Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Neurons in the mouse deep superior colliculus encode orientation/direction through suppression and extract selective visual features

View ORCID ProfileShinya Ito, David A. Feldheim, Alan M. Litke
doi: https://doi.org/10.1101/092981
Shinya Ito
1Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shinya Ito
David A. Feldheim
2Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan M. Litke
1Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The superior colliculus (SC) is an integrative sensorimotor structure that contributes to multiple visiondependent behaviors. It is a laminated structure; the superficial SC layers (sSC) contain cells that respond to visual stimuli, while the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Despite the increasing interest in mice for visual system study, the differences in the visual response properties between the sSC and the dSC are largely unknown. Here we used a large-scale silicon probe recording system to examine the visual response properties of neurons within the SC of head-fixed, awake and behaving mice. We find that both the sSC and dSC cells respond to visual stimuli, but dSC cells have three key differences. (1) The majority of the dSC orientation/direction selective (OS/DS) cells have their firing rate suppressed by drifting sinusoidal gratings (negative OS/DS cells) rather than being stimulated like the sSC cells (positive OS/DS cells). (2) Almost all the dSC cells have complex-cell-like spatial summation nonlinearity, and a significantly smaller fraction of the positive OS/DS cells in the dSC respond to flashing spots than those in the sSC. (3) The dSC cells lack Y-like spatial summation nonlinearity unlike the sSC cells. These results provide the first description of cells that are suppressed by a visual stimulus with a specific orientation or direction, show that neurons in the dSC have properties analogous to cortical complex cells, and show the presence of Y-like nonlinearity in the sSC but their absence in the dSC.

Significance statement The superior colliculus receives visual input from the retina in its superficial layers (sSC) and induces eye/head orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using highdensity electrode recordings and novel model-based analysis, we find that the dSC contains cells with a novel property; they are suppressed by the orientation or direction of specific stimuli. We also show that dSC cells have properties similar to cortical “complex” cells. Conversely, cells with Y-like nonlinear spatial summation properties are located only in the sSC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually-guided behaviors.

Acknowledgements This work was supported by the Brain Research Seed Funding provided by UCSC and from the National Institutes of Health Grant NEI R21EYO26758 to D. A. F. and A. M. L. We thank Michael Stryker for training on the electrophysiology experiments and his very helpful comments on the manuscript, Sotiris Masmanidis for providing us with the silicon probes, Forest Martinez-McKinney and Serguei Kachiguin for their technical contributions to the silicon probe system, Jeremiah Tsyporin for taking an image of neural tissues and the training of mice, Jena Yamada, Anahit Hovhannisyan, Corinne Beier, and Sydney Weiser, for their helpful comments on the manuscript.

Footnotes

  • Conflict of Interest: The authors declare no competing financial interests.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted December 09, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Neurons in the mouse deep superior colliculus encode orientation/direction through suppression and extract selective visual features
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Neurons in the mouse deep superior colliculus encode orientation/direction through suppression and extract selective visual features
Shinya Ito, David A. Feldheim, Alan M. Litke
bioRxiv 092981; doi: https://doi.org/10.1101/092981
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Neurons in the mouse deep superior colliculus encode orientation/direction through suppression and extract selective visual features
Shinya Ito, David A. Feldheim, Alan M. Litke
bioRxiv 092981; doi: https://doi.org/10.1101/092981

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (3482)
  • Biochemistry (7329)
  • Bioengineering (5301)
  • Bioinformatics (20212)
  • Biophysics (9985)
  • Cancer Biology (7706)
  • Cell Biology (11273)
  • Clinical Trials (138)
  • Developmental Biology (6425)
  • Ecology (9923)
  • Epidemiology (2065)
  • Evolutionary Biology (13292)
  • Genetics (9353)
  • Genomics (12559)
  • Immunology (7681)
  • Microbiology (18964)
  • Molecular Biology (7421)
  • Neuroscience (40915)
  • Paleontology (298)
  • Pathology (1226)
  • Pharmacology and Toxicology (2130)
  • Physiology (3145)
  • Plant Biology (6842)
  • Scientific Communication and Education (1271)
  • Synthetic Biology (1893)
  • Systems Biology (5299)
  • Zoology (1086)