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Abstract10

‘Cell-based’ models provide a powerful computational tool for studying the mechanisms un-11

derlying the growth and dynamics of biological tissues in health and disease. An increasing12

amount of quantitative data with cellular resolution has paved the way for the quantitative13

parameterisation and validation of such models. However, the numerical implementation of14

cell-based models remains challenging, and little work has been done to understand to what ex-15

tent implementation choices may influence model predictions. Here, we consider the numerical16

implementation of a popular class of cell-based models called vertex models, which are often17

used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated18

as a tessellation of polygons and the vertices of these polygons move due to mechanical forces19

originating from the cells. Such models have been used extensively to study the mechanical20

regulation of tissue topology in the literature. Here, we analyse how the model predictions21

may be affected by numerical parameters, such as the size of the time step, and non-physical22

model parameters, such as length thresholds for cell rearrangement. We find that vertex posi-23

tions and summary statistics are sensitive to several of these implementation parameters. For24

example, the predicted tissue size decreases with decreasing cell cycle durations, and cell re-25

arrangement may be suppressed by large time steps. These findings are counter-intuitive and26

illustrate that model predictions need to be thoroughly analysed and implementation details27
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carefully considered when applying cell-based computational models in a quantitative setting.28

1 Introduction29

Computational modelling is increasingly used in conjunction with experimental studies to un-30

derstand the self-organisation of biological tissues [1,2]. Popular computational models include31

‘cell-based’ models that simulate tissue behaviour with cellular resolution. Such models natu-32

rally capture stochastic effects and heterogeneity when only few cells are present and can be33

used to explore tissue behaviour when complex assumptions on the cellular scale prevent us34

from deriving continuum approximations on the tissue scale. The applications of cell-based35

models range from embryonic development [3–7], to wound healing [8] and tumour growth [9].36

However, the numerical solution of cell-based models remains challenging since multi-scale im-37

plementations of such models, coupling processes at the subcellular, cellular, and tissue scales,38

may suffer from numerical instabilities [10, 11], and many such models include parameters of39

numerical approximation or parameters that have no direct physical correlate. These issues40

are of growing importance as cell-based models become used in an increasingly quantitative41

way [12–14]. Thus, we need to be aware of any impacts that numerical implementation choices42

may have on model predictions.43

Here, we analyse a well-established class of cell-based model, the vertex model [15], to under-44

stand to what extent choices of numerical implementation and non-physical model parameters45

may affect model predictions. Vertex models were originally developed to study inorganic struc-46

tures, such as foams [16] and grain boundaries [17,18], where surface tension and pressure drive47

dynamics. They have since been modified to study epithelial tissues [19–22], one of the major48

tissue types in animals. Epithelia form polarized sheets of cells with distinct apical (‘top’) and49

basal (‘bottom’) surfaces, with tight lateral attachments nearer their apical surface. The growth50

and dynamics of such sheets play a central role in morphogenesis and wound healing, as well51

as in disease; for example, over 80% of cancers originate in epithelia [23]. In two-dimensional52

vertex models, epithelial cell sheets are approximated by tessellations of polygons representing53

cell apical surfaces, and vertices (where three or more cells meet) move in response to forces due54

to growth, interfacial tension and hydrostatic pressure within each cell (figure 1A-C). Vertex55

models typically include cell growth and proliferation. In addition, cells exchange neighbours56
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through so-called T1 transitions (figure 1D) whenever the length of a cell-cell interface falls57

below a threshold, and any triangular cell whose area falls below a threshold is removed by a58

so-called T2 transition (figure 1E).59

Vertex models have been used to study a variety of processes in epithelial tissues [3–6,24–38].60

These processes include growth of the Drosophila wing imaginal disc [3, 4], migration of the61

visceral endoderm of mouse embryos [5], and tissue size control in the Drosophila embryonic62

epidermis [31]. A common approach in such studies is to consider forces on vertices arising as63

a result of minimizing the total stored energy in the tissue. The functional form for this total64

stored energy varies between applications, but is typically chosen to reflect the effect of the65

force-generating molecules which localise at or near the apical surface. This energy function66

is then used either to derive forces that feed into a deterministic equation of motion for each67

vertex, which must be integrated over time [4, 24, 28], or else minimized directly assuming the68

tissue to be in quasistatic mechanical equilibrium at all times [3, 25]. A third approach is to69

apply Monte Carlo algorithms to find energy minima [39,40].70

Previous theoretical analyses of vertex models have elucidated ground state configurations71

and their dependence on the mechanical parameters of the model [41], inferred bulk material72

properties [42–44], and introduced ways to superimpose finite-element schemes for diffusing73

signals with the model geometry [45]. In other work, vertex models have been compared to74

lattice-based cellular Potts models and other cell-based modelling frameworks [46,47].75

In the case of vertex models of grain boundaries, the authors of [18] proposed an adaptive76

time-stepping algorithm to accurately resolve vertex rearrangements without the need of ad-77

hoc rearrangement thresholds and provide a numerical analysis of the simulation algorithm.78

However, vertex models in that context only consider energy terms that are linear in each grain-79

grain (or cell-cell) interface length, whereas the energy terms in vertex models of biological cells80

typically depend non-linearly on cell areas and perimeters.81

Importantly, previous studies such as [18] do not analyse to what extent changes in hid-82

den model parameters, such as parameters of numerical approximation, like the size of the83

time step, or non-physical model parameters, such as length thresholds for cell rearrangement,84

can influence vertex configurations and other summary statistics. Here, we analyse a force-85

propagation implementation of vertex models [48, 49] as applied to a widely studied system in86
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developmental biology, the larval wing disc of the fruit fly Drosophila [3, 4, 25]. We conduct87

convergence analyses of vertex positions with respect to all numerical and non-physical model88

parameters, and further analyse to what extent experimentally measurable summary statistics89

of tissue morphology, such as distributions of cell neighbour numbers and areas, depend on90

these parameters.91

We find that vertex model predictions are sensitive to the length of cell cycle duration, the92

time step, and the size of the edge length threshold for cell rearrangement. Specifically, vertex93

configurations do not converge as the time step, the edge length threshold for cell rearrangement,94

or the area threshold for cell removal are reduced. For example, reductions in the cell cycle95

duration may promote cell removal and reduce the size of the simulated tissue by up to a factor96

of two. We find that both the size of the time step and the size of the edge length threshold can97

influence the rate of cell rearrangement. Counterintuitively, the rate of cell removal is robust98

to changes in the area threshold for cell removal over multiple orders of magnitude. Further,99

analysing the active forces within the tissue reveals that vertices are subject to stronger forces100

during periods when cells grow and divide.101

The remainder of the paper is organised as follows. In section 2, we describe our vertex102

model implementation of growth in the Drosophila larval wing disc. In section 3 we present our103

results. Finally, we discuss our results and draw conclusions for the use of cell-based models in104

quantitative biology in sections 4 and 5.105

2 Methods106

We consider a vertex model of the growing Drosophila wing imaginal disc, a monolayered107

epithelial tissue that is one of the most widely used applications of vertex models. The wing108

imaginal disc initially comprises around 30 cells, and undergoes a period of intense proliferation109

until there are around 10,000 or more cells [3, 25]. Here, we outline the technical details of our110

model implementation. We start by introducing the equations of motion, then describe the111

initial and boundary conditions and implementations of cell growth and neighbour exchange.112

Equations of motion In two-dimensional vertex models epithelial tissues are represented as113

tessellations of polygons that approximate the apical cell surfaces. We propagate the position114
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Figure 1: Two-dimensional vertex models represent cells in an epithelial tissue as polygons and
allow different types of vertex rearrangement. (A-C) Snapshots of an example vertex model
simulation used in our analysis. The growing in silico tissue undergoes five rounds of cell
division. (A) The initial condition is a hexagonal packing of 36 cells. (B) Simulation progress
after 6,750 time units at an intermediate stage of tissue growth. The tissue boundary is allowed
to move freely and individual cells grow before division. (C) Snapshot of the tissue at the end
of the simulation at 27,000 time units. After the fifth (last) round of divisions the tissue relaxes
into a stable configuration. Simulated tissues in (B-C) are rescaled to fit the view, a scale bar
of fixed length is added for comparison. Parameter values are listed in table 1. Throughout the
simulation, vertices may rearrange by T1 transitions (D), T2 transitions (E), boundary merging
(F), and cell division (G).

of each vertex over time using an overdamped force equation, reflecting that cell junctions are115

not associated with a momentum. The force equation takes the form116

µ
dxi
dt

= −∇iE, (1)

where µ is the friction strength, xi(t) is the position vector of vertex i at time t, and E denotes117

the total stored energy. The number of vertices in the system may change over time due to118

cell division and removal. The symbol ∇i denotes the gradient operator with respect to the119

coordinates of vertex i. The total stored energy takes the form120

E =
∑
α

K

2
(Aα −A0,α)2 +

∑
〈i,j〉

Λli,j +
∑
α

Γ

2
P 2
α. (2)
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Here, the first sum runs over every cell α in the tissue, Aα denotes the area of cell α and A0,α121

is its target area. This term penalises deviations from the target area for individual cells, thus122

describing cellular bulk elasticity. The second sum runs over all cell edges 〈i, j〉 in the sheet and123

penalizes long edges (we choose Λ > 0), representing the combined effect of binding energy and124

contractile molecules at the interface between two cells. The third sum also runs over all cells,125

and Pα denotes the perimeter of cell α. This term represents a contractile acto-myosin cable126

along the perimeter of each cell [3]. The parameters K, Λ, and Γ together govern the strength127

of the individual energy contributions.128

Before solving the model numerically, we non-dimensionalise it to reduce the number of free129

parameters [3]. Rescaling space by a characteristic length scale, L, chosen to be the typical130

length of an individual cell, and time by the characteristic timescale, T = µ/KL2, equations131

(1) and (2) become132

dx′i
dt′

= −∇′iE′, (3)

E′ =
∑
α

1

2
(A′α −A′0,α)2 +

∑
〈i,j〉

Λl′i,j +
∑
α

Γ

2
P ′2α , (4)

where x′i, A
′
α, A′0,α, l′i,j and P ′α denote the rescaled ith vertex positions, the rescaled area and133

target area of cell α, the rescaled length of edge 〈i, j〉, and the rescaled cell perimeter of cell134

α, respectively. The symbol ∇′i denotes the gradient with respect to the rescaled ith vertex135

position. In the non-dimensionalised model, cell shapes are governed by the rescaled target136

area of each cell A′0,α and the rescaled mechanical parameters, Λ and Γ. For these parameters137

we use previously proposed values [3], unless stated otherwise. A complete list of parameters138

used in this study is provided in table 1.139

To solve equations (3) and (4) numerically we use a forward Euler scheme:140

x′i(t
′ + ∆t′) = x′i(t

′)−∇′iE′(t′)∆t′. (5)

We analyse the dependence of simulation outcomes on the size of ∆t′ in the Results section.141

Initial and boundary conditions Initially, the sheet is represented by a regular hexagonal142

lattice of six by six cells (figure 1A). The boundary of the lattice is allowed to move freely143
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throughout the simulation. Each cell has initial area and target area A′s = A′s0 = 1, respectively.144

Cell neighbour exchange and removal T1 transitions (figure 1D) are executed whenever145

the length of a given edge decreases below the threshold l′T1 = 0.01. The length of the new edge,146

lnew = ρ lT1 (ρ = 1.5), is chosen to be slightly longer than this threshold to avoid an immediate147

reversion of the transition.148

A second topological rearrangement in vertex models is a T2 transition, during which a149

small triangular cell or void is removed from the tissue and replaced by a new vertex (figure150

1E). In our implementation any triangular cell is removed if its area drops below the threshold151

A′T2 = 0.001. The energy function, equation (2), in conjunction with T2 transitions can be152

understood as a model for cell removal: cells are extruded from the sheet by a T2 transition if153

the energy function, equation (2), leads to a sufficiently small cell. Note that in equation (2) the154

bulk elasticity or area contribution of a cell α is finite even when the area Aα is zero, allowing155

individual cells to become arbitrarily small if this is energetically favourable. As cells decrease156

in area they typically also reduce their number of sides. Hence, it is sufficient to remove only157

small triangular cells instead of cells with four or more sides [3, 4, 25].158

We further model the merging of overlapping tissue boundaries (figure 1F). Whenever two159

boundary cells overlap, a new edge of length lnew is created that is shared by the overlapping160

cells. In cases where the cells overlap by multiple vertices, or if the same cells overlap again161

after a previous merging of edges, the implementation ensures that two adjacent polygons never162

share more than one edge by removing obsolete vertices. The merging of boundary edges is163

discussed in further detail in [48].164

Cell growth and division Unless stated otherwise the tissue is simulated for nd = 5 rounds165

of division, i.e. each cell divides exactly nd times. To facilitate comparison with previous166

simulations of the wing disc where vertices were propagated by minimising the energy func-167

tion (2) [3, 41], we model each cell to have two cell cycle phases: quiescent and growing. The168

duration of the first, quiescent, phase of the cell cycle is drawn independently from an expo-169

nential distribution with mean 2t′l/3, where t′l is the total cell cycle duration. We introduce170

stochasticity in this phase of the cell cycle to avoid biologically unrealistic synchronous adja-171

cent divisions; this also helps keeping the simulations in a quasistatic regime since adjacent172
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divisions are prevented from influencing each other, thus maintaining mechanical equilibrium.173

The duration of the second, growing, phase of the cell cycle is fixed at length t′l/3 for each174

cell. During this time the target area, A′0,α, of the cell grows linearly to twice its original value.175

Upon completion of the growth phase, the cell divides. We choose a fixed duration for the176

growth phase to ensure gradual, quasistatic cell growth. Two-stage cell cycles with an expo-177

nentially distributed and a fixed length contribution have previously been observed in various178

cell cultures [50, 51] and have been applied to model growth in the Drosophila wing imaginal179

disc [28].180

The assigning of these cell cycle stages to two thirds and one third of the total cell cycle181

duration t′l, respectively, allows us to modify the average age of a dividing cell with a single182

parameter. This decomposition of the cell cycle ensures that cell cycle durations are stochastic,183

while allowing the growth phase to occupy a significant proportion of the total cell cycle dura-184

tion, ensuring gradual, quasistatic growth. The assumption that the tissue is in a quasi-steady185

state is common in vertex models [3,27,28,34] and reflects the fact that the time scales associ-186

ated with mechanical rearrangements (seconds to minutes) are an order of magnitude smaller187

than typical cell cycle times (hours) [3].188

At each cell division event, a new edge is created that separates the newly created daughter189

cells (figure 1G). The new edge is drawn along the short axis of the polygon that represents the190

mother cell [48]. The short axis has been shown to approximate the division direction (cleavage191

plane) of cells in a variety of tissues [52], including the Drosophila wing imaginal disc [53]. The192

short axis of a polygon crosses the centre of mass of the polygon, and it is defined as the axis193

around which the moment of inertia of the polygon is maximised. Each daughter cell receives194

half the target area of the mother cell upon division.195

Applying this cell cycle model, we let the tissue grow for nd = 5 generations until it contains196

approximately 1,000 cells, making it sufficiently large to obtain summary statistics of cell pack-197

ing. Note that the precise number of cells at the end of the simulation varies, due to variations198

in the number of T2 transitions by which individual cells are removed from the tissue. Each199

cell of the last generation remains in the quiescent phase of the cell cycle until the simulation200

stops. We select the total simulation time to be t′tot = 27, 000, unless specified otherwise. This201

duration is chosen such that the tissue can relax into its equilibrium configuration after the final202
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cell division.203

Computational implementation We implement the model within Chaste, an open source204

C++ library that provides a systematic framework for the simulation of vertex models [48,205

49]. Our code is available in the supplementary material as a zip archive. Pseudocode for206

our implementation is provided in algorithm 1. Each time step starts by updating the cell207

target areas. Then, cell division, removal (T2 transitions), rearrangement (T1 transitions), and208

boundary merging are performed before incrementing the simulation time. The algorithm stops209

when the end time of the simulation is reached.210

Initialize time t′ = 0;
Generate initial configuration;
while t′ < t′tot do

1. Update cell target areas;
2. Perform cell division on cells that have reached the end of their cell cycle;
3. Perform any T2 transitions;
4. Perform any T1 transitions;
5. Perform boundary merging;
6. Propagate vertex positions using equation (3);
7. Increment time by ∆t′;

end
Algorithm 1: Pseudocode of the simulation algorithm.

Table 1: Description of parameter values used in our simulations.

Parameter Description Value Reference

Λ Cell-cell adhesion coefficient 0.12 [3]

Γ Cortical contractility coefficient 0.04 [3]
∆t′ Time step 0.01 [48]
A′min T2 transition area threshold 0.001 [48]
l′T1 T1 transition length threshold 0.01 [48]
ρ New edges after a T1 transition have the length l′new = ρl′T1 1.5 [48]
A′s Initial cell area 1.0 [3]
A′s0 Initial cell target area 1.0 [3]
N s Initial cell number 36 [3]
t′l Mean cell cycle duration 1,750 –
t′tot Simulation duration 27,000 –
nd Total number of divisions per cell 4 –

For parameter values for which no reference is given, please see main text for details on how
these values were estimated. Spatial and temporal parameters are non-dimensionalised (see
section 2 for details).
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3 Results211

In this section, we analyse how model behaviour depends on numerical and non-physical model212

parameters. Vertex models are typically used to predict summary statistics of cell packing and213

growth, such as the distribution of cell neighbour numbers and areas [3, 25]. We analyse how214

these summary statistics depend on simulation parameters. Specifically, we focus on the final215

number of cells in the tissue, the total tissue area, the numbers of cell rearrangements (T1216

transitions) and cell removals (T2 transitions), the distribution of cell neighbour numbers, and217

the correlation between cell neighbour number and cell area. Note that we exclude cells on the218

tissue boundary from statistics of cell neighbour numbers in order to avoid boundary artefacts,219

which can be seen in figure 1C. In figure 1C, cell shapes along the tissue boundary differ from220

those in the bulk of the tissue, and the cell neighbour number is poorly defined for cells along221

the tissue boundary, since it does not coincide with the number of cell edges.222

Tissue size is sensitive to cell cycle duration223

In previous vertex model applications [3, 4, 25], experimentally measured summary statistics224

of cell packing were reproduced using an energy minimisation implementation. Such energy225

minimisation schemes assume quasistatic evolution of the sheet, where the tissue is in mechanical226

equilibrium at all times. It is unclear to what extent summary statistics are preserved when227

the tissue evolves in a dynamic regime.228

We analyse the dependence of the summary statistics on the cell cycle duration, t′l, in figure 2.229

The cell number and tissue area at the end of the simulation, and the total number of cell230

rearrangements, vary by up to a factor of two as the mean cell cycle duration increases from five231

to 2000 non-dimensional time units (figure 2A-D). The cell number and tissue area increase with232

the mean cell cycle duration, whereas the amount of rearrangement (T1 transitions) decreases,233

reflecting a reduction in cell removal events (T2 transitions). The cell number and the tissue234

area do not increase further for mean non-dimensional cell cycle durations larger than 1,000235

time units. In this regime, the total number of rearrangements and cell removals also cease236

decreasing. We thus identify this regime as the quasistatic regime, where the tissue maintains237

mechanical equilibrium throughout the simulation. Note, however, that neither the total cell238

number, nor the tissue area, the number of cell rearrangements or the number of cell removal239
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Figure 2: Variation of cell numbers (A), number of T2 transitions (B), tissue area (C), total
number of T1 transitions (D), cell neighbour number distribution (E) and mean area per polygon
class (F) with mean cell cycle duration. Error bars denote standard deviations across 100
simulations. All simulation parameters are provided in table 1.
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converge numerically as the mean cell cycle duration increases, due to the stochastic nature of240

the system.241

The cell neighbour number distribution depends on the cell cycle duration in a non-linear242

fashion (figure 2E). For example, the number of hexagons peaks at cell cycle durations of 10243

as well as 1,000 time units. For cell cycle durations longer than 1,000 time units the numbers244

of pentagons and heptagons increase as the cell cycle duration increases, while the number245

of hexagons decreases. We interpret this non-linear dependence as resulting from changes in246

cell neighbour numbers due to cell division and due to cell neighbour exchanges. As the cell247

cycle duration exceeds t′l = 10, a decrease in the number of cell removal events leads to an248

increase in cell division events which, in turn, drives the polygon distribution away from its249

hexagonal initial condition. As the number of cell divisions ceases to increase the number of cell250

rearrangements drops as well, and the number of hexagons reaches a second peak. Increasing251

the time between cell divisions further decreases the number of hexagons. Note that none of the252

simulated polygon histograms coincide with previously reported histograms in which pentagons253

outweigh hexagons [3, 25], despite choosing identical parameters in energy equation (2). We254

discuss possible reasons for this difference in section 4.255

Another common summary statistic of cell packing is the mean area of cells of each polygon256

number 〈A′n〉, where 〈·〉 denotes an average across all cells in the tissue that are not on the tissue257

boundary, A′ is the rescaled cell area, and n is the polygon number, i.e. the number of neighbours258

that each cell has. This summary statistic is often used to characterise epithelia [3, 26, 54, 55].259

We find that the mean cell area for each polygon number is not sensitive to changes in cell cycle260

length and increases monotonically with polygon number (figure 2F).261

We interpret the data in figure 2 as follows. Differences in tissue size and cell packing arise262

due to a sensitive interplay between the cell cycle duration and the timescale for mechanical263

relaxation of the tissue, T . Growing cells push against their neighbours, leading to tissue264

growth. This outward movement is counteracted by the friction term in the force equation (1).265

As cells grow more quickly, i.e. with smaller cell cycle durations, the force required to push the266

surrounding cells outward increases. For sufficiently small cell cycle durations, the forces may267

become strong enough to cause cell extrusion. This finding is may not be biologically relevant268

when studying growth in the Drosophila wing imaginal disc, since in this system the time scales269
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for mechanical rearrangement are orders of magnitude smaller than the time scales associated270

with growth and proliferation [3]. However our results suggest that, in other systems, where271

cells divide on the time scales of minutes rather than hours, such as the Drosophila embryonic272

epidermis, cell extrusion may be induced during periods of fast tissue growth.273

Cell growth and division increase forces within the tissue274

The energy expression (4) leads to three different force contributions on each vertex: an area275

force; an edge force; and a perimeter force. In figure 3 we analyse the magnitude of these276

contributions for a simulation with mean cell cycle duration t′l = 2000. The solid line represents277

the average magnitudes for the individual contributions for all forces in the tissue, and the278

shaded areas mark one standard deviation. The strongest force contribution is the area force279

(figure 3A), whereas the weakest is the edge force (figure 3B). This relationship is intuitive280

if one considers the directions of the individual force contributions when both Λ and Γ are281

positive: Most cells in the tissue have areas smaller than their target area of 1.0 (compare with282

figure 2F), hence for an individual cell, the area force contribution points outwards from the283

cell. The edge contribution and perimeter contribution (figure 3C) point inwards for individual284

cells, thus counteracting the area force. It follows that the area contribution is strongest since,285

in mechanical equilibrium, it counteracts the sum of the edge and perimeter contributions. The286

variation of each force contribution has the same order of magnitude as their mean values,287

illustrating that the forces on vertices can vary strongly across the tissue. The force magnitudes288

change throughout the simulation, and they peak at a value that is 50% higher than the final289

values. For times larger than 15000 time units, the forces do not change with time in figure 3.290

At this time cells stop dividing and the final cell number is reached, illustrating that the forces291

are largest when the tissue size is increasing most rapidly. This transient rise in forces emerges292

because cells in the interior of the simulated tissue push on their neighbours as they grow before293

division. These observations enable us to predict that cells undergoing active processes, such294

as growth and division, are subject to significantly higher forces than cells in quiescent tissues.295
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Figure 3: Magnitude of area (A), edge (B), and perimeter force (C) contributions over time.
The solid lines represent the average of force contribution magnitudes across all vertices of
one simulation. The shaded regions represent one standard deviation of the force contribution
magnitudes across the tissue. A cell cycle duration of t′l = 2000 is used. All other parameters
are listed in table 1.
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Figure 4: Variation in simulation result with the time step. (A) The error function (6) for 100
different realisations of the model plotted as overlapping, opaque curves. The error function
decreases as the time step is decreased, but does not converge for all simulations. (B) The
dependence of the number of T1 transitions on the time step for 100 model realisations. The
number of T1 transitions in the simulations is stable for time steps smaller than 0.02 and
decreases with time steps greater than 0.002. (C) For time steps ∆t′ < 0.02 the cell neighbour
number distribution is stable; the means of individual polygon class proportions vary by less than
0.01. In these simulations, cells undergo nd = 4 rounds of division, and the total simulation time
is t′tot = 21, 000. All other parameter values are listed in table 1. Error bars denote standard
deviations across 100 simulations.
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Large time steps suppress cell rearrangement296

When using an explicit Euler method to propagate the model forward in time, such as in equa-297

tion (5), the time step should be chosen sufficiently small to provide a stable and accurate298

numerical approximation of the model dynamics. To this end, we conduct a convergence anal-299

ysis. To reduce simulation times, we conduct the convergence analysis on sample simulations300

in which each cell divides nd = 4 times instead of five, and set the total simulation time as301

t′tot = 21, 000. We choose a series of decreasing time steps, ∆t′k, and define the error function302303

εtk =

∥∥∥∥∥∥
∑
j

xkj −
∑
j

xk−1j

∥∥∥∥∥∥ , (6)

where the sums run over all vertex positions, xkj , at the end of the simulation with time steps304

∆t′k and ∆t′k−1. The error function (6) evaluates the differences between the sums of final305

vertex positions at decreasing values of the time step. To ensure that simulations with consec-306

utive values of the time step follow identical dynamics we generate fixed series of exponentially307

distributed random variates from which we calculate the cell cycle durations.308

We plot results of our analysis of the convergence of the vertex positions with the time309

step ∆t′ in figure 4. In general, the error function does not converge. However, for most310

simulations the error function (6) assumes values smaller than 10−1 for time steps smaller than311

10−2 (figure 4A). Note that this time step is five orders of magnitude smaller than the average312

cell cycle duration. When the time step is larger than 10−2 the error function (6) is larger313

than one since a significant number of T1 transitions are suppressed. On rare occasions, for314

less than five examples out of 100, the error function may be non-negligible even if the time315

step is smaller than 10−2. These large values of the error function (6) reflect changes in the316

number of T1 transitions as the time step decreases (figure 4B). When the time step is smaller317

than 10−2 summary statistics of cell packing, such as the distribution of cell neighbour numbers318

(figure 4C) or the total number of cells, do not change as the time step is decreased further.319

Note that the distribution of cell neighbour numbers in figure 4C differs from those in figure 2320

due to the decreased number of divisions per cell, nd. Further, we conclude from our analysis in321

figure 4 that it is necessary to use a time step smaller than 0.01 in order to arrive at physically322

meaningful solutions of the vertex model, since otherwise the amount of cell rearrangement323

and summary statistics of cell packing will be affected by the numerical implementation of the324
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A B

Figure 5: Differences in vertex configurations can arise in simulations run with different temporal
resolution. A dividing cell in simulations run with time steps ∆t′ = 0.004 (A) and ∆t′ = 0.002
(B) is shown in bold. During the cell division, a new cell-cell interface (dashed line) is created
along the short axis of the dividing cell by creating new vertices (see Methods section for
details). The daughter cells of the dividing cell contain different vertices in the configurations
corresponding to the two time steps. This leads to different vertex configurations at the end of
the simulations.

model.325

An example of how differences in the number of T1 transitions and final vertex positions326

can emerge when the time step is smaller than 0.01 is shown in figure 5. In this figure, a cell327

division occurs in two simulations using a time step of 0.004 (figure 5A) and a time step of 0.002328

(figure 5B). Both simulations use the same, fixed, series of cell cycle times, and vertex positions329

in both simulations are similar over time up until the illustrated division. Here, and throughout,330

cells divide along their short axis. In this example, the short axis of the cell intersects the cell331

boundary close to an existing vertex. Due to differences in the vertex positions of the cell,332

the new vertex is created on different cell-cell interfaces as the size of the time step varies. As333

the simulation progresses, these different vertex configurations propagate towards different final334

tissue configurations, leading to differences in the total number of T1 transitions and the error335

function. In figure 4, differences in final vertex positions are observed for all considered values336

of the time step. However, such differences in vertex positions do not propagate through to337

tissue-level summary statistics such as the distribution of cell neighbour numbers or areas.338

Model convergence with time step is not improved if higher-order numerical339

methods are used340

The results in figures 4 and 5 were generated by propagating the vertex positions using a forward341

Euler time-stepping scheme. The choice of a forward Euler scheme over more accurate numerical342
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Figure 6: Variation in simulation result with the time step if a fourth-order Runge-Kutta scheme
is used. The error function (6) for 100 different realisations of the model, evaluated using a
fourth-order Runge-Kutta scheme, is plotted as overlapping, opaque curves. The error function
decreases as the time step is decreased, but does not converge for all simulations. This result is
similar for simulations run with a forward Euler scheme in figure 4A.

methods is common in vertex models. For example, in a previous application where a tissue343

was relaxed starting from a random initial condition, it was shown that, in order to accurately344

resolve all T1 transitions, sufficiently small time steps had to be chosen that the benefits of higher345

order numerical methods were negligible [56]. However, in figures 4 and 5 vertex positions do346

not converge as the time step is decreased due to differences in T1 transitions and cell divisions347

for varying values of the time step, suggesting that convergence might be achieved if higher-348

order numerical methods were used. We test this hypothesis in figure 6, where we record the349

error function (6) when propagating the vertex model with a fourth-order Runge-Kutta time-350

stepping scheme as follows. First, all vertices are accumulated into the vertex vector x′, such351

that if there are N vertices at time t′ then the vector x′(t′) has 2N components. We propagate352

18

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 6, 2017. ; https://doi.org/10.1101/092924doi: bioRxiv preprint 

https://doi.org/10.1101/092924
http://creativecommons.org/licenses/by/4.0/


the vertex vector using353

x′(t′ + ∆t′) = x′(t′) +
∆t′

6
(k1 + 2k2 + 2k3 + k4) , (7)

k1 = −∇′E′(t′,x′(t′)), (8)

k2 = −∇′E′(t′ + ∆t′

2
,x′(t′) +

∆t′

2
k1), (9)

k3 = −∇′E′(t′ + ∆t′

2
,x′(t′) +

∆t′

2
k2), (10)

k4 = −∇′E′(t′ + ∆t′,x′(t′) + ∆t′k3). (11)

Here, ∇′ denotes the gradient with respect to the vector x.354

Similar to the error function obtained using a forward Euler numerical scheme in figure355

4A, the error function obtained using a fourth-order Runge-Kutta numerical scheme in figure356

6 assumes values smaller than one for time steps below 0.01, but does not converge as the357

time step is decreased further. Comparing figures 4A and 6 we conclude that a higher-order358

time-stepping scheme does not improve the accuracy of vertex model propagation, since both359

the forward Euler and the fourth-order Runge-Kutta scheme require time steps smaller than360

roughly 0.01 in order for the error function (6) to assume values smaller than one on average,361

while exhibiting a similar degree of variability across all simulations.362

Occurrence of cell rearrangements is regulated by rearrangement threshold363

We further analyse the dependence of vertex positions and summary statistics on the T1 transi-364

tion threshold, l′T1. Similar to the time step convergence analysis, we define a series of decreasing365

values of l′T1,k and the error function366

εT1k =

∥∥∥∥∥∥
∑
j

xkj −
∑
j

xk−1j

∥∥∥∥∥∥ , (12)

which measures the difference between the final vertex positions of simulations with decreasing367

values of the T1 transition threshold, l′T1,k. The variation of the error function with decreasing368

values of l′T1,k is shown in figure 8A. For all considered values of l′T1 the error function does369

not converge and varies between values of 1 and 103. Only for l′T1 < 10−3 is the error function370

(12) smaller than one for some simulations. However, for such small values of l′T1, many simula-371
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tions fail as the simulation algorithm encounters situations that it cannot resolve, for example372

configurations including overlapping cells (figure 8B).373

A large T1 transition threshold of 0.2 length units leads to a large number of T1 transitions,374

whereas T1 transitions are suppressed for thresholds of 0.003 length units or smaller (figure 8C).375

This variation in the number of cell rearrangements influences summary statistics of cell pack-376

ing, for example leading to variations in the cell neighbour number distribution. For large377

rearrangement thresholds, e.g. l′T1 = 0.2, the number of cell rearrangements is high, leading378

to a high proportion of hexagons (around 0.6), whereas suppression of cell rearrangements for379

small cell rearrangement thresholds, for example l′T1 = 0.2, leads to a wider distribution of cell380

neighbour numbers with a proportion of hexagons below 0.4. The number of cell rearrangements381

is stable between T1 transition thresholds of 0.02 and 0.003. In this regime, the proportion of382

hexagons varies slightly between 0.425 and 0.409 (figure 8D). Despite the stable number of T1383

transitions across this parameter regime between 0.02 and 0.003 the final vertex positions differ384

for any two values of the T1 transition threshold, as reflected in values of the error function.385

As illustrated in figure 8B, if the T1 transition threshold is smaller than 0.001, simulations386

fail to complete as the simulation algorithm encounters situations that it cannot resolve, for387

example due to overlapping or self-intersecting cells. An example of how a simulation can fail388

due to a small value of the T1 transition threshold is provided in figure 7. A snapshot is taken389

of the simulation at the last two time steps before simulation failure. Due to a short edge two390

boundary vertices in the tissue appear merged (arrow in figure 7A). This short edge is magnified391

for the penultimate (figure 7B) and last time steps (figure 7C) before simulation failure. At392

this last time step, one of the boundary cells becomes concave. The simulation then fails since393

our vertex model implementation cannot resolve this configuration. When two boundary cells394

overlap, the simulation procedure attempts to merge the vertex with its closest cell boundary.395

This procedure fails because the identified boundary is internal to the tissue rather than a396

boundary interface.397

Simulation results are robust to variation in length of newly formed edges.398

When cells exchange neighbours by way of T1 transitions, new edges are formed. Each new399

edge has length l′new = ρl′T1. In order to investigate the extent to which changes in the length400
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A

B C

Figure 7: Small values of the T1 transition threshold, l′T1 < 10−3, suppress rearrangement and
lead to failure of the simulation algorithm. One of the failing simulations in figure 8 is analysed.
The tissue configuration in the last time step before simulation failure contains two vertices that
appear to be merged due to a short edge on the tissue boundary. The short edge is indicated by
an arrow (A) and magnified for the penultimate (B) and final completed time step (C) of the
simulation. Since the short edge in the penultimate time step is prevented from rearranging,
the two adjacent boundary cells intersect each other, leading to failure of the simulation.
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Figure 8: Variation of simulation result with size of the T1 transition threshold, l′T1. (A)
The dependence of the error function on l′T1 for 100 model realisations. The error function
(12) does not converge as l′T1 decreases. (B) For small values of the T1 transition threshold,
some simulations fail to complete (see main text). (C) The dependence of the number of
cell rearrangements on l′T1 for 100 model realisations. The number of cell rearrangements
is larger than 100 for a large value of the rearrangement threshold, l′T1 > 0.1, whereas cell
rearrangements are suppressed for small values of the rearrangement threshold, l′T1 < 0.001,
with cell rearrangement numbers less than 30. (C) Varying amounts of cell rearrangement lead
to different distributions in cell neighbour numbers. Parameter values are listed in table 1.
Error bars denote standard deviations across 100 simulations.
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of newly formed edges can affect simulation results we define a series of increasing values for ρk401

and the error function402403

ερk =

∥∥∥∥∥∥
∑
j

xkj −
∑
j

x0
j

∥∥∥∥∥∥ , (13)

which measures the difference in vertex positions relative to simulations with ρ0 = 1.05. As404

shown in figure 9, individual simulations may result in different final tissue configurations than405

the reference configuration if newly formed edges are twice as long as the rearrangement thresh-406

old or longer. Such differences in configuration were observed for three out of 100 simulations,407

illustrating the robustness of simulation results to the length of newly formed edges.408

Rate of T2 transitions is robust to variation in the T2 transition threshold409

over five orders of magnitude410

Next, we turn to the value of the T2 transition threshold. We define a series of decreasing values411

of A′kT2 and the error function412

εT2k =

∥∥∥∥∥∥
∑
j

xkj −
∑
j

xk−1j

∥∥∥∥∥∥ , (14)

which measures the difference between the final vertex positions of simulations with decreasing413

values of the T2 transition threshold, A′kT2. To analyse the value of the error function (14) in a414

simulation with a significant amount of cell rearrangement and removal we run simulations with415

nd = 8 generations, a cell cycle duration of t′l = 700, and total simulation time t′tot = 19600.416

All other parameter values are listed in table 1.417

The value of the error function, on average, is small (figure 10A). However, the error function418

does not converge for individual simulations and may be large between consecutive values of419

the threshold. In particular, the error function does not converge to zero. As the threshold420

decreases, the overall number of T2 transitions in the simulations is stable at approximately421

150 T2 transitions per simulation (figure 10B). However, for individual simulations, the total422

number of T2 transitions may vary by up to 10 as the threshold A′T2 is decreased. The overall423

number of T2 transitions does not change over a large range of T2 transition thresholds that424

covers multiple orders of magnitude, and all simulations complete without errors even if the425

T2 transition threshold is smaller than 10−6, which is three orders of magnitudes smaller than426
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Figure 9: Dependence of simulation results on the length of edges created by T1 transitions,
l′new = ρl′T1. The error function (13) is recorded for 100 simulations. All simulation parameters
are listed in table 1. The error function is smaller than one for ρ < 2.0.
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the standard value for this parameter in our simulations. The independence of the number of427

T2 transitions of the threshold A′kT2 is reflected in tissue-level summary statistics, such as the428

distributions of cell neighbour numbers, which are unaffected by changes in the T2 transition429

threshold (figure 10C).430

Dependence of the simulation results on the update ordering in each time431

step432

Finally, we investigate whether the update ordering within algorithm 1 may affect simulation433

results. To this end, we randomise the order in which T1 transitions are conducted during one434

time step. We find that the update order does not lead to differences in final vertex positions435

in 100 simulations. This is intuitive, considering that the order in which individual events are436

conducted is most likely to be relevant in situations where events happen directly adjacent to437

each other, for example if two adjacent edges undergo T1 transitions at the same time step, if438

there are two adjacent divisions, or if a dividing cell also participates in cell rearrangement. In439

these examples, the order in which these events occur during one time step may have an impact440

on simulation outcomes. Our results imply that no adjacent two edges undergo T1 transitions441

in 100 sample simulations.442

4 Discussion443

Cell-based models have the potential to help unravel fundamental biophysical mechanisms un-444

derlying the growth and dynamics of biological tissues. However, the numerical implementation445

of such models is rarely analysed and the dependence of model predictions on implementation446

details often remains unexplored. Here, we analyse a widely applied class of cell-based models, a447

vertex model, and probe to what extent experimentally relevant summary statistics can depend448

on implementation details, such as the choice of numerical or non-physical model parameters.449

For example, we find that the speed at which cells grow and divide relative to the speed450

of tissue relaxation can significantly alter in silico tissue behaviour. The total number cells in451

the tissue, as well as the tissue area and the number of cell rearrangements, varies by up to a452

factor of two as the mean cell cycle duration is changed. Summary statistics of cell packing,453

such as the distribution of cell neighbour numbers, or the correlation between cell neighbour454

number and area, are less strongly affected by the exact choice of timescale; the main features455
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Figure 10: Dependence of simulation results on the T2 transition threshold, A′T2. (A) The
dependence of the error function (14) on the T2 transition threshold for 50 model realisations.
The error function assumes values less than one for AT2 < 10−2 but does not converge. (B)
The total number of T2 transitions for 50 model realisations is stable for all observed values
of AT2. (C) Tissue-level summary statistics such as the cell neighbour number distribution
are not affected by changes in the threshold. Error bars denote standard deviations across
50 simulations. Simulations are run with nd = 8 rounds of division, a cell cycle duration of
t′l = 700, and total simulation time t′tot = 19600. All further simulation parameters are listed
in table 1.
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of these statistics are preserved in all cases. This finding that the total cell number and tissue456

area depend on the mean cell cycle duration suggests that cell extrusion may be induced in457

fast-growing tissues.458

The distribution of cell numbers for the case of quasistatic simulations, identified as simu-459

lations where increases in the cell cycle duration would not lead to an overall increase in tissue460

area or cell number, differs from previously reported results [3]. Specifically, we observe fewer461

pentagons than hexagons. This discrepancy might arise from a difference in how equation (2) is462

used to evolve the tissue. For example, our implementation of the cell cycle differs from other463

implementations where the cell cycle duration varies spatially in the tissue [4, 24, 28]. Further,464

in [3], a global energy minimisation scheme is used to propagate vertex positions, whereas a more465

accurate force-based approach is used here. A major difference between the two approaches is466

the fraction of cells in the tissue that are allowed to grow and divide concurrently. In our467

implementation, up to one third of the cells undergo cell-growth at any given time, whereas468

in other implementations all cells grow and divide sequentially. Further analysis is required to469

understand to what extent synchronous growth and division can affect cell packing in epithe-470

lial tissues. Milan et al. report that up to 1.7% of cells in the early wing disc are mitotic at471

any given time [57]. However, mitosis and cell growth may not happen consecutively, hence472

the optimal choice of the duration of the growth phase in our simulations is unclear. Overall,473

it is unclear to what extent different choices for the cell cycle model may influence summary474

statistics of cell packing.475

Our analysis of forces throughout simulations, presented in figure 3, reveals that, on average,476

the area force contribution is stronger than the edge force contribution and the perimeter force477

contribution on a given vertex. Further, forces on cells increase during phases of proliferation478

and growth. Our findings may be of relevance in force-inference approaches that estimate forces479

using segmented microscopy images of epithelial tissues [58–60]. Force-inference methods often480

assume that the measured configuration of cells is in equilibrium and it is unclear to what extent481

force-inference approaches introduce errors if this is not the case. In our simulations, forces are482

up to 50% higher when simulations are run in a dynamic regime, where cells grow and divide,483

than in the static regime at the end of the simulation, where cells are relaxed into a static484

configuration.485
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The vertex positions, as well as simulation summary statistics, vary as the time step is486

changed, and differences in vertex positions decrease with the time step. Counterintuitively,487

large time steps can suppress cell rearrangement in vertex simulations. This may be explained by488

considering that, for large time steps, vertex positions move further than the length threshold489

for cell rearrangements, and instances when the lengths of cell-cell interfaces fall below this490

threshold may not be resolved. Importantly, in order for differences in simulation results to491

be negligibly small, a time step has to be chosen that is five orders of magnitude smaller492

than the average cell cycle duration in our simulation, and six orders of magnitude smaller493

than the simulation time. For individual simulations, simulation outcomes may change if a494

smaller time step is chosen, an effect that is preserved even when a higher-order numerical495

scheme, such as fourth-order Runge-Kutta, is used. The latter finding confirms that, for vertex496

model implementations with ad-hoc rules for cell rearrangement and division, such as in this497

study, the benefits of higher-order numerical schemes diminish, and it is beneficial to reduce498

the computational cost of the algorithm by using a simpler numerical scheme, such as forward499

Euler. A forward Euler scheme is more computationally efficient than a fourth-order Runge-500

Kutta scheme since it requires fewer floating point operations per time step. In our simulations,501

differences in simulation outcomes with decreasing time steps occurred at all observed choices502

of the time step for both numerical schemes investigated. More research is required to analyse503

the extent to which further decreases in the time step can lead to convergence of the simulation504

results. Here, we stopped investigating the effects of further decreasing the time step due to505

prohibitive increases in calculation times as the time step is decreased. In previous studies,506

vertex models have been reported to converge as the time step is decreased [45, 56]. Our507

analysis differs from these previous studies by considering a tissue undergoing cell division and508

rearrangement rather than relaxation from an initial condition.509

The simulation results are sensitive to the T1 transition threshold chosen in the simulation.510

The size of the T1 transition threshold can be used to regulate the extent to which the simulated511

tissue is allowed to rearrange in order to minimise energy. Literature values for this quantity512

span a range from 0.1 [4,48] to 0.01 [31]. Final vertex positions of individual simulations change513

with the value for the T1 transition threshold and do not converge as the threshold is decreased.514

Our results that both the time step and the cell rearrangement threshold may influence515
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the rate of T1 transitions illustrates that these parameters are interconnected. When the time516

step is chosen sufficiently large such that vertices move further than the cell rearrangement517

threshold between time steps, cell rearrangement is suppressed. This means that if a small cell518

rearrangement threshold is chosen, a sufficiently small time step needs to be chosen. A careful519

choice of time steps and cell rearrangement threshold is crucial since an incorrect choice may lead520

to failure of the simulation algorithm. For vertex models designed to simulate polycrystalline521

materials an adaptive time-stepping scheme has been developed that resolves the exact time522

at which the end points of a short edge meet, and a T1 transition is performed whenever this523

happens [18]. More work is required to understand how rates of T1 transitions differ if different524

conditions for rearrangement are implemented, such as the shortening of an edge to a given525

threshold or the shrinking edge of an edge to a point. Ultimately, the optimal algorithm to526

simulate cell rearrangement in epithelial tissues can only be chosen through comparison with527

experimental results.528

While simulated vertex model configurations are sensitive to the size of the time step and529

thresholds for cell rearrangement, they are less sensitive to the length of newly formed edges,530

and to thresholds for cell removal. We find that the length of newly formed edges may be up to531

twice as long as the threshold for T1 transitions without affecting final vertex configurations.532

However, this may change in other parameter regimes, for example if larger values for the cell533

rearrangement threshold are chosen.534

The size of the area threshold for cell removal may be varied over six orders of magnitude535

without impacting tissue-level summary statistics, even though the exact number of T2 transi-536

tions may differ for any two values of the area threshold. In particular, it seems to be possible537

to choose arbitrarily small values for the T2 transition threshold without causing the algorithm538

to fail. There are three effects that may contribute to the stability of small elements in our539

simulations. First, since small cells with areas close to the threshold for cell removal are far away540

from their preferred area in our simulations (A0,α > 1.0), their area force is larger than that541

of adjacent neighbours. This makes the cells stiff and prevents them from becoming inverted542

or otherwise misshapen. Second, the relationship between area and cell neighbour numbers543

presented in figure 2 shows that small elements are most likely to be triangular. Our simulation544

algorithm does not permit T1 transitions if the short edge is part of a triangular cell in order545
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to prevent triangular elements from becoming inverted and thus the algorithm from failure.546

Third, this relationship between cell area and cell neighbour number may also contribute to547

the stability of the algorithm when the area threshold is large, for example 0.2. In this case,548

individual cells may be smaller than the area threshold without undergoing T2 transitions if549

they are not triangular.550

The energy equation (2) provides a geometrical hyphothesis for the removal of cells from551

epithelia, in which cells are removed from the tissue if this is energetically favourable. Mechan-552

ical effects of cell death are an area of increasing biophysical interest [61], and it is the subject553

of future work to design vertex models that allow alternative hypotheses for cell death to be554

tested.555

Here, we analysed how numerical and non-physical parameters can influence experimentally556

measurable summary statistics in cell-based models by examining a force-propagation-based557

implementation of vertex models. Individual results may be relevant to other implementation558

choices. For example, our finding that the duration of the cell cycle in our model influences559

simulation outcomes may mean that parameters that control the rate of energy-minimisation560

may influence results in other vertex model implementations [3,25,62]. In general, further work is561

required to understand how other choices of implementation schemes may impact computational562

model predictions. For example, the noise strength in a Monte Carlo vertex propagation scheme563

[39, 40] or the choice of energy-minimisation algorithm may influence vertex model behaviour.564

While most of our findings are of a numerical nature, some have explicit biological relevance.565

Our analysis of the dependence of tissue properties and forces on the mean cell cycle duration566

reveals that the vertex model predicts increased forces in tissues undergoing growth and prolif-567

eration, and that fast tissue growth may induce cell extrusion. Our findings further suggest that568

statistics of cell packing may depend on the nature of the cell cycle or the boundary condition569

of the tissue. Note that findings that do not make explicit biological predictions, such as the570

robustness of the vertex model to changes in the area threshold for cell removal, or its sensitivity571

to changes in the length threshold for cell rearrangement, are nonetheless highly relevant, since572

these findings highlight that choices of model design and implementation have to be carefully573

considered when applying vertex models quantitatively.574

Throughout the manuscript we use non-dimensional parameters that arise when rescaling575
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time and space by the characteristic length and time scales of the model. The use of such576

rescaled parameters is beneficial in this case since it allows, for example, the comparison of our577

model parameters to previously used values [3, 4, 28]. Further, we identify reference parameter578

values for which our simulations are physically reasonable. By providing non-dimensional values579

for these parameters we facilitate their reuse in other applications where the physical values of580

the characteristic length or time scales may be different.581

5 Conclusions582

Our results illustrate that care needs to be taken when drawing predictions using cell-based583

computational models because implementation details such as the size of the time step or non-584

physical parameters, such as length thresholds for cell rearrangement, may influence model585

predictions significantly. With the rise of quantitative analysis and quantitative model-data586

comparison in biophysical applications, choices of model implementation become increasingly587

relevant. To enable the use of cell-based models in quantitative settings, it is important to588

be aware of any influences that implementation choices may have on model predictions when589

analysing a specific biophysical phenomenon. Understanding model behaviour in detail is cru-590

cial to prevent modelling artefacts from influencing experimental predictions and clouding our591

biophysical understanding and, as such, our findings emphasise the need to fully document al-592

gorithms for simulating cell-based models. Close attention to implementation details is required593

in order to unravel the full predictive power of cell-based models.594
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