-read 39 

sequencing data. 40 

 41 
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Background 44 

Structural variants (SVs) represent genomic rearrangements (typically defined as longer than 50 45 

bp), and SVs may play important roles in human diversity and disease susceptibility [1-3]. Many 46 

inherited diseases and cancers have been associated with a large number of SVs in recent years [4-47 

9]. Recent advances in next-generation sequencing (NGS) technologies have facilitated the 48 

analysis of variations such as SNPs and small indels in unprecedented details, but the discovery of 49 

SVs using short-read sequencing still remains challenging [10]. Single-molecule, real-time (SMRT) 50 

sequencing developed by Pacific Biosciences (PacBio) produces long-read sequencing data, 51 

making it potentially well-suited for SV detection in personal genomes [10, 11]. Most recently, 52 

Merker et al. reported the application of low coverage whole genome PacBio sequencing to 53 

identify pathogenic structural variants from a patient with autosomal dominant Carney complex, 54 

for whom targeted clinical gene testing and whole genome short-read sequencing were both 55 

negative [12]. This represents a clear example that long-read sequencing may solve some negative 56 

cases in clinical diagnostic settings. 57 

 58 

Two popular SV software tools have been developed specifically for long-read sequencing: 59 

PBHoney  [13] and Sniffles [14]. PBHoney identifies genomic variants via two algorithms, long-60 

read discordance (PBHoney-Spots) and interrupted mapping (PBHoney-Tails). Sniffles is a SV 61 

caller written in C++ and it detects SVs using evidence from split-read alignments, high-mismatch 62 

regions, and coverage analysis [14]. PBHoney uses BAM files generated by BLASR [15] as input 63 

while Sniffles requires BAM files from BWA-MEM [16] or NGMLR [14], a new long-read aligner. 64 

Due to the relatively high cost of PacBio sequencing, users are often faced with issues such as 65 

what coverage is needed and how to get the best use of the available aligners and SV callers. In 66 
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addition, it is unclear which software tool performs the best in low-coverage settings, and whether 67 

the combination of software tools can improve performance of SV calls. Finally, the execution of 68 

these software tools is often not straightforward and requires careful re-parameterization given 69 

specific coverage of the source data. 70 

 71 

To address these challenges, we developed NextSV, an automated SV detection pipeline 72 

integrating multiple tools. NextSV automatically execute these software tools with optimized 73 

parameters for user-specified coverage, then integrates results of each caller and generates a 74 

sensitive call set and a stringent call set, for different analysis purposes. 75 

 76 

Recently, the Genome in a Bottle (GIAB) consortium and the 1000 Genome Project Consortium 77 

released high-confidence SV calls for the NA12878 genome, an extensively sequenced genome 78 

by different platforms, enabling benchmarking of SV callers [17, 18]. They also published 79 

sequencing data of seven human genomes, including PacBio data of an Ashkenazi Jewish (AJ) 80 

family trio [19]. Previously, we sequenced a Chinese individual HX1 on the PacBio platform with 81 

over 100X coverage, and generated assembly-based SV call sets [20]. Using data sets of NA12878, 82 

HX1 and the AJ family trio, we evaluated the performance of four aligner/SV caller combinations 83 

(BLASR / PBHoney-Spots, BLASR / PBHoney-Tails, BWA / Sniffles and NGMLR / Sniffles) as 84 

well as NextSV under different PacBio coverages. We expect that NextSV will facilitate the 85 

detection and analysis of SVs on long-read sequencing data. 86 

 87 

Materials and Methods 88 

PacBio data sets used for this study 89 
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Five whole-genome PacBio sequencing data sets were used to test the performance of SV calling 90 

pipelines (Table 1). Data sets of NA12878 and HX1 genome were downloaded from NCBI SRA 91 

database (Accession: SRX627421, SRX1424851). Data sets of the AJ family trio were 92 

downloaded from the FTP site of National Institute of Standards and Technology (NIST) [21]. 93 

After we obtained raw data, we extracted subreads (reads that can be used for analysis) using the 94 

SMRT Portal software (Pacific Biosciences, Menlo Park, CA) with filtering parameters 95 

(minReadScore=0.75, minLength=500). The subreads were mapped to the reference genome using 96 

BLASR [15],  BWA-MEM [16] or NGMLR [14]. The BAM files were down-sampled to different 97 

coverages using SAMtools (samtools view -s). We performed five subsampling replicates at each 98 

coverage. The down-sampled coverages and mean read lengths of the data sets were shown in 99 

Table 1. 100 

 101 

SV detection using BLASR / PBHoney-Spots and BLASR / PBHoney-Tails 102 

PacBio subreads were iteratively aligned to the human reference genome (GRCh38 for HX1, 103 

GRCh37 for NA12878 and AJ trio genomes, depending on the reference of high-confidence set) 104 

using the BLASR aligner (parameter: -bestn 1).  Each read’s single best alignment was stored in 105 

the SAM output. Unmapped portions of each read were extracted from the alignments and 106 

remapped to the reference genome. The alignments in SAM format were converted to BAM format 107 

and sorted by SAMtools. PBHoney-Tails and PBHoney-Spots (from PBSuite-15.8.24) were run 108 

with slightly modified parameters (minimal read support 2, instead of 3 and consensus polishing 109 

disabled) to increase sensitivity and to discover SVs under low coverages (2-15X). The reference 110 

FASTA files used in this study were downloaded from the FTP sites of 1000 Genome Project [22] 111 

(GRCh37) and NCBI [23] (GRCh38). The FASTA files contain assembled chromosomes with 112 

unlocalized, unplaced and decoy sequences. 113 
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 114 

SV detection using BWA / Sniffles and NGMLR / Sniffles 115 

PacBio subreads were aligned to the reference genome, using BWA-MEM (bwa mem -M -x pacbio) 116 

or NGMLR (default parameters) to generate the BAM file. The BAM file was sorted by SAMtools, 117 

then used as input of Sniffles (version 1.0.5). Sniffles was run with slightly modified parameters 118 

(minimal read support 2, instead of 10) to increase sensitivity and discover SVs under low fold of 119 

coverages (2-15X). 120 

 121 

NextSV analysis pipeline 122 

As shown in Figure 1, NextSV currently supports four aligner / SV caller combinations: BLASR 123 

/ PBHoney-Spots, BLASR / PBHoney-Tails, BWA / Sniffles and NGMLR / Sniffles. NextSV 124 

extracts FASTQ files from PacBio raw data (.hdf5 or .bam) and performs QC according to users 125 

specified settings. Once the aligner / SV caller combination is selected by user, NextSV 126 

automatically generates the scripts for alignment, sorting, and SV calling with appropriate 127 

parameters. When the analysis is finished, NextSV will format the raw result files (.tails, .spots, 128 

or .vcf files) into BED files. If multiple aligner/SV caller combinations are selected, NextSV will 129 

integrate the calls to generate a sensitive (by union) and a stringent (by intersection) call set. The 130 

output of NextSV is ANNOVAR-compatible, so that users can easily perform downstream 131 

annotation using ANNOVAR [24]. In addition, NextSV also supports job submitting via Sun Grid 132 

Engine (SGE), a popular batch-queuing system in cluster environment.  133 

 134 

Users can choose to run any of the four aligner/SV caller combination. By default, NextSV will 135 

enable BLASR / PBHoney-Spots, BLASR / PBHoney-Tails and NGMLR / Sniffles and integrate 136 
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the results to generate the sensitive calls and stringent calls. We do not enable BWA / Sniffles by 137 

default because Sniffles works better with NGMLR in our evaluation and alignment is a time 138 

consuming step. SVs that are shorter than reads may result in intra-read discordances while larger 139 

SVs may result in soft-clipped tails of long reads. We suggest running both PBHoney-Spots and 140 

PBHoney-Tails because they are two complementary algorithms designed to detect intra-read 141 

discordances and soft-clipped tails, respectively. Sniffles uses multiple evidences to detect SV so 142 

it should be suitable for both types of SVs. 143 

 144 

NextSV sensitive call set is generated as: 145 

SNIF ∪ (SPOT ∪ TAIL), 146 

and NextSV stringent call set is generated as: 147 

SNIF ∩ (SPOT ∪ TAIL), 148 

where SNIF denotes the call set of Sniffles (the aligner can be BWA or NGMLR, whichever is 149 

enabled; if both aligners are enabled, the call set of NGMLR/Sniffles will be used) , SPOT denotes 150 

the call set of BLASR / PBHoney-Spots and TAIL denotes the call set of BLASR / PBHoney-151 

Tails. 152 

 153 

Comparing two SV call sets 154 

The criteria for merging two SV calls were chosen to follow what was done by the NIST/GIAB 155 

analysis team [25] and a previous study [26]. Two deletion calls were considered the same if they 156 

had at least 50% reciprocal overlap (the overlapped region was more than 50% of both calls). The 157 

insertion call had a single breakpoint position so the criterion for insertion calls should be different 158 

from that of deletion calls. Two insertion calls were considered the same if the two breakpoints 159 
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were within a distance delta. Delta used by NIST/GIAB analysis team was 1000 bp and used by 160 

Pendleton et al (reference [26]) was 100 bp. However, 100 bp was too small for our analysis since 161 

the coverages (2-15X) were far lower than that of Pendleton’s data set (46X in total). On the other 162 

hand, 1000 bp might be too large to include distant calls as the same merged call. Therefore, we 163 

chose 500 bp as a compromise.  When merging two SVs, the average start and end positions were 164 

taken. 165 

 166 

High-confidence SV call sets 167 

The high-confidence deletion call set of the NA12878 genome was release by the Genome In A 168 

Bottle (GIAB) consortium [17], in which most of the calls were refined by experimental validation 169 

or other independent technologies. The high-confidence insertion call set of the NA12878 genome 170 

was obtained by merging the high-confidence insertion calls of 1000 Genome phase 3 [18] and 171 

high-confidence insertion calls from GIAB. For the HX1 genome, we generated the high-172 

confidence SV call set via two steps.  First, we used the SV calls from a previously validated local 173 

assembly-based approach [11] as the initial high-quality calls. Next, we detected SVs on 103X 174 

coverage PacBio data set of the HX1 genome using BLASR / PBHoney-Spots, BLASR / 175 

PBHoney-Tails, BWA / Sniffles and NGMLR / Sniffles (minimal read support=20 for each SV 176 

caller). The initial high-quality calls (from step 1) that overlapped with one of the four 103X call 177 

sets (from step 2) were retained as final high-confidence calls. SVs are generally defined as 178 

genomic rearrangements that are larger than 50 bp. However, we do not consider SVs that are less 179 

than 200 bp. There are two reasons. First, SVs that are smaller than 200 bp are within the library 180 

size of paired-end short-read sequencing. Therefore, they may be readily detected by short-read 181 

sequencing. Second, PacBio sequencing has a fairly high per-base error rate and we found it has a 182 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 22, 2018. ; https://doi.org/10.1101/092544doi: bioRxiv preprint 

https://doi.org/10.1101/092544


 9 
 

very low precision on detection of small SVs from coverage data sets. Therefore, we believe that 183 

the advantage of PacBio sequencing may be the detection of large SVs that are more than 200 bp. 184 

The number of SVs in the high-confidence sets is shown in Table 2. 185 

 186 

 187 

Performance Evaluation of SV callers 188 

The SV calls of each caller were compared with the high-confidence SV set. Precision, recall, and 189 

F1 score were used to evaluate the performance of the callers. Precision, recall, and F1 were 190 

calculated as 191 

Precision =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

, 192 

Recall =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

, 193 

F1 =  2 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛∙𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

, 194 

where TP is the number of true positives (variants called by a variant caller and matching the high-195 

confidence set), FP is the number of false positives (variants called by a variant caller but not in 196 

the high-confidence set), and FN is the number of false negatives (variants in the high-confidence 197 

set but not called by a variant caller). 198 

 199 

 200 

 201 

Results 202 

Performance of SV calling on different coverages of the NA12878 genome 203 

To determine the optimal coverage for SV detection on PacBio data, we evaluated the performance 204 

of NextSV under several different coverages. We downloaded a recently published PacBio data 205 
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set of NA12878 [26] and down-sampled the data set to 2X, 4X, 6X, 8X, 10X, 12X, and 15X. SV 206 

calling was performed using NextSV under each coverage. We performed five subsampling 207 

replicates for each coverage so that the down-sampling errors could be estimated. All supported 208 

aligner/SV caller combinations were evaluated. At least two supporting reads was required for all 209 

SV calls.  The resulting calls were compared with the high-confidence SV set (including 2094 210 

deletion calls and 1114 insertion calls) described in the Method section. 211 

 212 

First, we examined how many calls in the high-confidence set can be discovered. As shown in 213 

Figure 2, the recall increased rapidly before 10X coverage but the slope of increase slowed down 214 

after 10X. The standard deviations of recall values of the down-sampling replicates were very 215 

small (shown as error bars in the Figure). Among the four aligner / SV caller combinations, 216 

BLASR / PBHoney-Spots had the highest recall for insertions while NGMLR / Sniffles had the 217 

highest recall for deletions. At 10X coverage, BLASR / PBHoney-Spots had an average recall of 218 

76.2% for deletions and an average recall of 81.5% for insertions; NGMLR / Sniffles had an 219 

average recall of 91.1% for deletions and an average recall of 76.3% for insertions. BWA / Sniffles 220 

had a lower recall for deletions (72.6%) and insertions (50.8%) than NGMLR / Sniffles, indicating 221 

that NGMLR was a better aligner for Sniffles. PBHoney-Tails only detected 26.3% deletions and 222 

0.1% insertions. NextSV sensitive call set, which was generated by the union call set of BLASR / 223 

PBHoney-Spots, BLASR / PBHoney-Tails, and NGMLR / Sniffles, had the highest recall. At 10X 224 

coverage, the average recall of NextSV sensitive call set is 94.7% for deletions and 87.8% for 225 

insertions. At 15X coverage, the recall of NextSV sensitive call set increased slightly. Therefore, 226 

10X coverage might be an optimal coverage to use in practice, considering the relatively high 227 

sequencing costs and the generally high recall rates. 228 
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 229 

Second, we examined the precision and balanced accuracy (F1 scores) under different coverages 230 

(Figure 3). The precision was calculated as the fraction of detected SVs which matching the high-231 

confidence set. For deletions calls, NextSV stringent call set had the second highest precision and 232 

highest F1 score. For insertion calls, NextSV stringent call set had the highest precision and F1 233 

score at each coverage. Therefore, NextSV stringent call set performs the best, considering the 234 

balance between recall and precision. We observed that the precision decreased as the coverage 235 

increased from 2X to 15X. This was because we used the same parameter (at least two supporting 236 

reads) to generate the calls for each coverage. Therefore, the false positive rates increased as the 237 

coverage increased. A stricter parameter (e.g. at least three supporting reads) for 10X and 15X 238 

coverages may increase the precision, but decrease the recall. We discussed the trade-off between 239 

recall and precision in the Discussion section. Detailed values of recall rates, precisions and F1 240 

scores on different coverages of the NA12878 genome were shown in Table S1-S12. 241 

 242 

Performance of SV calling on different coverages on the HX1 genome 243 

To verify the performance of SV detection on different individuals, we also performed evaluation 244 

on a Chinese genome HX1, which was sequenced by us recently [20] at 103X PacBio coverage. 245 

The genome was sequenced using a newer version of chemical reagents and thus the mean read 246 

length of HX1 was 40% longer than that of NA12878 (Table 1). The total data set was down-247 

sampled to three representative coverages (6X, 10X and 15X). We also performed five 248 

subsampling replicates at each coverage.  SVs were called using the four pipelines described above 249 

and compared to the high-confidence set. The results were similar to those of the NA12878 data 250 

set (Figure 4). At 10X coverage, NextSV sensitive call set had an average recall of 95.5% for 251 
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deletions and 90.3% for insertions, highest among all the call sets. NextSV stringent call set had 252 

the highest precisions and F1 scores. Among the four aligner / SV caller combinations, NGMLR / 253 

Sniffles discovered the most deletions (91.6%) and BLASR / PBHoney-Spots discovered the most 254 

insertions (81.5%) at 10X coverage. BWA / Sniffles had a higher precision but a lower recall and 255 

F1 score than NGMLR / Sniffles. Detailed values of recall rates, precisions and F1 scores on 256 

different coverages of the HX1 genome were shown in Table S13-S24. 257 

 258 

Evaluation on Mendelian Errors 259 

As the de novo mutation rate is very low [27, 28], Mendelian errors are more likely a result of 260 

genotyping errors and can be used as a quality control criteria in genome sequencing [29]. Due to 261 

the lack of gold standard call sets, here we evaluated the errors of allele drop-in (ADI), which 262 

means the presence of an allele in offspring that does not appear in either parent. The ADI rate is 263 

calculated as the ratio of ADI events to SV calls detected in the offspring. We used a whole genome 264 

PacBio sequencing data set of an AJ family trio released by NIST [19] to do the evaluation. The 265 

sequencing data for father, mother and son are 32X, 29X, and 63X, respectively. First, we did the 266 

ADI rate analysis using all the available data. Since the coverages were high, 8 supporting reads 267 

were required for SV calls of the parents and 15 supporting reads were required for SV calls of the 268 

son. Among the four aligner/SV caller combinations, NGMLR/Sniffles had the lowest ADI rate 269 

(12.0%) for deletions, while BLASR/PBHoney-Tails had the lowest ADI rate (10%) for insertions 270 

(Figure 5).  Next, we down-sampled the sequencing data of the son to 10X coverage and analyzed 271 

the ADI rate at this low coverage. Five down-sampling replicates were performed. The ADI rates 272 

at 10X coverage were generally higher than those at 63X coverage. NGMLR/Sniffles achieved 273 

lowest ADI rate for both deletions (19.0%) and insertions (25.2%) among the four aligner/SV 274 
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caller combinations. NextSV stringent call set had the lowest ADI rate for insertions (15.7%) and 275 

second lowest ADI rate for deletions (20.0%).  The standard deviations of ADI rates of the down-276 

sampling replicates were very small (shown as error bars in the Figure). 277 

 278 

Computational Performance of NextSV 279 

To evaluate the computational resources consumed by NextSV, we used the whole genome 280 

sequencing data set of HX1 (10X coverage) for benchmarking. All aligners and SV callers in 281 

NextSV were tested using a machine equipped with 12-core Intel Xeon 2.66 GHz CPU and 48 282 

Gigabytes of memory. As shown in Table 3, mapping is the most time-consuming step. BLASR 283 

takes about 80 hours to map the reads, whereas NGMLR needs only 11.2 hours. The SV calling 284 

step is much faster. PBHoney-Spots and Sniffles take about 1 hour, while PBHoney-Tails needs 285 

0.27 hour. In total, the BLASR / PBHoney combination takes 80.8 hours while the NGMLR / 286 

Sniffles combination takes 12.5 hours, 84.5% less than the former one. Since BLASR/PBHoney-287 

Spots and NGMLR / Sniffles have good performance on SV calling and running PBHoney-Tails 288 

is very fast given the BLASR output, the NextSV pipeline will execute the three methods by 289 

default for generating the final results. 290 

 291 

Discussion 292 

Long-read sequencing such as PacBio sequencing has clear advantages over short-read sequencing 293 

on SV discovery [10]. However, its application in real-world setting is often limited due to the 294 

relatively high sequencing cost and hence the relatively low sequencing coverage. Some efforts 295 

have been made to improve SV detection from low coverage short-read data[30], but methods for 296 

improving SV detection from long-read sequencing data have not been reported. In this study, we 297 
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developed NextSV, a meta SV caller integrating multiple aligners and SV callers to improve SV 298 

discovery on low-coverage PacBio data sets. Our results showed that, NextSV stringent call set 299 

had the highest precisions and F1 scores while NextSV sensitive call set had the highest recall. At 300 

10X coverage, the recall of NextSV sensitive call set was 94.7% to 95.5% for deletions and 87.8% 301 

to 90.3% for insertions. At 15X coverage, there was only a slight increase in recall. Therefore, 302 

~10X coverage can be an optimal coverage to use in practice, considering the balance between the 303 

sequencing costs and the recall rates. 304 

 305 

The high-confidence call set of HX1 genome was generated using two steps.  First, we used a call 306 

set from a previously validated local assembly-based approach [11, 20, 31] as the initial high-307 

quality calls. Second, we detected SVs on 103X coverage PacBio data set of the HX1 genome 308 

using the four aligner/SV caller combinations described above. The calls were filtered using a 309 

strict parameter (minimal read support=20 for each SV caller). The initial high-quality calls that 310 

overlapped with one of the four 103X call sets were retained as final high-confidence calls. Since 311 

the aligners/SV callers contribute to generation of the high-confidence call sets, there may be some 312 

biases on the comparison of aligner/SV callers. However, it would be less biased on comparison 313 

of the performances on different coverages, which is an important goal of our study.  314 

 315 

There is often a trade-off between recall and precision. NextSV generates a sensitive call set and 316 

a stringent call set, for different purposes. NextSV sensitive call set is suitable for users who 317 

consider recall more important than precision and who can afford extensive downstream analysis 318 

(such as Sanger sequencing) to validate the candidate variants. This is often the case when doing 319 

disease-casual variant discovery on personal genomes. NextSV stringent call set has the highest 320 
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precision, F1 score. It is suitable for users who aim to perform genome-wide analysis of SVs on a 321 

collection of samples, with limited downstream validation. 322 

 323 

The performance of SV callers are affected by the parameter settings. The number of supporting 324 

reads is a key parameter that affect the trade-off between recall and precision. By default, PBHoney 325 

requires a minimal read support of 3 for an SV event and Sniffles requires a minimal read support 326 

of 10 for an SV event. However, this may be too high for low coverage data set. In our evaluation 327 

of recall and precision, we changed this setting to require a minimal read support of 2. This allows 328 

detection of SVs from very low coverage regions, with an acceptable precision. Thus, substantially 329 

higher number of true positives would be detected and less variants of interest would be missed.  330 

For users who consider precision to be more important than recall, they can either use the NextSV 331 

stringent call set or specify a stricter parameter (e.g. requiring more supporting reads) when 332 

running the NextSV pipeline. The F1 score is a balance between recall and precision. Therefore, 333 

its correlation with coverage is affected by the two aspects. In general, as the coverage increases, 334 

the recall increases but the precision decreases. Therefore, the F1 score may either increase or 335 

decrease as the coverage increases. 336 

 337 

In addition to test recalls and precisions, we examined the allele drop-in (ADI) errors, which 338 

represent the SV calls that in the offspring but not appear in either parent. Since the de novo 339 

mutation rate is very low, the ADI errors may mainly come from errors of sequencing and 340 

subsequent SV detection. In our results, the ADI rates of insertions are higher than those of deletion 341 

calls, which is consistent with the fact that PacBio sequencing has higher per-base insertion errors 342 

than deletion errors. Another source of ADI may come from the SV callers. SV detection from 343 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 22, 2018. ; https://doi.org/10.1101/092544doi: bioRxiv preprint 

https://doi.org/10.1101/092544


 16 
 

PacBio data set is still in its early stage. The currently available SV callers are not carefully 344 

designed for low-coverage data sets. For example, Sniffles requires 10 reads to support a SV under 345 

default settings, which means at least 20X coverage is required to detect a heterozygous SV. We 346 

expect the improvement of SV callers in the future.  347 

 348 

NextSV currently supports four aligner / SV caller combinations: BLASR / PBHoney-Spots, 349 

BLASR / PBHoney-Tails, BWA / Sniffles, NGMLR / Sniffles, but we expect to continuously 350 

expand the support for other aligner / caller combinations. In the future, if more aligners/SV callers 351 

are supported, we will evaluate the performance of each combination and find the best aligner for 352 

each SV caller. The NextSV sensitive call will be the union call set of all SV callers; the NextSV 353 

stringent calls will be the calls that are detected by at least two SV callers. If one SV caller can 354 

work with multiple aligners, only the call set of its best aligner will be used. 355 

 356 

In this study, we only evaluated the performance for insertions and deletions because we only have 357 

the high-confidence calls of insertions and deletions. This is another limitation of the study. We 358 

will evaluate the performance on other types of SVs in the future when more high-confidence SV 359 

calls are available. Nonetheless, NextSV generates SV calls of all types. The output of NextSV is 360 

in ANNOVAR-compatible format. Users can easily perform downstream annotation using 361 

ANNOVAR and disease gene discovery using Phenolyzer [32]. NextSV is available on GitHub 362 

[33] and can be installed by one simple command. 363 

 364 

Conclusion 365 
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In this study, we proposed NextSV, a comprehensive, user-friendly and efficient meta-caller to 366 

perform SV calling from low coverage long-read sequencing data. NextSV integrates multiple 367 

aligners and SV callers and performs better than running a single SV caller. We also showed that 368 

~10X PacBio coverage can be an optimal coverage to use in practice, considering the balance 369 

between the sequencing costs and the recall rates. Our results provide useful guidelines for SV 370 

detection from low coverage whole-genome PacBio data and we expect that NextSV will facilitate 371 

the analysis of SVs on long-read sequencing data. 372 

 373 
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Tables 520 

Table 1. Description of PacBio data sets used for this study. 521 

Data Source Genome Original 
Coverage 

Down-sampled 
Coverage 

Mean Read 
Length Reference 

NCBI SRA NA12878 22X 2-15X 4.9 kb [26] 

NCBI SRA HX1 103X 6-15X 7.0 kb [20] 

NIST AJ son 69X 10X 8.0 kb [19] 

NIST AJ father 32X 10X 7.3 kb [19] 

NIST AJ mother 30X 10X 7.8 kb [19] 

 522 
 523 

Table 2. Number of calls in the high-confidence SV sets 524 

Genome Platform 
Number of Deletions 

(≥ 200bp) 

Number of Insertions 

(≥ 200bp) 
Reference 

NA12878 Illumina 2094 1114 [17, 18] 

HX1 PacBio 2387 2937 [20] 

 525 

 526 

Table 3. Time consumption for each steps in the NextSV pipeline for 10X PacBio data set 527 

SV caller Aligner 
CPU 

(number of 
threads) 

Alignment time 
(hour) 

SV calling time 
(hour) 

Total Time 
(hour) 

PBHoney BLASR 12 79.6 0.27 (Tails) 
0.96 (Spots) 80.8 

Sniffles BWA-
MEM 12 27.0 1.1 28.1 

Sniffles NGMLR 12 11.2 1.3 12.5 
  528 
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Figures 529 

Figure 1. Scheme of NextSV workflow. 530 

 531 

 532 
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Figure 2. Evaluation of recall rates under different coverages on the NA12878 genome. Five down-534 
sampling replicates were performed at each coverage. (A) Recall rates of deletion calls. (B) Recall 535 
rates of insertion calls. Data shown represent mean ± SD. 536 

 537 
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Figure 3. Evaluation of precisions and F1 scores under different coverages on the NA12878 539 
genome. Five down-sampling replicates were performed. (A) Precisions of deletion calls. (B) F1 540 
scores of deletion calls. (C) Precisions of insertion calls. (D) F1 scores of insertion calls. Data 541 
shown represent mean ± SD. 542 

 543 

  544 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 22, 2018. ; https://doi.org/10.1101/092544doi: bioRxiv preprint 

https://doi.org/10.1101/092544


 25 
 

Figure 4. SV calling performance on the HX1 genome. Five down-sampling replicates were 545 
performed. (A-C) Recall rates, precisions and F1 scores of deletion calls. (D-F) Recall rates, 546 
precisions and F1 scores of insertion calls. Data shown represent mean ± SD. 547 

 548 
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Figure 5. Comparison of allele drop-in rate. For evaluation of ADI rate at 10X coverage, five 550 
down-sampling replicates were performed. (A) ADI rates of deletion call. (B) ADI rate of insertion 551 
calls. Data shown represent mean ± SD. 552 

 553 
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