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Fast and Stable Signal Deconvolution via
Compressible State-Space Models

Abbas Kazemipour, Ji Liu, Krystyna Solarana, Daniel A. Nagode, Patrick O. Kanold, Min Wu and Behtash Babadi

Abstract—Objective: Common biological measurements are in
the form of noisy convolutions of signals of interest with possibly
unknown and transient blurring kernels. Examples include EEG
and calcium imaging data. Thus, signal deconvolution of these
measurements is crucial in understanding the underlying biolog-
ical processes. The objective of this paper is to develop fast and
stable solutions for signal deconvolution from noisy, blurred and
undersampled data, where the signals are in the form of discrete
events distributed in time and space. Methods: We introduce
compressible state-space models as a framework to model and
estimate such discrete events. These state-space models admit
abrupt changes in the states and have a convergent transition
matrix, and are coupled with compressive linear measurements.
We consider a dynamic compressive sensing optimization prob-
lem and develop a fast solution, using two nested Expectation
Maximization algorithms, to jointly estimate the states as well
as their transition matrices. Under suitable sparsity assumptions
on the dynamics, we prove optimal stability guarantees for the
recovery of the states and present a method for the identification
of the underlying discrete events with precise confidence bounds.
Results: We present simulation studies as well as application
to calcium deconvolution and sleep spindle detection, which
verify our theoretical results and show significant improvement
over existing techniques. Conclusion: Our results show that
by explicitly modeling the dynamics of the underlying signals,
it is possible to construct signal deconvolution solutions that
are scalable, statistically robust, and achieve high temporal
resolution. Significance: Our proposed methodology provides a
framework for modeling and deconvolution of noisy, blurred, and
undersampled measurements in a fast and stable fashion, with
potential application to a wide range of biological data.

Index Terms—state-space models, compressive sensing, signal
deconvolution, calcium imaging, sleep spindles

I. INTRODUCTION

In many signal processing applications such as estimation of
brain activity from magnetoencephalography (MEG) time-series
[2], estimation of time-varying networks [3], electroencephalo-
gram (EEG) analysis [4], calcium imaging [5], functional
magnetic resonance imaging (fMRI) [6], and video compression
[7], the signals often exhibit abrupt changes that are blurred
through convolution with unknown kernels due to intrinsic
measurement constraints. Extracting the underlying signals
from blurred and noisy measurements is often referred to as
signal deconvolution. Traditionally, state-space models have
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been used for such signal deconvolution problems, where the
states correspond to the unobservable signals. Gaussian state-
space models in particular are widely used to model smooth
state transitions. Under normality assumptions, posterior mean
filters and smoothers are optimal estimators, where the analyti-
cal solution is given respectively by the Kalman filter and the
fixed interval smoother [8], [9].

When applied to observations from abruptly changing states,
Gaussian state-space models exhibit poor performance in
recovering sharp transitions of the states due to their underlying
smoothing property. Although filtering and smoothing recur-
sions can be obtained in principle for non-Gaussian state-space
models, exact calculations are no longer possible. Apart from
crude approximations like the extended Kalman filter, several
methods have been proposed including numerical methods
for low-dimensional states [10], Monte Carlo filters [10],
[11], posterior mode estimation [12], [13], and fully Bayesian
smoothing using Markov chain Monte Carlo simulation [14],
[15]. In order to exploit sparsity, several dynamic compressed
sensing (CS) techniques, such as the Kalman filtered CS
algorithm, have been proposed that typically assume partial
information about the sparse support or estimate it in a greedy
and online fashion [16], [17], [18], [19], [20]. However, little
is known about the theoretical performance guarantees of these
algorithms.

In this paper, we consider the problem of estimating state
dynamics from noisy and undersampled observations, where
the state transitions are governed by autoregressive models
with compressible innovations. Motivated by the theory of CS,
we employ an objective function formed by the `1-norm of
the state innovations [21]. Unlike the traditional compressed
sensing setting, the sparsity is associated with the dynamics
and not the states themselves. In the absence of observation
noise, the CS recovery guarantees are shown to extend to this
problem [21]. However, in a realistic setting in the presence of
observation noise, it is unclear how the CS recovery guarantees
generalize to this estimation problem.

We will present stability guarantees for this estimator under
a convergent state transition matrix, which confirm that the
CS recovery guarantees can be extended to this problem. The
corresponding optimization problem in its Lagrangian form is
akin to the MAP estimator of the states in a linear state-space
model where the innovations are Laplace distributed. This
allows us to integrate methods from Expectation-Maximization
(EM) theory and Gaussian state-space estimation to derive
efficient algorithms for the estimation of states as well as
the state transition matrix, which is usually unknown in
practice. To this end, we construct two nested EM algorithms
in order to jointly estimate the states and the transition matrix.
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The outer EM algorithm for state estimation is akin to the
fixed interval smoother, and the inner EM algorithm uses the
state estimates to update the state transition matrix [22]. The
resulting EM algorithm is recursive in time, which makes the
computational complexity of our method scale linearly with
temporal dimension of the problem. This provides an advantage
over existing methods based on convex optimization, which
typically scale super-linearly with the temporal dimension.

Our results are related to parallel applications in spectral
estimation, source localization, and channel equalization [23],
where the measurements are of the form Y = AX + N,
with Y is the observation matrix, X denotes the unknown
parameters, A is the measurement matrix, and N is the
additive noise. These problems are referred to as Multiple
Measurement Vectors (MMV) [24] and Multivariate Regression
[25]. In these applications, solutions with row sparsity in X are
desired. Recovery of sparse signals with Gaussian innovations is
studied in [26]. Several recovery algorithms including the `1−̀ q

minimization methods, subspace methods and greedy pursuit
algorithms [27] have been proposed for support union recovery
in this setup. Our contributions are distinct in that we directly
model the state innovations as a compressible sequence, for
recovery of which we present both sharp theoretical guarantees
as well as fast algorithms from state-space estimation.

Finally, we provide simulation results as well as applications
to two experimentally-acquired data sets: calcium imaging
recordings of neuronal activity, and EEG data during sleep.
In the former, the deconvolution problem concerns estimating
the location of spikes given the temporally blurred calcium
fluorescence, and in the latter, the objective is to detect
the occurrence and onset of sleep spindles. Our simulation
studies confirm our theoretical predictions on the performance
gain obtained by compressible state-space estimation over
those obtained by traditional estimators such as the basis
pursuit denoising. Our real data analyses reveal that our
compressible state-space modeling and estimation framework
outperforms two of the commonly-used methods for calcium
deconvolution and sleep spindle detection. In the spirit of easing
reproducibility, we have made the MATLAB implementation
of our algorithm publicly available [28].

The rest of this paper is organized as follows. In the following
section, we formulate compressible state-space models, intro-
duce our notation and present our main theoretical analysis
on the stability of the state estimation from undersampled
measurements. In Section II-B, we introduce a fast solver
for joint estimation of states and their transition matrices,
which we have named FCSS. We provide simulation studies
and application to calcium deconvolution and sleep spindle
detection in Section III. We discuss the implication of our
results in Section IV, followed by concluding remarks in
Section V.

II. METHODS

In this section, we establish our problem formulation and
notational conventions and present our main theoretical analysis
and algorithm development. In the interest of space, the
description of the experimental procedures is given in the
supplementary material.

A. Problem Formulation and Theoretical Analysis

Throughout the paper we use bold lower and upper case
letters for denoting vectors and matrices, respectively. We
denote the support of a vector xt ∈ Rp by supp(xt) and its
jth element by (xt)j . We consider the linear compressible
state-space model given by

xt = Θxt−1 + wt, yt = Atxt + vt, (1)

where (xt)
T
t=1 ∈ Rp denote the sequence of unobservable

states, Θ is the state transition matrix satisfying ‖Θ‖< 1,
wt ∈ Rp is the state innovation sequence, (yt)

T
t=1 ∈ Rnt are

the linear observations, At ∈ Rnt×p denotes the measurement
matrix, and et ∈ Rnt denotes the measurement noise. The
main problem is to estimate the unobserved sequence (xt)

T
t=1

(and possibly Θ), given the sequence of observations (yt)
T
t=1.

This problem is in general ill-posed, when nt < p, for some t.
We therefore need to make additional assumptions in order to
seek a stable solution.

Given a sparsity level s and a vector x, we denote the
set of its s largest magnitude entries by S, and its best s-
term approximation error by σs(x) = ‖x − xS‖1. When
σs(x) ∼ O(1/2−ξ) for some ξ ≥ 0, we refer to x as (s, ξ)–
compressible. We assume that the state innovations are sparse
(resp. compressible), i.e. xt−Θxt−1 is st-sparse (resp. (st, ξ)-
compressible) with s1 � st for t ∈ [T ]\{1}. Our theoretical
analysis pertain to the compressed sensing regime where
1� st < nt � p.

For simplicity of notation, we define x0 to be the all-zero
vector in Rp. For a matrix A, we denote restriction of A to
its first n rows by (A)n . We say that the matrix A ∈ Rn×p
satisfies the restricted isometry property (RIP) [29] of order s,
if for all s-sparse x ∈ Rp, we have

(1− δs)‖x‖22≤ ‖Ax‖22≤ (1 + δs)‖x‖22, (2)

where δs ∈ (0, 1) is the smallest constant for which Eq. (2)
holds [30]. We assume that the rows of At are a subset of
the rows of A1, i.e. At = (A1)nt

, and define Ãt =
√

n1

nt
At.

Other than its technical usefulness, the latter assumption helps
avoid prohibitive storage of all the measurement matrices. In
order to promote sparsity of the state innovations, we consider
the dynamic `1-regularization (dynamic CS from now on)
problem defined as

minimize
(xt)Tt=1,Θ

T∑
t=1

‖xt −Θxt−1‖1√
st

s.t. ‖yt −Atxt‖2≤
√
nt
n1
ε. (3)

where ε is an upper bound on the observation noise, i.e.,
‖vt‖2≤ ε for all t. Note that this problem is a variant of the
dynamic CS problem introduced in [21]. We also consider the
modified Lagrangian form of (3) given by

minimize
(xt)Tt=1,Θ

λ
T∑
t=1

‖xt −Θxt−1‖1√
st

+
1

nt

‖yt −Atxt‖22
2σ2

. (4)

for some constants σ2
2 and λ ≥ 0. Note that if vt ∼

N (0, ntσ
2I), then Eq. (4) is akin to the maximum a posteriori

(MAP) estimator of the states in (1), assuming that the state
innovations were independent Laplace random variables with
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respective parameters λ/
√
st. We will later use this analogy

to derive fast solutions to the optimization problem in (4).
Uniqueness and exact recovery of the sequence (xt)

T
t=1 in

the absence of noise was proved in [21] for Θ = I, by an
inductive construction of dual certificates. The special case
Θ = I can be considered as a generalization of the total
variation (TV) minimization problem [31]. Our main result on
stability of the solution of (3) is the following:

Theorem 1 (Stable Recovery of Activity in the Presence of
Noise). Let (xt)

T
t=1 ∈ Rp be a sequence of states with a known

transition matrix Θ = θI, where |θ|< 1 and Ãt, t ≥ 1 satisfies
RIP of order 4s with δ4s < 1/3. Suppose that n1 > n2 =
n3 = · · · = nT . Then, the solution (x̂t)

T
t=1 to the dynamic CS

problem (3) satisfies

1

T

T∑
t=1

‖xt − x̂t‖2≤

1− θT

1− θ

(
12.6

(
1 +

1

T

√
n1
n2
− 1

T

)
ε+

3

T

T∑
t=1

σst(xt −Θxt−1)
√
st

)
. (5)

Proof Sketch. The proof of Theorem 1 is based on establishing
a modified cone and tube constraint for the dynamic CS
problem (3) and using the boundedness of the Frobenius norm
of the inverse first-order differencing operator. Details of the
proof are given in Appendix VII-A.
Remark. The first term on the right hand side of Theorem 1
implies that the average reconstruction error of the sequence
(xt)

T
t=1 is upper bounded proportional to the noise level ε,

which implies the stability of the estimate. The second term is
a measure of compressibility of the innovation sequence and
vanishes when the sparsity condition is exactly met.

B. Fast Iterative Solution via the EM Algorithm

Due to the high dimensional nature of the state estima-
tion problem, algorithms with polynomial complexity exhibit
poor scalability. Moreover, when the state transition matrix
is not known, the dynamic CS optimization problem (4)
is not convex in

(
(xt)

T
t=1,Θ

)
. Therefore standard convex

optimization solvers cannot be directly applied. This problem
can be addressed by employing the Expectation-Maximization
algorithm [22]. A related existing result considers weighted
`1-regularization to adaptively capture the state dynamics [32].
Our approach is distinct in that we derive a fast solution to
(4) via two nested EM algorithms, in order to jointly estimate
the states and their transition matrix. The outer EM algorithm
converts the estimation problem to a form suitable for the
usage of the traditional Fixed Interval Smoothing (FIS) by
invoking the EM interpretation of the Iterative Re-weighted
Least Squares (IRLS) algorithms [33]. The inner EM algorithm
performs state and parameter estimation efficiently using the
FIS. We refer to our estimated as the Fast Compressible State-
Space (FCSS) estimator.

The outer EM loop of FCSS: In [33], the authors established
the equivalence of the IRLS algorithm as an instance of
the EM algorithm for solving `1-minimization problems via
the Normal/Independent (N/I) characterization of the Laplace

distribution. Consider the ε-perturbed `1-norm as

‖x‖1,ε=
√
x21 + ε2 +

√
x22 + ε2 + · · ·+

√
x2p + ε2. (6)

Note that for ε = 0, ‖x‖1,ε coincides with the usual `1-norm.
We define the ε-perturbed version of the dual problem (4) by

minimize
(xt)

T
t=1,Θ

λ
T∑
t=1

‖xt −Θxt−1‖1,ε√
st

+
1

nt

‖yt −Atxt‖22
2σ2

.

(7)
If instead of the `1,ε-norm, we had the square `2 norm, then
the above problem could be efficiently solved using the FIS.
The outer EM algorithm indeed transforms the problem of Eq.
(7) into this form. Note that the ε-perturbation only adds a term
of the order O(εp) to the estimation error bound of Theorem
1, which is negligible for small enough ε [33].

The problem of Eq. (7) can be interpreted as a MAP problem:
the first term corresponds to the state-space prior − log
p(xt|xt−1,Θ) = − log pst(xt − Θxt−1), where pst(x) ∼
exp (−λ‖x‖1,ε/

√
st) denoting the ε-perturbed Laplace distri-

bution; the second term is the negative log-likelihood of the data
given the state, assuming a zero-mean Gaussian observation
noise with covariance σ2I. Suppose that at the end of the lth

iteration, the estimates (x̂
(l)
t )Tt=1, Θ̂

(l) are obtained, given the
observations (yt)

T
t=1. As it is shown in Appendix VII-B, the

outer EM algorithm transforms the optimization problem to:

minimize
(xt)

T
t=1,Θ

λ

2

p∑
j=1

T∑
t=1

(xt −Θxt−1)
2
j + ε2

√
st

√(
x̂
(l)
t − Θ̂(l)x̂

(l)
t−1

)2
j

+ ε2
(8)

+

T∑
t=1

1

nt

‖yt −Atxt‖22
2σ2

.

in order to find (x̂
(l+1)
t )Tt=1, Θ̂

(l+1). Under mild conditions,
convergence of the solution of (8) to that of (4) was established
in [33]. The objective function of (8) is still not jointly convex
in
(
(xt)

T
t=1,Θ

)
. Therefore, to carry out the optimization, i.e.

the outer M step, we will employ another instance of the EM
algorithm, which we call the inner EM algorithm, to alternate
between estimating of (xt)

T
t=1 and Θ.

The inner EM loop of FCSS: Let W
(l)
t be a diagonal matrix

such that

(W
(l)
t )j,j = st

−1/2
{(

x̂
(l)
t − Θ̂(l)x̂

(l)
t−1

)2
j

+ ε2
}−1/2

.

Consider an estimate Θ̂(l,m), corresponding to the mth iteration
of the inner EM algorithm within the lth M-step of the outer
EM. In this case, Eq. (8) can be thought of the MAP estimate
of the Gaussian state-space model given by:

xt = Θ̂(l,m)xt−1 + wt, wt ∼ N
(
0, 1

λW
(l)
t

−1)
yt = Atxt + vt, vt ∼ N (0, ntσ

2I)
, (9)

In order to obtain the inner E step, one needs to find the
density of (xt)

T
t=1 given (yt)

T
t=1 and Θ̂(l,m)}. Given the

Gaussian nature of the state-space in Eq. (9), this density is a
multivariate Gaussian density, whose means and covariances
can be efficiently computed using the FIS. For all t ∈ [T ], the
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FIS performs a forward Kalman filter and a backward smoother
to generate [34], [8]:

x
(l,m+1)
t|T := E

{
xt|(yt)Tt=1, Θ̂

(l,m)
}
,

Σ
(l,m+1)
t|T := E

{
xtx
′
t|(yt)Tt=1, Θ̂

(l,m)
}
, and

Σ
(l,m+1)
t−1,t|T = Σ

(l,m+1)
t,t−1|T = E

{
xt−1x

′
t|(yt)Tt=1, Θ̂

(l,m)
}
.

Note that due to the quadratic nature of all the terms
involving (xt)

T
t=1, the outputs of the FIS suffice to compute

the expectation of the objective function in Eq. (8), i.e., the
inner E step, which results in:

maximize
Θ

−λ
2

(
Θ

(
T∑
t=1

W
(l)
t

(
x
(l,m+1)
t−1|T x′

(l,m+1)
t−1|T + Σ

(l,m+1)
t−1|T

))
ΘT

)

+
λ

2
Tr

(
Θ

(
T∑
t=1

W
(l)
t

(
x
(l,m+1)
t−1|T x′

(l,m+1)
t|T + x

(l,m+1)
t|T x′

(l,m+1)
t−1|T + 2Σ

(l,m+1)
t−1,t|T

)))
, (10)

to obtain Θ̂(l,m). The solution has a closed-form given by:

Θ̂(l,m+1) =

(
T∑
t=1

2W
(l)
t

(
x
(l,m+1)
t−1|T x′

(l,m+1)
t−1|T + Σ

(l,m+1)
t−1|T

))−1
(

T∑
t=1

W
(l)
t

(
x
(l,m+1)
t−1|T x′

(l,m+1)
t|T + x

(l,m+1)
t|T x′

(l,m+1)
t−1|T + 2Σ

(l,m+1)
t−1,t|T

))
. (11)

This process is repeated for M iterations for the inner EM and
L iterations for the outer EM, until a convergence criterion is
met. Algorithm 1 summarizes the FCSS algorithm.

Algorithm 1 The Fast Compressible State-Space (FCSS) Estimator

1: procedure FCSS
2: Initialize: Θ̂(0) = 0, (x̂

(0)
t = 0)Tt=1, (W

(0)
t = 0)Tt=1.

3: repeat
4: l = 0 .
5: Outer E-step:

6: W
(l)
t = diag

{
1

√
st

√(
x̂
(l)
t −Θ̂(l)x̂

(l)
t−1

)2

j
+ε2

}p
j=1

.

7: Outer M-step:
8: repeat
9: m = 0 .

10: Inner E-Step: Find the smoothed estimates
x
(l,m+1)
t|T , Σ

(l,m+1)
t|T and Σ

(l,m+1)
t−1,t|T using a Fixed Interval

Smoother for{
xt = Θ̂(l,m)xt−1 + wt, wt ∼ N

(
0, 1

λW
(l)
t

−1)
yt = Atxt + vt, vt ∼ N (0, ntσ

2I)
.

11: Inner M-Step: Update Θ̂(l,m+1) via Eq. (11).
12: m← m+ 1.
13: until convergence criteria met
14: Update the estimates:

Θ̂(l+1) ← Θ̂(l,m),
(
x̂
(l+1)
t

)T
t=1
←
(
x
(l,m)
t|T

)T
t=1

.

15: l← l + 1.
16: until convergence criteria met

Θ̂← Θ̂(l). (x̂t)
T
t=1 ←

(
x̂
(l)
t

)T
t=1

17: end procedure

Remark 1. By virtue of the FIS procedure, the compexity
of the FCSS algorithm is linear in T , i.e., the observation
duration. As we will show in Section III, this makes the FCSS
algorithm scale favorably when applied to long data sets.
Remark 2. In order to update Θ in the inner M-step given
by E. (11), we have not specifically enforced the condition
‖Θ‖< 1 in the maximization step. This condition is required
to obtain a convergent state transition matrix which results in
the stability of the state dynamics. It is easy to verify that
the set of matrices Θ satisfying ‖Θ‖< 1 − η, is a closed
convex set for small positive η, and hence one can perform the
maximization in (11) by projection onto this closed convex set.
Alternatively, matrix optimization methods with operator norm
constraints can be used [35]. We have avoided this technicality
by first finding the global minimum and examining the largest
eigenvalue. In the applications of interest in this paper which
follow next, the largest eigenvalue has always been found to
be less than 1.

C. Experimental Procedures

Surgery: 2 hours before surgery, 0.1 cc dexamethasone
(2 mg/ml, VetOne) was injected subcutaneously to reduce brain
swelling during craniotomy. Anesthesia is induced with 4%
isoflurane (Fluriso, VetOne) with a calibrated vaporizer (Matrx
VIP 3000). During surgery, isoflurane level was reduced to
and maintained at a level of 1.5%–2%. Body temperature
of the animal is maintained at 36.0 degrees Celsius during
surgery. Hair on top of head of the animal was removed
using Hair Remover Face Cream (Nair), after which Betadine
(Purdue Products) and 70% ethanol was applied sequentially
3 times to the surface of the skin before removing the skin.
Soft tissues and muscles were removed to expose the skull.
Then a custom designed 3D printed stainless headplate was
mounted over left auditory cortex and secured with C&B-
Metabond (Parkell). A craniotomy with a diameter of around
3.5 mm was then performed over left auditory cortex. A three
layered cover slip was used as cranial window, which is made
by gluing (NOA71, Norland Products) 2 pieces of 3 mm
coverslips (64-0720 (CS-3R), Warner Instruments) with a 5 mm
coverslip (64–0700 (CS-5R), Warner Instruments). Cranial
window was quickly dabbed in kwik-sil (World Precision
Instruments) before mounted 3 mm coverslips facing down
onto the brain. After kwik-sil cured, Metabond was applied to
secure the position of the cranial window. Synthetic Black Iron
Oxide (Alpha Chemicals) was then applied to the hardened
Metabond surface. 0.05 cc Cefazolin (1 gram/vial, West Ward
Pharmaceuticals) was injected subcutaneously when entire
procedure was finished. After the surgery the animal was kept
warm under heat light for 30 minutes for recovery before
returning to home cage. Medicated water (Sulfamethoxazole
and Trimethoprim Oral Suspension, USP 200 mg/40 mg per
5 ml, Aurobindo Pharms USA; 6 ml solution diluted in 100 ml
water) substitute normal drinking water for 7 days before any
imaging was performed.

Awake two-photon imaging: Spontaneous activity data of
population of layer 2/3 auditory cortex (A1) neurons is
collected from adult (3-month old) Thy1-GCaMP6s female
mouse implanted with chronic window following the above
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procedure, using two-photon imaging. Acquisition is performed
using a two-photon microscope (Thorlabs Bscope 2) equipped
with a Vision 2 Ti:Sapphire laser (Coherent), equipped with
a GaAsP photo detector module (Hamamatsu) and resonant
scanners enabling faster high-resoluation scanning at 30–60 Hz
per frame. The excitation wavelength was 920 nm. Regions
(∼ 300 µm2) within A1 were scanned at 30 Hz through a
20x, 0.95 NA water-immersion objective (Olympus). During
imaging the animal was head-fixed and awake. The microscope
was rotated 45 degrees and placed over the left A1 where
window was placed. An average image of field of view
was generated by choosing a time window where minimum
movement of the brain was observed and used as reference
image for motion correction using TurboReg plugin in ImageJ.
GCaMP6s positive cells are selected manually by placing a
ring like ROI over each identified cell. Neuropil masks were
generated by placing a 20 µm radius circular region over each
cell yet excluding all cell soma regions. Traces of soma and
neuropil were generated by averaging image intensity within
respective masks at each time point. A ratio of 0.7 was used
to correct for neuropil contamination.

Cell-attached patch clamp recordings and two-photon imag-
ing: Recordings were performed in vitro in voltage clamp to
simultaneously measure spiking activity and ∆F/F . Thala-
mocortical slices containing A1 were prepared as previously
described [36]. The extracellular recording solution consisted
of artificial cerebral spinal fluid (ACSF) containing: 130 NaCl,
3 KCl, 1.25 KH2PO4, 20 NaHCO3, 10 glucose, 1.3 MgSO4,
2.5 CaCl2 (pH 7.35-7.4, in 95% O2 5% CO2). Action
potentials were recorded extracellularly in loose-seal cell-
attached configuration (seal resistance typically 20–30 MΩ)
in voltage clamp mode. Borosilicate glass patch pipettes were
filled with normal ACSF diluted 10%, and had a tip resistance
of ∼ 3-5 MΩ in the bath. Data were acquired with a Multiclamp
700B patch clamp amplifier (Molecular Devices), low-pass
filtered at 3-6 kHz, and digitized at 10 kHz using the MATLAB-
based software. Action potentials were stimulated with a bipolar
electrode placed in L1 or L23 to stimulate the apical dendrites
of pyramidal cells (pulse duration 1-5 ms). Data were analyzed
offline using MATLAB. Imaging was largely performed using
a two-photon microscope (Ultima, Prairie Technologies) and a
MaiTai DeepSee laser (SpectraPhysics), equipped with a GaAsP
photo detector module (Hamamatsu) and resonant scanners
enabling faster high-resoluation scanning at 30-60 Hz per frame.
Excitation was set at 900 nm. Regions were scanned at 30 Hz
through a 40x water-immersion objective (Olympus). Cells
were manually selected as ring-like regions of interest (ROIs)
that cover soma but exclude cell nuclei, and pixel intensity
within each ROI was averaged to generate fluorescence over
time and changes in fluorescence (∆F/F ) were then calculated.

III. RESULTS

In this section, we study the performance of the FCSS
estimator on simulated data as well real data from two-photon
calcium imaging recordings of neuronal activity and sleep
spindle detection from EEG.

A. Application to Simulated Data

We first apply the FCSS algorithm to simulated data and
compare its performance with the Basis Pursuit Denoising
(BPDN) algorithm. The parameters are chosen as p = 200, T =
200, s1 = 8, s2 = 4, ε = 10−10, and Θ = 0.95I. We define
the quantity 1− n/p as the compression ratio. We refer to the
case of nt = p, i.e., no compression, as the denoising setting.
The measurement matrix A is an nt×p i.i.d. Gaussian random
matrix, where nt is chosen such that st

nt
is a fixed ratio. An

initial choice of λ ≥ 2
√

2σ
√

st log p
nt

is made inspired by the
theory of LASSO [37], which is further tuned using two-fold
cross-validation.

Figures 1–(a) and 1–(b) show the estimated states as well
as the innovations for different compression ratios for one
sample component. In the denoising regime, all the innovations
(including the two closely-spaced components) are exactly
recovered. As we take fewer measurements, the performance
of the algorithm degrades as expected. However, the overall
structure of the innovation sequence is captured even for highly
compressed measurements.
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Fig. 1. Reconstruction results of FCSS on simulated data vs. compression
levels. (a) reconstructed states, (b) reconstructed spikes. The FCSS estimates
degrade gracefully as the compression level increases.
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Fig. 2. MSE vs. SNR comparison between FCSS and BPDN. The FCSS
significantly outperforms the BPDN, even for moderate SNR levels.

Figure 2 shows the MSE comparison of the FCSS vs. BPDN,
where the MSE is defined as 10 log10

1
T

∑T
t=1‖x̂t−xt‖22. The

FCSS algorithm significantly outperforms BPDN, especially
at high SNR values. Figure 3 compares the performance of
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FCSS reconstruction closely follows the true state evolution, while the BPDN
fails to capture the state dynamics.
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Fig. 4. Raster plots of the observed and estimated states via FCSS. Left:
noisy observations, Right: FCSS estimates. The FCSS significantly denoises
the observed states.

FCSS and BPDN on a sample component at a compression
level of n/p = 2/3, in order to visualize the performance gain
implied by Figure 3.

Finally, Figure 4 shows the comparison of the estimated
states for the entire simulated data in the denoising regime.
As can be observed from the figure, the sparsity pattern of the
states and innovations are captured while significantly denoising
the observed states.

B. Application to Calcium Signal Deconvolution

Calcium imaging takes advantage of intracellular calcium
flux to directly visualize calcium signaling in living neurons.
This is done by using calcium indicators, which are fluorescent
molecules that can respond to the binding of calcium ions by
changing their fluorescence properties and using a fluorescence
or two-photon microscope and a CCD camera to capture the
visual patterns [38], [39]. Since spikes are believed to be
the units of neuronal computation, inferring spiking activity
from calcium recordings, referred to as calcium deconvolution,
is an important problem in neural data analysis. Several
approaches to calcium deconvolution have been proposed in
the neuroscience literature, including model-free approaches
such as sequential Monte Carlo methods [40] and model-based
approaches such as non-negative deconvolution methods [5],
[41]. These approaches require solving convex optimization
problems, which do not scale well with the temporal dimension
of the data. In addition, they lack theoretical performance
guarantees and do not provide clear measures for assessing the
statistical significance of the detected spikes.

In order to construct confidence bounds for our estimates,
we employ recent results from high-dimensional statistics [42].
We first compute the confidence intervals around the outputs of
the FCSS estimates using the node-wise regression procedure

of [42], at a confidence level of 1− α
2 . We perform the node-

wise regression separately for each time t. For an estimate
x̂t, we obtain x̂u

t and x̂l
t as the upper and lower confidence

bounds, respectively. Next, we partition the estimates into small
segments, starting with a local minimum (trough) and ending
in a local maximum (peak). For the ith component of the
estimate, let tmin and tmax denote the time index corresponding
to two such consecutive troughs and peaks. If the difference
(x̂l
tmax

)i−(x̂u
tmin

)i is positive, the detected innovation component
is declared significant (i.e., spike) at a confidence level of
1 − α, otherwise it is discarded (i.e., no spike). We refer to
this procedure as Pruned-FCSS (PFCSS).

We first apply the FCSS algorithm for calcium deconvolu-
tion in a scenario where the ground-truth spiking is recorded
in vitro through simultaneous electrophysiology (cell-attached
patch clamp) and two-photon calcium imaging. The calcium
trace as well as the ground-truth spikes are shown for a
sample neuron in Figure 5–(a). The FCSS denoised estimate
of the states (black) and the detected spikes (blue) using
95% confidence intervals (orange hulls) and the corresponding
quantities for the constrained f-oopsi algorithm [41] are shown
in Figures 5–(b) and –(c), respectively. Both algorithms detect
the large dynamic changes in the data, corresponding to the
spikes, which can also be visually captured in this case.
However, in doing so, the f-oopsi algorithm incurs a high rate
of false positive errors, manifested as clustered spikes around
the ground truth events. Similar to f-oopsi, most state-of-the-
art model-based methods suffer from high false positive rate,
which makes the inferred spike estimates unreliable. Thanks to
the aforementioned pruning process based on the confidence
bounds, the PFCSS is capable of rejecting the insignificant
innovations, and hence achieve a lower false positive rate. One
factor responsible for this performance gap can be attributed to
the underestimation of the calcium decay rate in the transition
matrix estimation step of f-oopsi. However, we believe the
performance gain achieved by FCSS is mainly due to the
explicit modeling of the sparse nature of the spiking activity
by going beyond the Gaussian state-space modeling paradigm.

Next, we apply the FCSS algorithm to large-scale in vivo
calcium imaging recordings, for which the ground-truth is
not available due to measurement constraints. The data used
in our analysis was recorded from 219 spontaneously active
neurons in mouse auditory cortex. The two-photon microscope
operates at a rate of 30 frames per second. We chose T = 2000
samples corresponding to 1 minute for the analysis. We chose
p = 108 well-separated neurons visually. We estimate the
measurement noise variance by appropriate re-scaling of the
power spectral density in the high frequency bands where the
signal is absent. We chose a value of ε = 10−10. It is important
to note that estimation of the measurement noise variance is
critical, since it affects the width of the confidence intervals and
hence the detected spikes. Moreover, we estimate the baseline
fluorescence by averaging the signal over values within a factor
of 3 standard deviations of the noise. By inspecting Eq. (4), one
can see a trade-off between the choice of λ and the estimate of
the observation noise variance σ2. We have done our analysis
in both the compression regime, with a compression ratio of
1/3 (n/p = 2/3), and the denoising regime. The measurements
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Fig. 5. Ground-truth performance comparison between PFCSS and constrained f-oopsi. Top: the observed calcium traces (black) and ground-truth
electrophysiology data (blue), Middle: PFCSS state estimates (black) with 95% confidence intervals (orange) and the detected spikes (blue), Bottom: the
constrained f-oopsi state estimates (black) and the detected spikes (blue). The FCSS spike estimates closely match the ground-truth spikes with only a few
false detections, while the constrained f-oopsi estimates contain significant clustered false detections.
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Fig. 7. Reconstructed spikes of PFCSS and constrained f-oopsi from large-scale calcium imaging data. Top, middle and bottom rows correspond to three
selected neurons labeled as Neuron 1, 2, and 3, respectively. (a) constrained f-oopsi spike estimates, (b) PFCSS spike estimates with no compression, (c)
PFCSS spike estimates with 2/3 compression ratio. The PFCSS estimates in both the uncompressed and compressed settings are sparse in time, whereas the
constrained f-oopsi estimates are in the form of clustered spikes.

in the compressive regime were obtained from applying i.i.d.
Gaussian random matrices to the observed calcium traces. The
latter is done to motivate the use of compressive imaging, as
opposed to full sampling of the field of view.

Figure 6–(a) shows the observed traces for four selected neu-
rons. The reconstructed states using FCSS in the compressive

and denoising regimes are shown in Figures 6–(b) and –(c),
respectively. The 90% confidence bounds are shown as orange
hulls. The FCSS state estimates are significantly denoised
while preserving the calcium dynamics. Figure 7 shows the
detected spikes using constrained f-oopsi and PFCSS in both
the compressive and denoising regimes. Finally, Figure 8 shows
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Fig. 8. Raster plot of the estimated spikes from large-scale calcium imaging
data. Left: the constrained f-oopsi estimates, Middle: PFCSS estimates with
no compression, Right: PFCSS estimates with a 1

3
compression ratio. The

PFCSS estimates are spatiotemporally sparse, whereas the constrained f-oopsi
outputs temporally clustered spike estimates.

the corresponding raster plots of the reconstructed spikes for the
entire ensemble of neurons. Similar to the preceding application
on ground-truth date, the f-oopsi algorithm detects clusters of
spikes, whereas the PFCSS procedure results in sparser spike
detection. This results in the detection of seemingly more active
neurons in the raster plot. However, motivated by the foregoing
ground-truth analysis, we believe that a large fraction of these
detected spikes may be due to false positive errors. Strikingly,
even with a compression ratio of 1/3 the performance of the
PFCSS is similar to the denoising case. The latter observation
corroborates the feasibility of compressed two-photon imaging,
in which only a random fraction of the field of view is imaged,
which in turn can result in higher acquisition rates.

In addition to the foregoing discussion on the comparisons
in Figures 5, 6, 7, and 8, two remarks are in order. First,
the iterative solution at the core of FCSS is linear in the
observation length and hence significantly faster than the
batch-mode optimization procedure used for constrained f-
oopsi. Our comparisons suggest that the FCSS reconstruction
is at least 3 times faster than f-oopsi for moderate data
sizes of the order of tens of minutes. Moreover, the vector
formulation of FCSS allows for easy parallelization (e.g., via
GPU implementations), which allows simultaneous processing
of ROI’s without losing speed. Second, using only about two-
thirds of the measurements achieves similar results by FCSS
as using the full measurements.

C. Application to Sleep Spindle Detection

In this section we use compressible state-space models in
order to model and detect sleep spindles. A sleep spindle is a
burst of oscillatory brain activity manifested in the EEG that
occurs during stage 2 non-rapid eye movement (NREM) sleep.
It consists of stereotypical 12–14 Hz wave packets that last for
at least 0.5 seconds [43]. The spindles occur with a rate of 2–5%
in time, which makes their generation an appropriate candidate
for compressible dynamics. Therefore, we hypothesize that the
spindles can be modeled using a combination of few echoes
of the response of a second order compressible state-space
model. As a result, the spindles can be decomposed as sums
of modulated sine waves.

In order to model the oscillatory nature of the spindles, we
consider a second order autoregressive (AR) model where the
pole locations are given by ae−j2π

f
fs and ae+j2π

f
fs , where

0 < a < 1 is a positive constant controlling the effective
duration of the impulse response, fs is the sampling frequency
and f is a putative frequency accounting for the dominant
spindle frequency. The equivalent state-space model for which

the MAP estimation admits the FCSS solution is therefore:

xt = 2a cos
(

2π f
fs

)
xt−1 − a2xt−2 + wt,

yt = Atxt + vt.
(12)

Note that impulse response of the state-space dynamics is
given by hn = an cos

(
2π f

fs
n
)
un, which is a stereotypical

decaying sinusoid. By defining the augmented state x̃t =
[x′t,x

′
t−1]′, Eq. (12) can be expressed in the canonical form:

x̃t = Θ̃x̃t−1 + w̃t, yt = Ãtx̃t + vt, (13)

where w̃t := [w′t,0
′]′ , Ãt = [At 0] and

Θ̃ =

[
2a cos

(
2π f

fs

)
I −a2I

I 0

]
.

Eq. (10) can be used to update Θ̃ in the M step of the
FCSS algorithm. However, Θ̃ has a specific structure in this
case, determined by a and f , which needs to be taken into
account in the optimization step. Let φ =: 2a cos

(
2π f

fs

)
and

ψ = a2, and let
T∑
t=1

W̃
(l)
t

(
x̃
(l,m+1)
t−1|T x̃′

(l,m+1)

t−1|T + Σ̃
(l,m+1)
t−1|T

)
=:

[
A B
C D

]
,

T∑
t=1

W̃
(l)
t

(
x̃
(l,m+1)
t−1|T x̃′

(l,m+1)

t|T + x̃
(l,m+1)
t|T x̃′

(l,m+1)

t−1|T + 2Σ̃
(l,m+1)
t−1,t|T

)
=:

[
E F
G H

]
.

Then, Eq. (10) is equivalent to maximizing

maximize
φ,ψ

λ
2 (φ2Tr(A)−φψTr(B + C) + ψ2Tr(D) + Tr(A))

− λ
2 (φTr(E)− ψTr(G) + Tr(F)). (14)

subject to 0 ≤ ψ ≤ 1 and φ2 ≤ 4ψ, which can be solved
using interior point methods. In our implementation, we have
imposed additional priors of f ∼ Uniform(12, 14) Hz and
a ∼ Uniform(0.95, 0.99), which simplifies the constraints on
φ and ψ to

0.952 ≤ ψ ≤ 0.992, and 4ψ cos2
(

2π 12
fs

)
≤ φ2 ≤ 4ψ cos2

(
2π 14

fs

)
.

Given the convexity of the cost function in (14), one can
conclude from the KKT conditions that if the global minimum
is not achieved inside the region of interest it must be achieved
on the boundaries.
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Figure 9, top panel, shows two instances of simulated
spindles (black traces) with parameters fs = 200 Hz, f = 13
Hz and a = 0.95, with the ground truth events generating
the wave packets shown in red. The middle panel shows the
noisy version of the data with an SNR of −7.5 dB. The noise
was chosen as white Gaussian noise plus slowly varying (2
Hz) oscillations to resemble the slow oscillations in real EEG
data. As can be observed the simulated signal exhibits visual
resemblance to real spindles, which verifies the hypothesis that
spindles can be decomposed into few combinations of wave
packets generated by a second order AR model. The third
panel, shows the denoised data using FCSS, which not only
is successful in detecting the the ground-truth dynamics (red
bars), but also significantly denoises the data.

We next apply FCSS to real EEG recordings from stage-2
NREM sleep. Manual scoring of sleep spindles can be very
time-consuming, and achieving accurate manual scoring on
a long-term recording is a highly demanding task with the
associated risk of decreased diagnosis. Although automatic
spindle detection would be attractive, most available algorithms
sensitive to variations in spindle amplitude and frequency that
occur between both subjects and derivations, reducing their
effectiveness [44], [45]. Moreover most of these algorithms
require significant pre- and post-processing and manual tuning.
Examples include algorithms based on Empirical Mode Decom-

position (EMD) [46], [47], [48], data-driven Bayesian methods
[49], and machine learning approaches [50], [51]. Unlike our
approach, none of the existing methods consider modeling the
generative dynamics of spindles, as transient sparse events in
time, in the detection procedure.

The data used in our analysis is part of the recordings
in the DREAMS project [52], recorded using a 32-channel
polysomnograpgh. We have used the EEG channels in our
analysis. The data was recorded at a rate of fs = 200 Hz for 30
minutes. The data was scored for sleep spindles independently
by two experts. We have used expert annotations to separate
regions which include spindles for visualization purposes. For
comparison purposes, we use a bandpass filtered version of the
data within 12–14 Hz, which is the basis of several spindle
detection algorithms [45], [53], [54], hallmarked by the widely-
used bandpass filtered root-mean-square (RMS) method [45].

Figure 10 shows the detection results along with the bandpass
filtered version of the data for two of the EEG channels. The
red bars show the expert markings of the onset and offset of
the spindle events. The FCSS simultaneously captures the
spindle events and suppressed the activity elsewhere, whereas
the bandpass filtered data produces significant activity in the
12–14 Hz throughout the observation window, resulting in high
false positives. To quantify this observation, we have computed
the ROC curves of the FCSS and bandpass filtering followed
by root mean square (RMS) computation in Figure 11, which
confirms the superior performance of the FCSS algorithm over
the data set. The annotations of one of the experts has been
used for as the ground truth benchmark.

IV. DISCUSSION

In this section, we discuss the implication of our techniques
in regard to the application domains as well as existing methods.

A. Connection to existing literature in sparse estimation

Contrary to the traditional compressive sensing, our linear
measurement operator does not satisfy the RIP [21], despite the
fact that At’s satisfy the RIP. Nevertheless, we have extended
the near-optimal recovery guarantees of CS to our compressible
state-space estimation problem via Theorem 1. Closely related
problems to our setup are the super-resolution and sparse spike
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deconvolution problems [55], [56], in which abrupt changes
with minimum separation in time are resolved in fine scales
using coarse (lowpass filtered) frequency information, which
is akin to working in the compressive regime.

Theoretical guarantees of CS require the number of mea-
surements to be roughly proportional to the sparsity level for
stable recovery [37]. These results do not readily generalize
to the cases where the sparsity lies in the dynamics, not
the states per se. Most of the dynamic compressive sensing
techniques such as Kalman filtered compressed sensing, assume
partial information about the support or estimate them in
a greedy and often ad-hoc fashion [16], [17], [18], [19],
[20]. As another example, the problem of recovering discrete
signals which are approximately sparse in their gradients using
compressive measurements, has been studied in the literature
using Total Variation (TV) minimization techniques [57], [31].
For one-dimensional signals, since the gradient operator is
not orthonormal, the Frobenius operator norm of its inverse
grows linearly with the discretization level [57]. Therefore,
stability results of TV minimization scale poorly with respect
to discretization level. In higher dimensions, however, the fast
decay of Haar coefficients allow for near-optimal theoretical
guarantees [58]. A major difference of our setup with those
of CS for TV-minimization is the structured and causal
measurements, which unlike the non-causal measurements in
[57], do not result in an overall measurement matrix satisfying
RIP. We have considered dynamics with convergent transition
matrices, in order to generalize the TV minimization approach.
To this end, we showed that using the state-space dynamics
one can infer temporally global information from local and
causal measurements. Another closely related problem is the
fused lasso [59] in which sparsity is promoted both on the
covariates and their differences.

B. Application to calcium deconvolution

In addition to scalability and the ability to detect abrupt
transitions in the states governed by discrete events in time (i.e.,
spikes), our method provides several other benefits compared to
other spike deconvolution methods based on state-space models,
such as the constrained f-oopsi algorithm. First, our sampling-
complexity trade-offs are known to be optimal from the theory
of compressive sensing, whereas no performance guarantee
exists for constrained f-oopsi. Second, we are able to construct
precise confidence intervals on the estimated states, whereas
constrained f-oopsi does not produce confidence intervals over
the detected spikes. A direct consequence of these confidence
intervals is estimation of spikes with high fidelity and low
false alarm. Third, our comparisons suggest that the FCSS
reconstruction is at least 3 times faster than f-oopsi for moderate
data sizes of the order of tens of minutes. Finally, our results
corroborate the possibility of using compressive measurement
for reconstruction and denoising of calcium traces. From a
practical point of view, a compressive calcium imaging setup
can lead to higher scanning rate as well as better reconstructions,
which allows monitoring of larger neuronal populations [60].
Due to the structured nature of our sampling and reconstruction
schemes, we can avoid prohibitive storage problems and benefit
from parallel implementations.

C. Application to sleep spindle detection

Another novel application of our modeling and estimating
framework is to case sleep spindle generation as a second-order
dynamical system governed by compressive innovations, for
which FCSS can be efficiently used to denoise and detect
the spindle events. Our modeling framework suggest that
spectrotemporal spindle dynamics cannot be fully captured
by just pure sinusoids via bandpass filtering, as the data
consistently contains significant 12–14 Hz oscillations almost
everywhere (See Figure 10). Therefore, using the bandpass
filtered data for further analysis purposes clearly degrades
the performance of the resulting spindle detection and scoring
algorithms. The FCSS provides a robust alternative to bandpass
filtering in the form of model-based denoising.

In contrast to state-of-the-art methods for spindle detection,
our spindle detection procedure requires minimal pre- and
post-processing steps. We expect similar properties for higher
order AR dynamics, which form a useful generalization of our
methods for deconvolution of other transient neural signals.
In particular, K-complexes during the stage 2 NREM sleep
form another class of transient signals with high variability.
A potential generalization of our method using higher order
models can be developed for simultaneous detection of K-
complexes and spindles.

V. CONCLUSION

In this paper, we considered estimation of compressible
state-space models, where the state innovations consist of
compressible discrete events. For dynamics with convergent
state transition dynamics, using theory of compressed sensing
we provided an optimal error bound and stability guarantees
for the dynamic `1-regularization algorithm which is akin to
the MAP estimator for a Laplace state-space model. We also
developed a fast and low-complexity iterative algorithm, namely
FCSS, for estimation of the states as well as their transition
matrix. We further verified the validity of our theoretical
results through simulation studies as well as application to
spike deconvolution from calcium traces and detection of
sleep spindles from EEG data. Our methodology has two
unique major advantages: first, we have proven theoretically
why our algorithm performs well, and characterized its error
performance. Second, we have developed a fast algorithm,
with guaranteed convergence to a solution of the deconvolution
problem, which for instance, is ∼ 3 times faster than the widely-
used f-oopsi algorithm in calcium deconvolution applications.

While we focused on two specific application domains, our
modeling and estimation techniques can be generalized to apply
to broader classes of signal deconvolution problems: we have
provided a framework to model transient phenomena which
are driven by sparse generators in time domain, and whose
event onsets are of importance. Examples include heart beat
dynamics and rapid changes in the covariance structure of
neural data (e.g., epileptic seizures). In the spirit of easing
reproducibility, we have made the MATLAB implementation
of our algorithm publicly available [28].
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VII. APPENDICES

A. Proof of Theorem 1

Proof: The main idea behind the proof is establishing
appropriate cone and tube constraints [30]. In order to avoid
unnecessary complications we assume s1 � s2 = · · · = sT
and n1 � n2 = · · · = nT . Let x̂t = xt + gt , t ∈ [T ]
be an arbitrary solution to the primal form (3). We define
zt = xt − θxt−1 and ht = zt − ẑt for t ∈ [T ]. For a positive
integer p, let [p] := {1, 2, · · · , p}. For an arbitrary set V ⊂ [p],
xV denotes the vector x restricted to the indices in V , i.e. all
the components outside of V set to zero. We can decompose
(ht)Sc

t
= (ht)I1 +(ht)I2 + · · ·+(ht)Irt

, where rt = bp/4stc,
and (ht)I1 is the 4st-sparse vector corresponding to 4st largest-
magnitude entries remaining in (ht)Sc

t
, (ht)I2 is the 4st-sparse

vector corresponding to 4s largest-magnitude entries remaining
in (ht)Sc

t
− (ht)I1 and so on. By the optimality of (ẑt)

T
t=1 we

have
T∑
t=1

‖zt + ht‖1√
st

≤
T∑
t=1

‖zt‖1√
st
.

Using several instances of triangle inequality we have

T∑
t=1

−σst(zt) + ‖(ht)Sc
t
‖1−‖(ht)St

‖1+‖(zt)St
‖1

√
st

≤
T∑
t=1

‖zt + ht‖1√
st

≤
T∑
t=1

‖zt‖1√
st

=

T∑
t=1

‖(zt)St
‖1+σst(zt)√
st

,

which after re-arrangement yields the cone condition given by

T∑
t=1

‖(ht)Sc
t
‖1

√
st

≤
T∑
t=1

‖(ht)St
‖1+‖(zt)Sc

t
‖1

√
st

. (15)

Also, by the definition of partitions (Ij)
rt
j=1 we have

T∑
t=1

rt∑
j=2

‖(ht)Ij ‖2 ≤
T∑
t=1

rt∑
j=2

2
√
st‖(ht)Ij ‖∞

≤
T∑
t=1

rt∑
j=2

‖(ht)Ij−1
‖1

2
√
st

=
T∑
t=1

‖(ht)Sc
t
‖1

2
√
st

≤
T∑
t=1

‖(ht)St
‖1+σst(zt)

2
√
st

≤
T∑
t=1

‖(ht)St
‖2

2
+
σst(zt)

2
√
st
.

(16)

Moreover, using the feasibility of both xt and x̂t we have the
tube constraints

‖y1 −A1x1‖2≤ ε⇒ ‖θ (y1)[n2]
− θA2x1‖2≤ θε,

‖y2 −A2x2‖2≤
√

n2

n1
ε,

from which we conclude ‖y2−θ (y1)[n2]
−A2z2‖2≤ (1+θ)ε.

Similarly ‖y2− θ (y1)[n2]
−A2ẑ2‖2≤ (1 + θ)ε. Therefore the

triangle inequality yields ‖A2h2‖2≤ 2(1 + θ)ε. Similarly for
all t ∈ [T ]\{2}, we have the tighter bound

‖Atht‖2≤ 2(1 + θ)

√
nt
n1
ε, (17)

which is a consequence of having fewer measurements for
t ∈ [T ]\{2}. In conjunction, (15), (16), and (17) yield

2(1 + θ)

(
T +

√
n1
n2
− 1

)
ε ≥ ‖A1h1‖2+

T∑
t=2

√
n1
nt
‖Atht‖2

≥
T∑
t=1

‖Ãt (ht)St∪I1 ‖2−
T∑
t=1

rt∑
j=2

‖Ãt (ht)Ij ‖2

≥
√

1− δ4s
T∑
t=1

‖(ht)St∪I1 ‖2−
√

1 + δ4s
2

T∑
t=1

rt∑
j=2

‖
(
hIj ,t

)
‖2

≥
√

1− δ4s
T∑
t=1

‖(ht)St∪I1 ‖2−
√

1 + δ4s
2

T∑
t=1

‖(ht)St∪I1 ‖2+
σst(zt)√

st

≥
(√

1− δ4s −
√

1 + δ4s
2

) T∑
t=1

‖(ht)St∪I1 ‖2−
√

1 + δ4s
2

T∑
t=1

σst(zt)√
st

.

Therefore after rearrangement for δ4s < 1/3

T∑
t=1

‖(ht)St∪I1 ‖2≤ 8.37(1 + θ)

(
T +

√
n1
n2
− 1

)
ε+

5

2

T∑
t=1

σst(zt)√
st

.

Next, using (16) yields

T∑
t=1

‖ht‖2 ≤
T∑
t=1

rt∑
j=2

‖(ht)Ij ‖2+‖(ht)St∪I1 ‖2

≤ 12.55

(
T +

√
n1
n2
− 1

)
ε+ 3

T∑
t=1

σst(zt)√
st

. (18)

By definition we have ht = gt − θgt−1 for t ∈ [T ] with
g0 = 0. Therefore by induction we have gt =

∑t
j=1 θ

t−jhj
or in matrix form

G :=


g1

g2

...
gt

 =


I 0 · · · 0
θI I · · · 0
θ2I θI · · · 0
...

...
. . .

...
θT−1I θT−2I · · · I


︸ ︷︷ ︸

A


h1

h2

...
ht

=:AH.

Using several instances of the triangle inequality we get:

T∑
t=1

‖gt‖2 =
T∑
t=1

∥∥∥∥∥∥
t∑

j=1

θt−jhj

∥∥∥∥∥∥
2

≤
T∑
t=1

t∑
j=1

θt−j ‖hj‖2

≤
T−1∑
j=1

θj
T∑
t=1

‖ht‖2 =
1− θT

1− θ

T∑
t=1

‖ht‖2,

which in conjunction with (18) completes the proof.

B. The Expectation Maximization Algorithm

In this section we give a short overview of the EM algorithm
and its connection to iteratively re-weighted least squares
(IRLS) algorithms. More details can be found in [33] and
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the references therein. Given the observations y, the goal of
the EM algorithm is to find the ML estimates of a set of
parameters Θ by maximizing the likelihood L(Θ) := p(y|Θ).
Such maximization problems are typically intractable, but often
become significantly simpler by introducing a latent variable
u. The EM algorithm connects solving the ML problem to
maximizing L̃(Θ) := p(y,u|Θ), if one knew u.

Consider the state-space model:

xt = Θxt−1 + ωt√
ut
,

yt = Atxt + vt, vt ∼ N (0, σ2I),
(19)

where ω ∼ N (0, I), ut is a positive i.i.d. random vector,
and the square root operator and division of the two vectors
are understood as element-wise operations. Let δ2t,j := (xt −
Θxt−1)2j for j = 1, 2, · · · , p. For an appropriate choice of the
density of (ut)j denoted by pU (·), we have [33]:

p( ωt√
ut
|Θ) = p(xt|xt−1,Θ) ∝ exp

(
−λ
∑p
j=1 κ(δ2t,j)

)
,

where

κ(z) := −2 ln

(∫ ∞
0

un/2e−uz/2pU (u)du

)
,∀z ≥ 0, (20)

and κ′(z) is a completely monotone function [61]. Random vec-
tors of the form wt = ωt√

ut
are known as Normal/Independent

[61]. Note that a choice of κ(z) =
√
z2 + ε2 results in the

ε-perturbed Laplace distributions used in our model [33]. Given
T observations (yt)

T
t=1 ∈ Rnt and conditionally independent

samples (xt)
T
t=1 ∈ Rp, we denote the objective function of the

MAP estimator by L((xt)
T
t=1 ,Θ), that is logL((xt)

T
t=1 ,Θ) =∑T

t=1 log p(yt|xt,Θ) + log p (xt|xt−1,Θ). Consider the cur-
rent estimates

{
(x̂

(l)
t )

T
t=1, Θ̂

(l)
}

at iteration l. Then:

logL((xt)
T
t=1 ,Θ)−

T∑
t=1

log p(yt|xt,Θ)

=

T,p∑
t,j=1

log

(∫
(ut)j

p
(

(ωt)j , (ut)j |Θ
)
d (ut)j

)

=
T,p∑
t,j=1

log

∫
(ut)j

p

(
(ut)j

∣∣∣((x̂
(l)
t )j

)T
t=1

, Θ̂(l)

)
p

(
(ut)j

∣∣∣((x̂
(l)
t )j

)T
t=1

, Θ̂(l)

)p((ωt)j , (ut)j |Θ
)
d (ut)j


≥

T,p∑
t,j=1

∫
(ut)j

p

(
(ut)j

∣∣∣((x̂
(l)
t )j

)T
t=1

, Θ̂(l)

)
log

 p
(

(ωt)j , (ut)j |Θ
)

p

(
(ut)j

∣∣∣((x̂
(l)
t )j

)T
t=1

, Θ̂(l)

)
 d (ut)j

=
T,p∑
t,j=1

E
(ut)j

∣∣∣∣((x̂
(l)
t )

j

)T

t=1

,Θ̂(l)

{
log p((ωt)j , (ut)j |Θ)

}
+ C, (21)

where the inequality follows from Jensen’s inequality and the
constant C accounts for terms which do not depend on Θ. The
so called Q-function is defined as:

Q
(

(xt)
T
t=1 ,Θ

∣∣∣ (x̂(l)
t

)T
t=1

, Θ̂(l)
)

:=
T∑
t=1

log p(yt|xt,Θ)

+

T,p∑
t,j=1

E
(ut)j

∣∣∣∣((x̂
(l)
t )

j

)T

t=1

,Θ̂(l)

{
log p((ωt)j , (ut)j |Θ)

}
.

(22)

The EM algorithm maximizes the lower bound given by the
Q-function of (22) instead of the log-likelihood itself. Moreover
for all t ∈ [T ], j ∈ [p] and κ(z) =

√
z2 + ε2 we have [61]:

E
(ut)j

∣∣∣∣((x̂
(l)
t )

j

)T

t=1

,Θ̂(l)

{
log p((ωt)j , (ut)j |Θ)

}
= −λ

2

(xt −Θxt−1)2j + ε2√
(x̂

(l)
t − Θ̂(l)x̂

(l)
t−1)

2
j + ε2

,

which after replacement results in the state-space model given
by (9). This expectation gets updated in the outer EM loop using
the final outputs of the inner loop. The outer EM algorithm can
thus be summarized as forming the Q-function (E-step) and
maximizing over Θ (M-step), which is known to converge to
a stationary point due to its ascent property [33]. As discussed
in Section II-B, the outer M-step is implemented by another
instance of the EM algorithm by alternating between Fixed
Interval Smoothing (E-step) and updating Θ (M-step).
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