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Abstract 

Identifying regions of the genome that are depleted of mutations can reveal potentially             
deleterious variants. Short tandem repeats (STRs), comprised of repeating motifs of 1-6bp, are             
among the largest contributors of ​de novo​ mutations in humans and are implicated in a variety                
of human disorders. However, because of the challenges STRs pose to bioinformatics tools,             
studies of STR mutations have been limited to highly ascertained panels of several dozen loci.               
Here, we harnessed novel bioinformatics tools and an analytical framework to estimate mutation             
parameters at each STR in the human genome. We then developed a model of the STR                
mutation process that allows us to obtain accurate estimates of mutation parameters at each              
STR by correlating genotypes with local sequence heterozygosity. Finally, we used our method             
to obtain robust estimates of the impact of local sequence features on mutation parameters and               
used this to create a framework for measuring constraint at STRs by comparing observed vs.               
expected mutation rates. Constraint scores identified known pathogenic variants with early           
onset effects. Our constraint metrics will provide a valuable tool for prioritizing pathogenic STRs              
in medical genetics studies. 
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Introduction 

Mutations that have negative consequences for human health are quickly eliminated from the             

population. Thus, identifying regions of the genome that are depleted of mutations has proven a               

useful strategy for interpreting the significance of ​de novo​ variation in developmental disorders​1​,             

prioritizing rare disease variants​2​, and identifying genes or non-coding regions of the genome             

that are under selective constraint​3,4​. The key idea of these approaches is that mutations              

occurring at sites evolving under a neutral model are likely to be benign, whereas mutations at                

intolerant sites are likely to have phenotypic consequences.  

 

So far, the genetics community has developed a multitude of methods to assess genetic              

constraint. These studies have highlighted the importance of a carefully calibrated model of the              

background mutation process to establish a neutral expectation. ​For instance, Samocha ​et al.​ 1,5             

determine the expected number of ​de novo variants per gene based on a neutral model               

obtained by counting mutations for each possible trinucleotide context in intergenic SNPs. In a              

different approach, fitCons​3 aggregates non-coding regions with similar functional annotations          

and compares observed variation in those regions to an expectation obtained from presumably             

neutral flanking regions. ​Notably, these methods have mainly focused on single nucleotide            

polymorphisms (SNPs) and to a lesser extent on small indels. As of today, computational              

methods to analyze and assess the functional impact of repetitive elements in the genome are               

lacking. Thus, repeat variants are commonly excluded from medical genetics analyses. 

 

To expand the range of interpretation tools to repeat elements, we focused on short tandem               

repeats (STRs) in the human genome. ​Short tandem repeats (STRs) consist of repeated motifs              

of 1-6bp and represent about 1.6 million loci​6​, rendering them one of the largest repeat classes.                

STR mutations are responsible for over 40 Mendelian disorders​7​, many of which are thought to               

arise spontaneously from ​de novo mutations​8,9​. Emerging evidence suggests STRs play an            

important role in complex traits​10 such as gene expression​11 and DNA methylation​12​. In addition,              

analyses of cancer cell lines have shown that STR instability is a chief clinical sign for tumor                 

prognosis​13​, but the functional impact of these instabilities is largely unknown.  

 

Evaluating genetic constraint requires two fundamental components: an accurate mutation          

model and a deep catalog of existing variation. Both of these have been difficult to obtain for                 
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repetitive regions of the genome. C​urrent knowledge of the STR mutation process is based on               

low-throughput studies focusing on an ascertained panel of loci that are highly polymorphic.             

These include genealogical STRs on the Y chromosome​14,15​, approximately a dozen autosomal            

STRs from the CODIS (Combined DNA Index System) set used in forensics, and several              

thousand STRs historically used for linkage analysis​16​. These studies suggest an average            

mutation rate of approximately 10​-3 ​to 10​-4 mutations per generation​14,15,17–19​. However, these loci             

likely have significantly higher mutation rates than most STRs. Moreover, well characterized            

STRs consist almost entirely of tetra- or di- nucleotide repeats, which may mutate with different               

rates and processes compared to other repeat classes. Finally, STR mutation rate studies have              

been based on small numbers of families and show substantial ​differences regarding absolute             

mutation rates and their patterns (​Supplemental Table 1​). 
 

Here, we developed a framework to measure constraint at individual STRs that benefits from an               

accurate method to obtain observed and expected mutation rates at each locus. We developed              

a robust quantitative model that harnesses population-scale genomic data to precisely estimate            

locus-specific mutation dynamics at each STR by correlating local SNP heterozygosity with STR             

variation. After extensive validation, we applied this model to estimate mutation rates ​at more              

than one million STRs using whole genome sequencing of 300 unrelated samples from d​iverse              

populations​20​. Using these results, we built a model to predict mutation parameters from local              

sequence features and measured constraint at each STR locus. We show that our constraint              

metric can be used to predict clinical relevance of individual STRs, including those in genes with                

known implications in developmental disorders. This framework will likely enable better           

assessment of the role of STRs in human traits and will inform future work incorporating STRs                

into human genetics studies. 

 

Results 

A method to estimate local mutation parameters 
We first sought to develop a method to estimate mutation parameters at each STR in the                

genome by fitting a model of STR evolution to population-scale data. A primary requirement of               

our method is a realistic model of the STR mutation process. To this end, we developed a                 

length-biased version of the traditional generalized stepwise model (​Supplemental Note 1,           
Supplemental Figure 1​) that closely recapitulates observed population-wide trends         
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(​Supplemental Note 2; Supplemental Figure 2​), including a saturation of the STR molecular             

clock over time. Our model includes three parameters: ​μ denotes the per-generation mutation             

rate, ​β describes the strength of the directional bias of mutation, and ​p describes the geometric                

mutation step size distribution. Recently, we developed a method called MUTEA that employs a              

similar model to precisely estimate individual mutation rates for Y chromosome STRs (Y-STRs)             

from population-scale sequencing panels of unrelated individuals. MUTEA models STR          

evolution on the underlying SNP-based Y phylogeny​21​. We found good concordance (r​2​=0.87)            

between MUTEA and traditional trio-based methods and high reproducibility (r​2​=0.92) across           

independent datasets. However, the main limitation of this approach is that it requires full              

knowledge of the underlying haplotype genealogy, which is difficult to obtain for autosomal loci. 

 

To analyze the mutation rate of STRs in autosomal loci, we extended MUTEA to analyze pairs                

of haplotypes. The key insight of our mutation rate estimation procedure is that different classes               

of mutations provide orthogonal molecular clocks (​Figure 1A​). Consider a pair of haplotypes             

consisting of an STR and surrounding sequence. The SNP heterozygosity is a function of the               

time to the most recent common ancestor (TMRCA) of the haplotypes and the SNP mutation               

rate. On the other hand, the squared difference between the numbers of repeats of the two STR                 

alleles (defined as the allele squared distance, or ASD) is a separate function of the TMRCA.                

The distribution of ASD values observed for a given TMRCA is determined by our mutation               

model. Using known parameters of the SNP mutation process, we can measure the local              

TMRCA to calibrate the STR molecular clock​16​. 

 

Our method takes as input unphased STR and SNP genotypes and returns maximum likelihood              

estimates of STR mutation parameters. The TMRCA is approximated by local SNP            

heterozygosity using a ​pairwise sequentially Markovian coalescent model ​22 (​Methods​). ASD is           

calculated directly from a diploid STR genotype as the squared difference in the number of               

repeats of each allele. Our maximum likelihood framework allows us to estimate parameters at a               

single STR or jointly across many loci. A potential caveat is that haplotype pairs may have                

shared evolutionary history and thus are not statistically independent, which is not expected to              

bias our estimates but will artificially shrink standard errors. To account for this             

non-independence, we adjust standard errors by calibrating to ground truth simulated and            

capillary electrophoresis datasets (​Supplemental Note 3, Supplemental Figure 3​). 
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Validating parameter estimates  
We first evaluated our estimation procedure on STR and SNP genotypes simulated on             

haplotype trees using a wide range of mutation parameters. To evaluate our method on              

unphased diploid data, we formed a set of 300 “diploids” by randomly selecting leaf pairs and                

recording the TMRCA and STR allele lengths. To test the effects of genotyping errors, we               

simulated “stutter” errors using the model described in Willems ​et al.​ 23 ​and ​used the              

expectation-maximization framework we developed previously​24 to estimate per-locus stutter         

noise and correct for STR genotyping errors.  

Our method obtained accurate per-locus estimates for ​μ for most biologically relevant parameter             

ranges (​Figure 2A​). Notably, estimates for ​p​ and ​β​ were less precise (​Supplemental Figure 4​)               

and thus downstream analyses focused on mutation rates. The main limitation of our method is               

an inability to capture low mutation rates. Informative estimates could be obtained for rates              

>​10​-6​. ​This ​presumably stems from the low number of total mutations observed (median 1              

mutation for μ=10​-6 in 300 samples). Aggregating loci, or equivalently analyzing larger sample             

sizes, gives higher power to estimate low mutation rates due to the higher number of total                

mutations observed. By analyzing loci jointly, we could accurately estimate mutation rates down             

to 10​-6 with 30 or more loci and 10​-7 with 70 or more loci (​Figure 2B​). As expected, inferring and                    

modeling stutter errors correctly removed biases induced by stutter errors (​Supplemental           
Figure 5​). 

We next evaluated the ability of our method to obtain mutation rates from population-scale              

sequencing of Y-STRs whose mutation rates have been previously characterized. We analyzed            

143 males sequenced to 30-50x by the Simons Genome Diversity Project​20 and 1,243 males              

sequenced to 4-6x by the 1000 Genomes Project​25​. We used all pairs of haploid Y               

chromosomes as input to our maximum likelihood framework. We compared our results to two              

orthogonal mutation rate estimates: our previous MUTEA method​24 and a study that examined             

500 father-son duos​14​. We found that the mutation rate estimates were consistent across             

sequencing datasets (r=0.90; p=1.5×10​-18​; n=48) (​Supplemental Figure 6​). Encouragingly, our          

rate estimates were highly similar to those reported by MUTEA​ on the SGDP dataset (r=0.89;               

p=5.9×10​-15​; n=41) (​Figure 2C​). Furthermore, our estimates were significantly correlated with           

those reported by Ballantyne ​et al. (r=0.78; p=2.0×10​-9​; n=41) (​Supplemental Figure 6​),            
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although to a lesser extent than MUTEA, likely reflecting the information lost by ignoring the               

majority of the Y-phylogeny.  

Finally, we evaluated our method on a subset of well characterized autosomal diploid loci. We               

first analyzed the forensics CODIS markers, which have well-characterized mutation rates           

estimated across more than a million meiosis events        

(​http://www.cstl.nist.gov/strbase/mutation.htm​). Mutations were highly concordant with published       

CODIS rates (r=0.90, p=0.00016, n=11) (​Supplemental Figure 7​). We also analyzed 1,634 loci             

in ​85,289 Icelanders ​from the largest study of autosomal ​de novo​ STR mutation to date​17​.               

Mutation rates were in strong agreement (​Figure 2D; Supplemental Figure 8​), which is             

especially encouraging given that the Sun ​et al.​ STR​ genotypes were obtained using an              

orthogonal method of capillary electrophoresis.  

Characterizing the STR mutation process using diverse whole genomes 
Next, we applied our mutation rate estimation method genome-wide. We analyzed 300            

individuals from diverse genetic backgrounds sequenced to 30-50x coverage by the SGDP            

Project​20​. We profiled STRs using BWA-MEM​26 as input into lobSTR​27 (​Methods​). High quality             

SNP genotypes were obtained from our previous study​20​. We used these as input to PSMC​22 to                

estimate the local TMRCA between haplotypes of each diploid individual. For each locus, we              

adjusted genotypes for stutter errors (​Supplemental Figure 9; Supplemental Table 2​,           

Methods​) and used adjusted genotypes as input to our mutation rate estimation technique.             

After filtering (​Method​s​), 1,251,510 STR loci with an average of 249 calls/locus remai ​ned for              

analysis (​Supplemental Dataset 1​). Results were highly concordant with mutation rates           

predicted by extrapolating MUTEA to autosomal loci ​(r=0.71; p<10​-16​; n=480,623)          

(​Supplemental Figure 10​), suggesting that our mutation rate estimation is robust even in the              

case of unphased genotype data from modest sample sizes. 

Per-locus mutation rates for each class of repeats varied over several orders of magnitude,              

ranging from 10​-8 ​to 10​-2 mutations per locus per generation (​Supplemental Figure 11;             
Supplemental Table 3​). Median mutation rates were highest for homopolymer loci (log​10​μ=-5.0​)            

and increased with the length of the repeat motif, with most pentanucleotides and             

hexanucleotides below our detection threshold. Interestingly, homopolymers also showed         

markedly higher length constraint compared to other loci, suggesting an increased pressure to             

maintain specific lengths. Step size distributions also differed by repeat class. Homopolymers            
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(median p=1.00) and to a lesser extent repeats with motif lengths 3-6 (median p=0.95) almost               

always mutate by a single repeat unit. On the other hand, dinucleotides are more likely to                

mutate by multiple units at once, consistent with previous studies​16​. Overall, our results highlight              

the diverse set of influences on the STR mutation process, and suggest there is limited utility to                 

citing a single set of STR mutation parameters. 

A framework for measuring STR constraint  
Encouraged by the accuracy of our per-locus autosomal parameter estimates, we sought to             

create a framework to evaluate genetic constraint at STRs by comparing observed to expected              

mutation rates. Our framework relies on generating robust predictions of per-locus mutation            

rates based on local sequence features and comparing the departure of the observed rates from               

this expectation (​Figure 3A​). STRs whose observed mutation rates are far lower than expected              

are assumed to be under selective constraint, and thus more likely to have negative phenotypic               

consequences. 

 

We began by evaluating whether local sequence features can accurately predict STR mutation             

rates. We examined the relationship between STR mutation rate and a variety of features,              

including total STR length, motif length, replication timing, and motif sequence (​Supplemental            
Figure 12​). While all features were correlated with mutation rate (​Supplemental Table 4​), total              

uninterrupted repeat sequence length and motif length were by far the strongest predictors, as              

has been previously reported by many studies​17,24​. These features were combined into a linear              

regression model to predict per-locus mutation rates. We stringently filtered the training data to              

consist of presumably neutral (intergenic) loci with the best model performance. Analysis was             

restricted to STRs with motif lengths of 2-4bp with reference length ≥20bp and small standard               

errors (​Methods​), since this subset showed mutation rates primarily in the range that our model               

can detect. Using this filtered set of markers, a linear model exp​lained 65% of var​iation in                

mutation rates in an independent validation set (​Figure 3B​).  

 

We next developed a metric to quantify constraint at each STR by comparing observed to               

expected mutation rates (​Supplemental Dataset 1​). Our constraint metric is calculated as a             

Z-score, taking into account errors in both the predicted and observed values (​Methods​).             

Negative Z-scores denote loci that are more constrained than expected, and vice versa.             

Constraint scores for loci with detectable mutation rates followed the expected standard normal             
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distribution (​Supplemental Figure 13​). However, loci with mutation rates below our detection            

threshold of 10​-6 do not have reliable standard error estimates and had downward biased              

scores. Nevertheless, these loci are informative of a constraint signal for instances where the              

predicted mutation rate is high but the observed rate is below our detection threshold. Thus,               

rather than analyzing distributions of raw constraint scores, we binned scores by deciles and              

examined enrichments for functional annotations in each bin. 

 

STR constraint scores give insights into human phenotypes 
Observed Z-scores match biological expectations across genomic features. Introns, intergenic,          

and 3’-UTR regions closely matched neutral expectation (​Figure 3C​). On the other hand, STRs              

in coding exons showed significantly reduced mutation rates compared to the null model. These              

trends were recapitulated in the expected mutation rates (​Figure 3D​), suggesting that STRs             

under constraint are also under evolutionary pressure to maintain sequence features           

contributing to lower mutability. In contrast to these strong levels of constraint in coding exons,               

the STRs that we had previously identified to act as expression quantitative trait loci (eQTLs)​28               

showed a marked lack of constraint, consistent with previous observations of eQTL SNPs in the               

ExAC dataset​29​ which have been shown to be enriched for genes with low constraint scores.  

 

Constraint can provide a useful metric to prioritize potential pathogenic variants and interpret the              

role of individual loci in human conditions. To determine whether our score implicates a role for                

STRs in genes with specific characteristics, we also examined the relationship between STR             

constraint and gene expression levels across tissues as measured by GTeX​30​. Constraint            

scores were significantly stronger in the top 20% of expressed genes in nearly every tissue               

(​Figure 4A; Supplemental FIgure 14​). STRs were most constrained in genes highly expressed             

in brain-related tissues. Intriguingly, this is consistent with the fact that most known pathogenic              

STRs results in neurological or psychiatric phenotypes​31​. 

 

STRs implicated in early onset diseases show significantly higher constraint than expected            

(​Figure 4B​). We focused on STRs that can be genotyped from high throughput sequencing              

data and are involved in congenital disorders. First, we examined polyalanine and polyglutamine             

tracts in ​RUNX2.​ Importantly, even mild expansion of four glutamine residues creates congenital             

cleidocranial dysplasia (OMIM: 119600)​32,33​.​ Both repeats showed constrained mutation rates,          

with the polygluatmine repeat in the most constrained bin (Z=-11.3). Next, we tested a              
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polyalanine expansion in ​HOXD13​ , which causes a severe form of synpolydactyly (OMIM:            

186000)​. Again, a mild expansion (7 additional residues) has been shown to be pathogenic​34​.              

This repeat was on the boundary of the most severe constraint bin (Z=-10.9). As a negative                

control, we also tested constraint at the CODIS loci used in forensics, which are highly               

polymorphic and likely neutral. As expected, the CODIS markers have weak constraint scores,             

and exhibit slightly higher mutation rates than expected (Z>0) (​Figure 4B,C​).  

 

More broadly, we found STRs are highly enriched in genes that are involved in developmental               

processes (p=9.78×10​-38​). Consistent with this result, three of the ten most highly constrained             

coding STRs in our dataset are in genes with previously reported developmental disorders that              

have yet to be associated with pathogenic STRs: ​GATA6 (congenital heart defects, OMIM:             

600001), ​SOX11​ (mental retardation, OMIM: 615866), and ​BCL11B (Immunodeficiency 49,          

OMIM: 617237) (​Supplemental Table 5​). We found that pathogenic STRs of late onset STR              

expansions disorders such as cerebellar ataxias were not highly constrained, and showed            

mutation rates very close to predicted values (​Figure 4B​). These disorders often do not occur               

until the fourth or fifth decade of life​31​, and thus are not expected to be under strong purifying                  

selection. Taken together, these results suggest STR constraint scores will provide a useful             

metric by which to prioritize rare pathogenic variants involved in severe developmental            

disorders. 

 

To facilitate use by the genomics community, genome-wide results of our mutational constraint             

analysis are provided in ​Supplemental Dataset 1​, which can be analyzed with standard             

genomics tools such as BEDtools​35​. 

Discussion 

Metrics for quantifying genetic constraint by comparing observed to expected variation have            

provided a valuable lens to interpret the impact of ​de novo SNP variants. These have been                

widely used for applications including quantifying the burden of ​de novo variation in             

neurodevelopmental disorders​36,37​, identifying individual genes constrained for missense or loss          

of function variation​29​, and more recently to measure constraint in individual exons or regulatory              

elements​4,29,38​. However, the mutation rate at SNPs is sufficiently low that any given nucleotide              

has only a low probability of being covered by a polymorphism even in very large datasets of                 
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human variation (e.g. a dataset of more than 60,000 exomes contained about 1 polymorphism              

per 8 nucleotides​29​). Thus, the information provided by SNP variation is never sufficient to              

provide a direct measurement of the likely evolutionary constraint on a particular mutation. In              

contrast, the much higher mutation rate in STRs makes it possible to precisely measure              

constraint on a per-site basis even with as few as 300 whole genomes. 

 

We combined a deep catalog of STR variation​20 with a realistic model of the STR mutation                

process to develop an accurate method for measuring per-locus STR mutation parameters by             

correlating STR variation with local sequence heterozygosity across haplotype pairs. We used            

this method to estimate mutation rates at more than 1 million individual STRs in the genome.                

Observed STR mutation rates vary over several orders of magnitude, suggesting it is not useful               

to cite a single mutation rate for all STRs. Median genome-wide mutation rates were far lower                

than previously reported STR rates​17–19,39​, consistent with the fact that most well studied STR              

panels to date were specifically ascertained for their high variability. Our estimates confirm             

many known trends in STR mutation, such as the dependence of mutation rate on total STR                

length and the tendency of dinucleotide repeats to mutate in larger units than tetranucleotides​17​.              

Moreover, this large dataset allows us to exclude the possibility that certain sequence features,              

including recombination and local GC content, play a strong role in determining STR mutation              

rates.  

 

We showed that by comparing observed to expected mutation rates, we can measure genetic              

constraint at individual loci and use our constraint metric to prioritize potentially pathogenic             

variants. Importantly, our approach provides a biologically agnostic approach to assessing the            

importance of individual loci, as it relies entirely on observed genetic variation. While our              

analyses focused on STRs, the framework developed here can be easily extended to any class               

of repetitive variation for which accurate genotype panels are available. In future studies, we              

envision this work will provide a much needed framework to interpret the dozens of ​de novo                

variants at STRs and other repeats arising in each individual, especially in the context of severe                

early onset disorders. Beyond analyzing ​de novo variation, accurate models of STR mutation             

will allow scanning for STRs under selection​40​, identifying rapidly mutating markers for forensics             

or genetic genealogy​21,41​, and enabling improved statistical methods for incorporating STRs into            

quantitative genetics studies. 
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Our mutation rate estimation method and constraint metric face several limitations. First,            

estimating mutation rates in several hundred samples is only accurate for mutation rates down              

to approximately 10​-6​. Loci with slower mutation rates produce biased results, limiting our ability              

to predict and measure mutation rates at a large number of loci, including the majority of protein                 

coding STRs. While we can detect general signals of constraint for slowly mutating STRs, larger               

sample sizes will allow for more accurate constraint scores and thus more informative             

prioritization. Second, our method analyzes pairs of haplotypes rather than the entire            

evolutionary history of a locus. While this has the advantage of allowing estimation across              

unphased data, it discards valuable information present in the full haplotype tree, and thus limits               

the scope of models that can be considered. For example, it precludes modeling allele              

length-specific mutation rates, which requires estimating ancestral states on the full haplotype            

tree. Finally, there are additional aspects of the STR mutation process not modeled here. Our               

method focus on short stepwise mutations occurring at relatively stable STRs. Unstable            

expansions, such as those occurring in trinucleotide repeat disorders, likely mutate by different             

models. Our model also ignores the effect of sequence interruptions and interaction between             

alleles, both of which have been hypothesized to influence STR mutation patterns​21,40,42​. 

 

Future bioinformatic advances will likely overcome many of these issues and improve the             

precision of our estimates. In particular, while our method works on unphased data, phased              

STR and SNP haplotypes would allow analysis of the entire haplotype tree at a given locus as is                  

done by MUTEA, improving our accuracy and allowing us to consider a broader range of               

mutation models. Additionally, our current tools are limited to STRs that can be spanned by               

short reads, and thus exclude many well known pathogenic loci such as those involved in               

trinucleotide repeat expansion disorders. We envision that long read and synthetic long read             

technologies will both enable analysis of a broader class of repeats and provide an additional               

layer of phase information. Finally, larger sample sizes will allow more accurate analysis of              

constraint for slow-mutating loci. Taken together, these advances will provide a valuable            

framework for interpreting mutation and selection at hundreds of thousands of STRs in the              

genome and will help prioritize STR mutations in clinical studies. 
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Methods 
STR mutation model 
We model STR mutation using a discrete version of the Ornstein-Uhlenbeck process described             

in detail in ​Supplemental Note 1​. Our model assumes STR mutations occur at a rate of                μ  

mutations per locus per generation according to a step-size distribution with first and second              

moments: 

[(a )| a ] aE i+1 − ai i =  − β i  
[(a ) | a ] σE i+1 − ai

2
i =  2  

where is the length of the STR allele after mutation and is the length after mutation ai           i   ai+1       

. This implies that long alleles (>0) tend to decrease back toward 0 and short alleles (<0)i + 1                  

tend to increase toward 0. For all analyses, all alleles are assumed to be relative to the major                  

allele, which is set to 0. 

 

Mutation parameter estimation 
We extended the MUTEA framework to estimate parameters at diploid loci for which the              

underlying haplotype tree is unknown. For a each sample 1..n genotyped at locus j, we obtain t​ij ​,                 

the TMRCA between the two haplotypes of sample i at locus j, and a distribution G​ij ​, where                 

G​ij ​(a,b) gives the posterior probability that sample i has genotype (a,b). We initially assume that               

haplotype pairs are independent, and maximize the following likelihood function at locus j: 

(Θ |D ) Π P (G |Θ, )Lj  j =  i ij tij  

(G |Θ) G (a, ) A((a ) | t )P ij = Σ(a,b) ij b − b 2
ij  

Where , , and gives the probability of {μ, β, p}Θ =     (G , ), (G , ) ...(G , t )}Dj = { 1j t1j  2j t2j nj  nj   (x|t)A     

observing a squared distance of x between alleles on haplotypes with a TMRCA of t. We used                 

the Nelder-Mead algorithm to minimize the negative of the log-likelihood and imposed            

boundaries of .10 , .05], β 0, .9], p 0.7, 0.9]μ ∈ [ −8 0  ∈ [ 0  ∈ [   

 

To compute the function , we first build a transition matrix of size , where is the set    A        M     L × L   L    

of allowed alleles. gives the probability that allele ​a​ mutates to allele ​b in a single   [a, ]M b               

generation. Step sizes were set based on the model described in ​Supplemental Note 1​: 

[a , a ]   μ(u p(1 ) )   k  M t  t + k =  t − p k−a −1t > 0  
[a , a ]  μ( dp(1 ) )   k  M t  t + k =  − p k−a −1t < 0  

[a , a ]  (1 )   k  M t  t + k =  − μ = 0  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2016. ; https://doi.org/10.1101/092734doi: bioRxiv preprint 

https://doi.org/10.1101/092734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

where  and .ut = 2
1−βp xt dt = 2

1+βp xt   

M represents a stochastic process, and thus gives transition probabilities along a branch T       MT         

generation long. A single row gives the expected allele frequency spectrum of a locus for    [a, ]MT :           

which the ancestral allele was ​a and the MRCA was T generations ago. We can use this to                  

derive the probability of observing a given squared distance between two alleles separated by T               

generations:  

(x|t, ) Σ M [a, ]M [a, ]A a =  
i=1..L−√(x)

  t i t i + √(x)  

In our data, we do not know the ancestral allele ​a for each pair of haplotypes. However, under                  

our model of STR evolution, does not depend on the ancestral allele and so we assume 0 as     A              

the ancestral allele for simplicity. Notably, we have assumed haplotype pairs are statistically             

independent. While this does not bias our results, standard errors must be adjusted as              

described in ​Supplemental Note 3​. 
 

Joint estimation of mutation parameters across multiple loci 
This approach can be easily extended to estimate mutation parameters in aggregate by jointly              

maximizing loci across multiple loci at once: 

(Θ |D ) Π L(Θ|D )L   =  j j  

To minimize computation and because and p tended to be less consistent across loci, we first     β            

perform per-locus analysis to obtain individual estimates for and p. We then hold these        β       

parameters constant at the mean value across all loci and only maximize the joint likelihood               

across .μ  

 
Simulating SNP-STR haplotypes 
We used fastsimcoal​43 to simulate coalescent trees for 600 haplotypes using an effective             

population size of 100,000. We then forward-simulated a single STR starting with a root allele               

of 0 using specified values of , , and . Mutations were generated according to a      μ  β    σ2 = p2
2−p        

Poisson process with rate and following the model described above. We chose 300    /μλ = 1           

random pairs of haplotypes to form “diploid” individuals to use as input to our estimation               

method. We simulated reads for each locus assuming 10x sequencing coverage, with each read              

equally likely to originate from each allele. Stutter errors were simulated using the model              

described in Willems ​et al.​ 24 with , , and . This indicates that stutter noise      .1u = 0  .05d = 0   .9ρs = 0       
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causes the true allele to expand or contract with 10% or 5% frequency, respectively, and that                

error sizes are geometrically distributed with 10% chance of mutating by more than one repeat               

unit. For estimating per-locus parameters, we performed 10 simulations with each set of             

parameters.  

 
Datasets 
 
Previously published mutation rate estimates 

MUTEA mutation rate and length bias estimates for the 1000 Genomes dataset were obtained              

from Table S1 in Willems ​et al.​ 24​ . ​De novo​ Y-STR mutation rate estimates for were obtained                

from Table S1 of Ballantyne ​et al.​ 24​ . CODIS mutation rates were obtained from             

http://www.cstl.nist.gov/strbase/mutation.htm​.  

 

Annotations 

Local GC content and sequence entropy were obtained from the “strinfo” file included in the               

lobSTR hg19 reference bundle. Missense constraint scores were downloaded from the ExAC            

website ​http://exac.broadinstitute.org/downloads​. GTeX RPKM expression values for each        

tissue were downloaded from the GTeX portal ​http://www.gtexportal.org/home/datasets (Gene         

RPKM). 

 

STR genotyping 
 
Profiling STRs from short reads 

Raw sequencing reads for the SGDP dataset were aligned using BWA-MEM. Alignments were             

used as input to the allelotype tool packaged with lobSTR​27 version 4.0.2 with non-default flags               

“—filter-mapq0 –filter-clipped –max-repeats-in-ends 3 –min-read-end-match 10 –dont-include-pl       

–min-het-freq 0.2 –noweb”. ​STR genotypes are available on dbVar with accession ​nstd128​.            

Y-STRs for the 1000 Genomes data were previously profiled​27 and were preprocessed as             

described in​24​. 
 
Filtering to obtain high quality STR calls 

Y-STR calls for SGDP were filtered using the lobSTR_filter_vcf.py script available in the lobSTR              

download with arguments “--loc-max-ref-length 80 --loc-call-rate 0.8 --loc-log-score 0.8 --loc-cov          

3 --call-cov 3 --call-dist-end 20 --call-log-score 0.8” and ignoring female samples. Autosomal            
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samples were filtered using “--loc-max-ref-length 80 --loc-call-rate 0.8 --loc-log-score 0.8          

--loc-cov 5 --call-cov 5 --call-dist-end 20 --call-log-score 0.8”. 

 
Calculating local TMRCA 
As described in​20​, we used the ​pairwise sequential Markovian coalescent (PSMC)​22 to infer local              

TMRCA across the genome in each sample. For each region overlapping an STR, we              

calculated the geometric mean of the upper and lower heterozygosity estimates returned by             

PSMC. We scaled heterozygosity to TMRCA based on the genome-wide average PSMC            

estimate (0.00057) of a French sample with a previously estimated genome-wide average            

TMRCA of 21,000 generations​17​. To accommodate for errors in this scaling process, final             

mutation rate estimates were scaled to match the mean values of published ​de novo​ rates (see                

below).  

 

Pairwise Y chromosome analysis 
TMRCAs for each pair of SGDP Y-chromosomes was calculated using pairwise sequence            

heterozygosity. We scaled this to TMRCA using the relationship , where is the         /(2μ )hi Y SNP   hi    

heterozygosity of pair and is the Y-chromosome SNP mutation rate. was set to   i   μY SNP        μY SNP     

2.1775×10​-8 as reported by Helgason ​et al.​ 44​ . For the 1000 Genomes set, we obtained a               

Y-phylogeny that was built by the 1000Y analysis group​45​. We scaled the tree using the method                

described in​24​. For each dataset, we input used pairwise TMRCA and allele squared distance              

estimates as input to our maximum likelihood procedure. 
 
Filtering and scaling mutation parameters 

Before downstream analyses, per-locus mutation results were filtered to exclude STRs with            

sequence interruptions, loci where a standard error could not be calculated, and loci with a               

reported standard error of 0, indicating the likelihood maximization procedure hit a boundary             

condition.  

 

Our TMRCA estimates, and thus mutation rate estimates, scale linearly with the choice of SNP               

mutation rate. To account for this and to compare estimates between datasets, we scaled our               

mutation rates by a constant factor such that the mean STR mutation rates between datasets               

were identical. Genome-wide estimates are scaled based on comparison with CODIS rates. 
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Measuring STR constraint 
Predicting mutation rates from local sequence features 

We trained a linear model to predict log​10 mutation rates from local sequence features including               

GC content, replication timing, sequence entropy, motif sequence, motif length, total STR            

length, and uninterrupted STR length. The model was built using presumably neutral intergenic             

loci, with 75% of the loci reserved for training and 25% for testing. While all features were                 

correlated with mutation rates, the best test performance was achieved using only motif length              

and uninterrupted STR length. Models were built using the python statsmodels package. 

 

Model training was restricted to STRs whose mutation rates could be reliably estimated. We              

filtered STRs with total length <20bp, since the majority of shorter STRs returned biased              

mutation rates at the optimization boundary of 10​-8​. We further filtered STRs with standard              

errors equal to 0, >0.1, or undefined (usually indicating the lower optimization boundary of 10​-8               

was reached). However, these loci were included in testing and in downstream analysis as the               

majority of coding STRs fell into this category.  

 

Calculating Z-scores   

Constraint scores are calculated for each locus ​i​  as: 

 Z i =  μ − E[μ ]i i

  √SE[μ ] /2 + V ar[μ /2i
2

i

 

Where is the observed mutation rate, is the standard error of the observed mutation μi       E[μ ]S i         

rate, is the predicted mutation rate, and is the variance of the prediction. In all [μ ]E i       ar[μ ]V i         

cases,  refers to the log​10​
 ​mutation rate, with the log​10 ​notation omitted for simplicity.μi  

 

Constraint score analysis 

For each tissue, we divided all expressed genes into two sets: highly expressed (top 20%) and                

moderately expressed (bottom 80%, excluding genes with RPKM=0). We used a           

Kolmogorov-Smirnov test implemented in the python scipy.stats.ks_2samp method to determine          

whether constraint scores showed significantly different distributions in each set. 

 

GO analysis was performed using goatools (​https://github.com/tanghaibao/goatools​). OMIM        

disease annotations were accessed on December 8, 2016.  
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Code and data availability 
Code and data used in this study are available at          

https://github.com/gymreklab/mutea-autosomal ​. ​Supplemental Dataset 1 ​is available at       

https://s3-us-west-2.amazonaws.com/strconstraint/Gymrek_etal_SupplementalData1.bed.gz​.  
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Figure legends 
 

Figure 1: Estimating STR mutation parameters from diploid data. (A) SNPs and STRs give              
orthogonal molecular clocks. ​The tree represents an example evolutionary history of an STR             
locus. Red dots denote STR mutation events. Blue dots represent SNP mutation events. Black              
branches denote an observed diploid locus, consisting of two haplotypes from the tree. (B)              
Correlating local TMRCA with STR genotypes allows per-locus mutation rate estimation.           
For each diploid STR call, we use SNP heterozygosity to extract the TMRCA (blue) of the                
surrounding region and the length difference between STR alleles (ASD, in red). Our STR              
mutation model describes the expected ASD for a given TMRCA (solid black line). Gray dots               
give data points for each sample, red dots represent three example samples, and the dashed               
black line gives the sliding window mean. 

Figure 2: Accurate estimation of STR mutation parameters from simulated data. (A)            
Per-locus estimates of mutation rate. ​Solid black lines give simulated values. Blue dots give              
per-locus estimates. Dashed gray lines give boundaries enforced during numerical optimization.           
(B) Jointly estimating parameters across loci allows inference of slow mutation rates.            
Black lines give joint estimates for different simulated mutation rates (circles=10​-8​,           
triangles=10​-7​, diamonds=10​-6​, squares=10​-5​). Dashed gray lines give simulated values. ​(C)          
Y-STR mutation rate parameters are highly concordant across estimation methods. ​Our           
mutation rates and compared to those returned by MUTEA. Gray dashed lines denote the              
diagonal. ​(D) Autosomal mutation rate estimates are highly concordant with ​de novo            
studies. ​Dashed lines give median estimate across loci. Solid lines give empirical mutation rate              
from trio data analyzed by Sun ​et al. ​ Red=dinucleotides; blue=tetranucleotides. 
 
Figure 3: A framework for measuring STR constraint. (A) Schematic of constraint            
framework. ​In the model training phase, a linear model is trained to predict mutation rates from                
local sequence features. In the estimation phase, constraint is measured by comparing            
predicted mutation rates to observed rates. ​(B) Sequence features are predictive of mutation             
rate​. Comparison of predicted vs. observed mutation rates for a held out test set of intergenic                
loci. Gray dots denote loci with high or undefined standard errors that were excluded from               
model training. ​(C) Enrichment of gene annotations by constraint bin. ​X-axis gives bins             
defined by Z-score deciles. Y-axis gives the fold enrichment of each annotation in each bin. The                
dashed line gives the boundary between constrained (Z<0) and non-constrained (Z>=0) scores.            
(D) Predicted mutation rates by annotation. ​For ​(C) ​and (D), ​missense constrained denotes             
genes with missense constraint score >3 as reported by ExAC. 
 
Figure 4: Constraint scores can be used for STR prioritization. (A) Enrichment of             
constrained STRs in highly expressed genes. ​Red denotes brain tissues. Gray line gives             
p=0.05. Constraint score distributions were compared in the top 20% vs. the bottom 80% of               
expressed genes in each tissue. ​(B) Z-scores for example loci. ​Black gives CODIS forensics              
markers. Blue give known pathogenic STRs. ​(C) Example distributions of observed vs.            
expected mutation rates. ​White bars=expected mutation rate distribution. Solid bars=observed          
mutation rate distribution. 
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