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Abstract 

The superior colliculus (SC) is an integrative sensorimotor structure that contributes to multiple vision-

dependent behaviors. It is a laminated structure; the superficial SC layers (sSC) contain cells that 

respond to visual stimuli, while the deep SC layers (dSC) contain cells that also respond to auditory and 

somatosensory stimuli. Despite the increasing interest in mice for visual system study, the differences 

in the visual response properties between the sSC and the dSC are largely unknown. Here we used a 

large-scale silicon probe recording system to examine the visual response properties of neurons within 

the SC of head-fixed, awake and behaving mice. We find that both the sSC and dSC cells respond to 

visual stimuli, but dSC cells have three key differences. (1) The majority of the dSC 

orientation/direction selective (OS/DS) cells have their firing rate suppressed by drifting sinusoidal 

gratings (negative OS/DS cells) rather than being stimulated like the sSC cells (positive OS/DS cells). 

(2) Almost all the dSC cells have complex-cell-like spatial summation nonlinearity, and a significantly 

smaller fraction of the positive OS/DS cells in the dSC respond to flashing spots than those in the sSC. 

(3) The dSC cells lack Y-like spatial summation nonlinearity unlike the sSC cells. These results provide 

the first description of cells that are suppressed by a visual stimulus with a specific orientation or 

direction, show that neurons in the dSC have properties analogous to cortical complex cells, and show 

the presence of Y-like nonlinearity in the sSC but their absence in the dSC. 

Significance statement 

The superior colliculus receives visual input from the retina in its superficial layers (sSC) and induces 

eye/head orientating movements and innate defensive responses in its deeper layers (dSC). Despite 

their importance, very little is known about the visual response properties of dSC neurons. Using high-

density electrode recordings and novel model-based analysis, we find that the dSC contains cells with a 
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novel property; they are suppressed by the orientation or direction of specific stimuli. We also show 

that dSC cells have properties similar to cortical “complex” cells. Conversely, cells with Y-like 

nonlinear spatial summation properties are located only in the sSC. These findings contribute to our 

understanding of how the SC processes visual inputs, a critical step in comprehending visually-guided 

behaviors. 

Introduction 

The superior colliculus (SC) is a midbrain structure that integrates inputs from different sensory 

modalities and controls multiple vision-dependent behaviors. In addition to its well-known role in 

eye/head movements (Sparks, 1986), the mouse SC contributes to other visually-evoked behaviors such 

as escape and/or freezing in response to a looming object (Shang et al., 2015; Wei et al., 2015) and 

quick suspension of locomotion (Liang et al., 2015). In fact, mice that develop without a cortex can 

perform visually-guided memory tasks, suggesting that the SC has functions that are often attributed to 

the cortex (Shanks et al., 2016). 

The SC is organized into several synaptic laminae, each of which has distinct inputs and outputs 

(May, 2005). The stratum opticum (SO) contains retinal and cortical axons and roughly divides the SC 

into two parts: the SO and above are the superficial SC (sSC), which receives inputs from the retina 

and the primary visual cortex (V1) and responds to visual stimuli; and below the SO is the deep SC 

(dSC), which contains multimodal cells that respond to visual, auditory and/or somatosensory stimuli. 

The response properties of the mouse sSC cells have been well characterized and show selectivity to 

stimulus features such as orientation or direction (Wang et al., 2010; Inayat et al., 2015). Moreover, 

(Gale and Murphy, 2014) identified four cell types in the sSC that differ in their response properties 

and axonal targets, suggesting that different visual features are segregated into different cell types. 

Compared to the sSC, much less is known about the visual response properties of the dSC cells. 
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In mice, the only electrophysiological studies of the dSC are the original studies conducted by (Drager 

and Hubel, 1975a, 1975b, 1976) and (Drager, 1975), which reported that dSC cells have large receptive 

fields, are more frequently DS, and can be multimodal. These early results provide important hints of 

the dSC cell properties, but the number of recorded neurons is small (< 100) and the OS/DS properties 

were poorly quantified. In addition, there are other response properties that give clues to a cell’s 

function that have not been explored in the dSC. These include two distinct types of nonlinear spatial 

summation properties: the cortical complex-cell-like nonlinearity measured by drifting sinusoidal 

gratings (C-like nonlinearity, Skottun et al., 1991) and the retinal Y-cell-like nonlinearity measured by 

contrast reversing gratings (Y-like nonlinearity, Hochstein and Shapley, 1976). 

To fill this knowledge gap, we have used large-scale silicon probe neural recordings to examine 

the visual response properties of the SC cells of head-fixed, awake, behaving mice watching a variety 

of visual stimuli. We also developed a model-based analysis that provides a thorough parameterization 

and simple significance tests of the OS/DS response properties. Using a dataset with 1445 identified 

neurons from both the sSC and the dSC, we discovered several novel features of the mouse SC. First, 

we found that OS and DS cells exist in both the sSC and the dSC. However, the majority of the OS/DS 

cells in the dSC have their spiking activity suppressed by drifting sinusoidal gratings that drift in their 

preferred orientation/direction (negative OS/DS cells). Negative OS/DS cells have not been previously 

reported in the mammalian visual system. Second, we found that a larger fraction of dSC cells have C-

like nonlinearity than sSC cells, and that approximately one-third of dSC positive OS/DS cells lack any 

response to a flashing spot, unlike most sSC positive OS/DS cells. These differences between sSC and 

dSC cells are analogous to those between simple and complex cells in the visual cortex. Finally, we 

found cells with Y-like nonlinearity in the sSC, but not in the dSC. Taken together, our large-scale 

recordings provide an important step to gain a comprehensive analysis of the visual response properties 

of cells in the mouse SC with the goal of understanding how this area contributes to visually-guided 
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behaviors. 

Materials and Methods 

All procedures were performed in accordance with the University of California, Santa Cruz (UCSC) 

Institutional Animal Care and Use Committee. We recorded the activity of the collicular neurons of 

head-fixed, awake, behaving mice using 128-electrode or 256-electrode multi-shank silicon probes. 

Our experimental procedures were previously described (Shanks et al., 2016) and are detailed below.  

Animal preparation and experimental setup. 2–5 months old C57BL/6 male mice were used in 

this study. Before the recording date, we implanted a stainless steel head plate on the mouse’s skull; 

this allowed us to fix the mouse’s head to the recording rig. Mice were trained to behave freely on a 

spherical floating ball treadmill (Dombeck et al., 2007; Niell and Stryker, 2010) for at least 4 training 

sessions (30 min per training session, each session on a different day). On the day of the recording, the 

mouse was anesthetized with isoflurane (3% induction, 1.5–2% maintenance), and a craniotomy (~1.5 

mm diameter) was performed in the left hemisphere at a site that was 0.6 mm lateral from the midline 

and 3.7 mm posterior from the bregma. During the surgery, the mouse eyes were covered with artificial 

tears ointment (Rugby), which was removed before recovery from anesthesia with a wet cotton swab. 

The incision was covered with 2% low melting point agarose in saline to keep the exposed brain tissue 

from drying. The probe was inserted through the cortex toward the SC; the end of the probe was 

located 1800–2300 µm below the cortical surface. Recordings were started 30 minutes after probe 

insertion. During the recording sessions, the mouse was allowed to behave freely on the treadmill. We 

recorded only once from each mouse. 

  A visual stimulus monitor (Samsung S29E790C; 67.3 cm × 23.4 cm active display size; mean 

luminance: 32 cd/cm2; refresh rate: 60 Hz; gamma corrected) was placed 25 cm away from the right 

side of the mouse (Fig. 1A). Activity in the SC was identified by displaying either an ON (white) or 
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OFF (black) flashing spot on the monitor and determining whether visual responses were localized to a 

restricted area within the visual field. The monitor position and angles were adjusted so that the 

receptive field was at the center of the monitor and the monitor plane was perpendicular to the line of 

sight.  

Silicon probe electrophysiology. The silicon probe recording was performed as described in our 

previous report (Shanks et al., 2016) with an important modification. Instead of 64 and 128-electrode 2-

shank silicon probes, we used 4-shank probes with 128 electrodes and 256 electrodes (Fig. 1B, C). All 

the probes used for our recordings were kindly provided by Prof. Masmanidis at UCLA (Du et al., 

2011). A small amount of DiI was put on the back of the probe shanks. The location of the shanks were 

histologically reconstructed after recordings using the DiI traces (Fig. 1D). A ground wire was placed 

on the skull near the craniotomy site by submerging it into the agarose. The voltage traces from all the 

electrodes were amplified and sampled at 20 kHz using an RHD2000 256-channel recording and data 

acquisition system (Intan Technologies). The visual stimuli were synchronized to the recorded neuronal 

activity via electrical pulses sent from the visual stimulation computer to the data acquisition board. 

Visual stimuli. Four different visual stimuli were used to evaluate the visual responses of the SC 

neurons: (1) individual 10° diameter flashing circular spots on a 10 × 7 grid with 10° spacing. The 500 

ms flashes were either ON (white) or OFF (black) on a gray background at mean luminance and a 500 

ms gray screen was inserted after each stimulus presentation. The stimulus contrast and the location on 

the grid were chosen in a random order. Each pattern (every combination of the grid locations and the 

contrasts) was repeated 12 times (Wang et al., 2010); (2) drifting sinusoidal gratings: the parameters 

were the same as those used in (Niell and Stryker, 2008). The sinusoidal gratings were moving in 12 

different directions (30° spacing) with 6 spatial frequencies in a range, 0.01–0.32 cycles/degree (cpd), 

with geometric steps. The temporal frequency and duration were 2 Hz and 1.5 s, respectively. We also 

presented full field flickering (0 cpd) and gray screen. Each pattern was presented in a random order 
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and repeated 12 times; (3) contrast-reversing sinusoidal gratings: the gratings had 7 spatial frequencies 

in a range, 0.02–1.28 cpd, with geometric steps. The amplitudes were sinusoidally modulated at 4 Hz. 

Two different spatial phases (0° and 90°), and 4 different orientations (0°, 45°, 90°, and 135°) were 

used for each spatial frequency. Each pattern was presented in a random order and repeated 10 times; 

and (4) a contrast-modulated noise movie adapted from (Niell and Stryker, 2008): Briefly, a Gaussian 

white noise movie was generated in the Fourier domain with the spatial frequency spectrum set to A(f) 

= 1/(f+fc), with fc = 0.05 cpd, and a sharp low-pass cutoff at 0.12 cpd. The temporal spectrum was flat 

with a sharp low-pass cutoff at 4 Hz. This frequency domain movie was then transformed into the 

temporal domain and a 0.1 Hz sinusoidal contrast modulation was added. The movie was originally 

generated at 128 × 64 pixels, and expanded to the size of the stimulus monitor with smooth 

interpolations between pixels. 

In addition to these stimuli, a contrast-alternating checkerboard stimulus (0.04 cpd square wave, 

alternating at 0.5 Hz) was employed to collect the local field potentials (LFPs), which were used to 

estimate the surface location of the SC (see the ‘Electrophysiological identification of the SC surface’ 

section). 

Spike-sorting and extraction of the local field potential. For spike-sorting and local field 

potential analysis, we used custom-designed software as described previously (Litke et al., 2004; 

Shanks et al., 2016). A level 5 discrete wavelet filter (Wiltschko et al., 2008) (cutoff frequency ~313 

Hz) was applied to the recorded data. The high-pass part was used for single unit identification after 

motion-artifact removal, whereas the low-pass part was used for the LFP analysis. The average motion 

artifact shape was estimated as a function of time by averaging the signals of all the recording channels. 

The estimated artifact was then subtracted from each channel with a multiplicative factor that 

minimized the root mean square of the channel.  

Individual neuron identification was based on a previously developed method (Litke et al., 
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2004). The waveform of a spike detected on a “seed” electrode was combined with the time-correlated 

waveforms on the neighboring electrodes. Principal Component Analysis was used to extract the most 

significant variables for spike sorting from the waveform measurements. These variables were then 

clustered using the expectation maximization algorithm. After the first fit, the number of clusters was 

reduced one by one and refit until it no longer lowered the Bayesian information criterion (Fraley and 

Raftery, 1998). To remove duplicates and bad clusters, we used the contamination index (> 0.3, Litke et 

al., 2004), isolation distance (< 20, Schmitzer-Torbert et al., 2005), L-ratio (> 0.1, Schmitzer-Torbert et 

al., 2005), spike-correlation (> 0.25, Litke et al., 2004), similarity of electrophysiological images (> 

0.95 inner product), and the firing rate (requires > 0.1 Hz in the first and last 5-minute segments of the 

visual stimulus). When responses to multiple visual stimuli are compared, we required the firing rate 

criterion to be satisfied for all the visual stimuli. Once the neurons were identified, the positions of the 

neurons were estimated by fitting a 2-dimensional circular Gaussian to the spatial extent of the average 

spike amplitudes (i.e. electrophysiological images (EIs); see (Litke et al., 2004) for details) of the 

neurons. 

Electrophysiological identification of the SC surface. We identified the surface of the SC using 

the LFPs recorded on each electrode. A flashing checkerboard stimulus generates a strong LFP in the 

area where the sSC is located (Zhao et al., 2014). We used the following steps to identify the surface 

line of the SC. (1) On a vertically aligned column of electrodes, average the evoked LFPs induced by 

the checkerboard contrast reversal to get the LFP as a function of the depth and the time after the 

reversal (Fig. 2A). (2) Choose the time when the LFP has the maximum negative amplitude and, at this 

specific time, obtain the LFP amplitude as a function of depth (Fig. 2B). (3) Choose the depth where 

the LFP is half maximum and closer to the top of the shank. This point is defined as the surface 

position for the column. (4) Repeat (1) through (3) for all available electrode columns (8 columns for 

128-electrode probes; 12 columns for 256-electrode probes), and obtain a surface point for each 
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column. (5) Fit a line to the identified surface points using the method of least squares. This 

electrophysiologically estimated SC surface agrees well with the actual surface of the SC (Fig. 1D, 

dashed white line). The perpendicular distance from this line defines the depth of the cells in the SC. 

This procedure will produce a similar result to that of the current source density (CSD) analysis. 

The CSD analysis is an established method for identifying physiological landmarks of anatomical 

structures (Niell and Stryker, 2008; Zhao et al., 2014). The CSD is the second order derivative of the 

LFP with respect to depth. Another method to identify the surface of the SC is to use a zero-crossing 

point of the CSD. However, if you estimate the LFP amplitude as a Gaussian function of depth (with 

mean µ and standard deviation σ), which is a reasonable model given the shape shown in Fig. 2B, the 

zero-crossing point of the CSD, µ ± σ (with σ ~ 100 µm), is not very different from the half-maximum 

point, µ ± 1.18 σ. In addition, the half-maximum point has the following advantages: (1) resilience to 

the asymmetry of the LFP shape; (2) robustness to the outlier amplitudes outside the region of interest; 

and (3) methodological/computational simplicity. Therefore, we decided to use the half-maximum point 

method instead of the CSD method. 

We defined the border between the sSC and dSC as 400 µm in depth measured perpendicularly 

from the surface. This is based on the change of the physiological properties in our own data, as well as 

the fact that a border line between the SO and the stratum griseum intermedium (SGI) was drawn 

consistently at ~400 µm in other studies (Phongphanphanee et al., 2008; Hong et al., 2011; Zhao et al., 

2014). We do not distinguish any further sublamina of the SC—our dSC includes areas that are 

sometimes referred to as the intermediate and/or deep SC. 

Spontaneous firing rate. We define the spontaneous firing rate of an individual neuron as the 

firing rate while the mouse watches a gray screen. An accurate measurement of the spontaneous firing 

rate is important because the significance and sign of the neuronal response is evaluated relative to this 

rate. We tried two different methods for evaluating the spontaneous firing rate. Our drifting grating 
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stimulus consists of 1.5 s stimulus periods and 0.5 s intervals. In the 12 stimulus periods, we displayed 

a blank gray screen pattern to evaluate the spontaneous firing rates (1.5 s × 12 = 18 s total time for 

evaluation). In addition, we also evaluated the spontaneous firing rates during the intervals after 

removing the first 0.2 s, which is affected by switching from the stimulus to the gray screen (0.3 s × 

887 = 266.1 s). The two spontaneous firing rates did not differ significantly (p > 0.01) for most neurons 

(92%). Therefore, we used the spontaneous firing rates evaluated by the intervals as they are more 

precise. 

Modeling of the orientation/direction selectivity with a χ2 fit. We used χ2 minimization to fit our 

model functions to the firing rate of a cell to stimuli with different directions (Direction tuning curve; 

DTC). The χ2 is defined as, 

𝜒" =
𝑅%&'( − 𝑅*%+,-( "

𝜎%&'(	"

0"

(10

					(1) 

where the sum is over all the twelve directions i, Ri
obs is the observed average firing rate, Ri

model is the 

estimated firing rate from the model functions that are defined below, and σi
obs is the SEM of the 

observed firing rate. The preferred spatial frequency of a neuron was chosen as the frequency that 

caused the most significant firing rate change from the spontaneous rate, either positive or negative. 

The Python SciPy ‘curve_fit’ function was used for fitting functions. (In order to have proper 

error propagations, the version needs to be ≥ 0.17.) A goodness-of-fit test was done for each fit with the 

evaluation of the p-value. The p-value distribution is a useful indicator of how well the model fits the 

data (Fig. 3E). 

Two model functions were used for the fit. 

Wrapped Gaussians: 
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𝑅 𝑥 = 𝐴 + 𝐵exp −
𝑥 − 𝐸 + 2𝑛𝜋 "

2𝐷" + 𝐶exp −
𝑥 − 𝐸 + (2𝑛 + 1)𝜋 "

2𝐷" 						(2)
B

C1DB

 

where R(x) is a periodic function: R(x+2π) = R(x). In the actual implementation, the range of n is set to 

-3 to 3, which serves as a practical approximation of this function for 0 < x < 2 pi. 

As previously reported, the Gaussian fit does not always converge if the parameters are 

unbounded (Mazurek et al., 2014). We introduced fit parameter boundaries that are similar to (Mazurek 

et al., 2014). 

1. 0 < A < max(DTC)  

(To avoid blowup of the baseline, which happens when the width is large) 

2. (bin width) / 2 < D < π / 2 

(min: To avoid overfitting by shrinking Gaussians 

 max: To avoid excessive overlapping of the adjacent Gaussians.)  

3. -4π < E < 4π (To avoid E getting out of the defined function) 

Sinusoid: 

𝑅 𝑥 = 𝐴 + 𝐵 cos 𝑥 − 𝐷 + 𝐶 cos" 𝑥 − 𝐷 							(3) 

There are no parameter restrictions for the sinusoidal model. 

The fit parameters were evaluated with an error matrix (Hessian matrix). As previously noted 

(Mazurek et al., 2014), the error is not trustworthy when the fit parameter is at the manually set 

boundaries; however, even if some parameters are at the boundaries, the errors of the other parameters 

are still valid. We used the error values only when the fit parameters are not at their boundaries. 

In order to compare the results of the fits from these two different fit functions, we calculated 

various OS/DS properties from the fit parameters (Table 1). When arithmetic calculations were 
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performed on the parameters, the errors were appropriately propagated using both the variance and the 

covariance of the parameters. A cell with a significant (positive or negative) DS amplitude (p < 0.001) 

was classified as a DS cell, and a non-DS cell with a significant OS amplitude (p < 0.001) was 

classified as an OS cell. We used a significance threshold at p = 0.001 in order to reduce the fraction of 

false positive OS/DS cells in the subsequent analysis. For example, assuming that 20% of all the cells 

are OS cells, applying p = 0.01 and p = 0.001 thresholds will result in having ~4% and ~0.4% of the 

candidate OS cells, respectively, to be false-positives. 

The maximum and minimum firing rates determine whether a neuron had a positive response, a 

negative response or both. If the maximum/minimum firing rate is significantly higher/lower (p < 0.01) 

than the spontaneous firing rate, the neuron has a positive/negative response, respectively.  

This model-based method resolves the issues of the traditional methods used by others, which 

subtract the spontaneous firing rate from the response (Niell and Stryker, 2008; Wang et al., 2010; 

Inayat et al., 2015). The treatment of the negative firing rate caused by this subtraction is not explicitly 

explained in these studies. If the negative part is truncated, it loses information of the negative part; if 

the negative part is left as negative, the definition of the preferred angle—the weighted sum of the 

phase—becomes ill-defined. Also, the resulting parameters (orientation/direction selectivity index; 

OSI/DSI) were not checked for significance. (Mazurek et al., 2014) introduced a method of 

significance tests, but the relation with the spontaneous firing rate was not discussed in their study. Our 

model-based method provides a proper treatment of both the spontaneous firing rate and the 

significance tests. 

Goodness of fit and goodness of the model. The goodness of fit was evaluated for each fit. If the 

fit is good, the minimized χ2 values should follow the χ2 distribution. The two models have a different 

number of parameters (5 for the Gaussian fit and 4 for the sinusoidal fit) and therefore a different 

number of degrees of freedom (7 and 8, respectively). In order to cross-compare the χ2 distributions 
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with different degrees of freedom, we calculated the goodness of fit p-values using the cumulative 

probability distribution function of the χ2 distribution. Low p-values indicate overfitting or over-

estimated errors; high p-values indicate too few parameters, an incorrect model or under-estimated 

errors. 

Analysis of flashing spot response. A flashing spot can elicit spikes for most of the sSC cells 

(Wang et al., 2010). We used a previously described method for the flashing spot response analysis 

(Shanks et al., 2016). In this study the significance of a response was evaluated at each flashing spot 

grid location. The poststimulus time histogram was calculated using a 50 ms bin size. The response was 

considered significant if the firing rate associated with a bin exceeded the mean firing rate of the 

neuron during the entire flashing spot stimulus by at least 5 σ. Here σ is the SD of the firing rate based 

on Poisson statistics. There are 70 grid locations, 2 contrasts and 10 time bins. After Bonferroni 

correction, it corresponds to a significance level of p~0.0004. 

We characterized only the positive response to the flashing spots. With the binning size (50 ms) 

and the number of trials (12) that we used in our experiments, a negative response could only be a 

statistically significant amplitude for neurons with a very high spontaneous firing rate (≥ 42 Hz), which 

most neurons did not have. 

Analysis of contrast reversing gratings. The contrast reversing gratings is a spatial sinusoidal 

pattern that changes contrast sinusoidally over time. By using a wide range of spatial frequencies, 

including frequencies that exceed the cells’ receptive field spatial resolution limit, it is possible to 

characterize the Y-like nonlinear spatial summation property (Hochstein and Shapley, 1976; Petrusca et 

al., 2007). Responses at the 4 Hz stimulus temporal frequency (F1) and the second harmonic frequency 

(F2) were characterized as a function of spatial frequency using a method previously described 

(Hochstein and Shapley, 1976; Petrusca et al., 2007). Namely, for each spatial frequency, the phase 

dependence was taken into account by taking the maximum F1 value, and the mean F2 value, over the 
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two spatial phases. 

Neurons are considered to have Y-like nonlinearity of spatial summation when they have a 

significant response in the F1 component at the lowest spatial frequency (0.02 cpd, p < 0.01), and have 

a significantly stronger F2 response in at least one of the higher frequencies (p < 0.01, with Bonferroni 

correction). In a primate retina study, the nonlinearity index (maximum value of F2/F1 ratio over the 

spatial frequencies) has been used (Petrusca et al., 2007). The nonlinearity index is a good indicator of 

the Y-like cells in the retina, where most of the neurons are either ON cells or OFF cells. In the SC, 

many of the cells are ON-OFF cells (Wang et al., 2010), which have a strong F2 component even in a 

low spatial frequency range. The method used in the present study ensures that a cell has proper 

characteristics of a Y-like cell—a strong F1 component at a low spatial frequency, and a strong F2 

component at a high spatial frequency. 

 Analysis of the contrast modulated noise movie. The contrast modulated noise movie is an 

effective stimulus to find out how cells respond to contrast. In order to characterize the contrast 

response of the cells, we used a function fit method similar to the analysis of the orientation selectivity. 

We considered the zero-contrast timings as the starting times of the stimulus, and constructed a post-

stimulus time histogram (PSTH) for each neuron. The same sinusoidal function (equation 3), with a 10 

s temporal period, was fit to the PSTH (χ2 fit using SEM of the PSTH) to get the amplitude of the linear 

response (model parameter B). Among the cells with a significant linear response, those with a 

maximum firing rate at 4–6 s (when the contrast is maximum) are considered as stimulated-by-contrast 

cells; those with a maximum firing rate at 0–1 s and 9–10 s are considered as suppressed-by-contrast 

cells. ‘Other’ cells include those with a non-significant linear component, and those with a maximum 

firing rate timing that does not meet the above criteria. 

Blind analysis. Blind analysis is an effective method for reducing the false-positive reporting of 

results (Klein and Roodman, 2005; MacCoun and Perlmutter, 2015). (Please note that the analysis is 
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“blind”, not the mice!) We looked for specific and/or significant features in a randomly subsampled set 

of 10 out of the 20 recordings. After specifying the features for further investigation, and freezing the 

individual analyses, we unblinded the other 10 blinded recordings to check if the significance of the 

results was reproduced. All the results shown in this paper passed the significance test before and after 

unblinding. We report the results of the combined data. 

Results 

Large scale silicon probe recordings create a large dataset of visually responsive neurons 

throughout the depth of the SC 

We recorded from the SC of awake, behaving mice on a spherical treadmill (Fig. 1A) using large-scale 

silicon probes (Fig. 1B, C). The active length of the probe is long enough to record from both the sSC 

and the dSC simultaneously. The surface location of the SC was estimated by the LFPs induced by the 

alternating checkerboard stimulus (Fig. 2A, B; see ‘Electrophysiological identification of the SC 

surface’ section in Materials and Methods), and the neurons were divided into the sSC (depth < 400 

µm) and the dSC (depth ≥ 400 µm) neurons. The high spatial density, 128- and 256-electrode silicon 

probe recordings identified a total of 1445 SC neurons (687 superficial, 758 deep) in 20 mice, with an 

average number of 0.43 ± 0.03 isolated single neurons per electrode in the SC. Fig. 2C shows the 

distribution of cells throughout the depth of the SC. The distribution of the spontaneous firing rate is 

shown in Fig. 2D; the mean and the SEM in the log space were 10−0.10 ± 0.03 and 100.19 ± 0.03 Hz (~0.8 and 

~1.6 Hz) in the sSC and the dSC, respectively (8 sSC cells with zero spontaneous spikes were excluded 

from the calculation). The dSC cells had significantly higher spontaneous firing rates than the sSC cells 

(p = 7.2 × 10−10). Some analyses require visual stimuli that were used in only a subset of experiments; 

in those cases, the number of neurons used for the analysis is indicated in the corresponding sections. 
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Characterization of orientation and direction selective cells using a novel model-based analysis 

In order to extract the OS/DS response properties in terms of model parameters, we applied a model-

based OS/DS analysis to the recorded neurons (see Methods). This approach allows us to evaluate how 

well the model fits the data. By applying a p < 0.001 significance threshold for the fitted OS or DS 

amplitudes, as defined in Table 1, we found 302 (173 superficial, 129 deep) OS cells and 201 (135 

superficial, 66 deep) DS cells. Fig. 3A-D show examples of the raster plots and/or tuning curves of OS 

and DS cells, including: an OS cell with a positive firing rate change (Fig. 3A), a DS cell with a 

negative firing rate change (Fig. 3B), an OS cell with a negative firing rate change (Fig 3C), and a DS 

cell with both a positive and a negative firing rate change (Fig 3D). (All firing rate changes are 

evaluated relative to the spontaneous firing rate; see ‘Spontaneous firing rate’ in Materials and 

Methods). The preferred spatial frequency of the OS/DS cells was 0.01 × 22.25 ± 0.09 (~0.048) cpd in the 

sSC and 0.01 × 22.47 ± 0.10 (~0.056) cpd in the dSC, showing no significant difference (p = 0.10). The 

fraction of cells that are OS/DS as a function of depth is plotted in Fig. 4A, B. In the sSC 25.1 ± 1.7% 

of the cells are OS and 19.6 ± 1.5% are DS; in the dSC 17.0 ± 1.3% of the cells are OS and 8.7 ± 1.0% 

are DS. The area close to the surface (< 150 µm) is enriched with DS cells, showing qualitative 

consistency with (Inayat et al., 2015) but differing in the estimated abundance. Inayat et al. reported 

74% of the cells in 0–50 µm depth are DS cells, while we find only 44 ± 8% of our cells are DS. This 

difference could be due to different methods for identifying the DS cells and/or our use of a relatively 

high level of the significance threshold (p < 0.001), compared to the DSI method with the significance 

unchecked.  

We determined the quality of the model fit for each individual cell by the χ2 per number of 

degrees of freedom (ndof) (with the expectation value χ2 = ndof and variance = 2 × ndof) and by the χ2 

goodness-of-fit p-value. The overall quality of the model is evaluated by the distribution of the p-values 
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for the set of fits for the population of neurons. If the model correctly represents the population data 

and the corresponding errors, a flat p-value distribution is expected as indicated in Fig. 3E. Using this 

rigorous method, we find that ~83% of the neurons are well-modeled and ~17% of the cells were 

poorly modeled (area above the red line in Fig. 3E). 

Cells that have negative orientation or direction selective responses are enriched in the dSC 

Our model-based analysis also determines the sign (whether the firing rate change was positive, 

negative or both) of each cell’s response to drifting grating stimuli. The model estimates the range of 

the firing rates in response to the drifting gratings. By comparing this range of the firing rate with the 

spontaneous firing rate, we determined whether the stimulus increased or decreased the firing rate of 

each cell (see Fig. 4C inset). Fig. 4C–J compare the minimum and maximum firing rates to the 

spontaneous firing rate of each OS and DS cell. The OS cells (C, D, G, H) and DS cells (E, F, I, J) 

show similar trends. Fig. 4C, E indicate that the sSC OS/DS cells respond to moving gratings with a 

positive change of the firing rate relative to their spontaneous rate, while Fig. 4H, J indicate that dSC 

OS/DS cells respond with a significant reduction of their firing rates. Fig. 4K, L summarize the results 

and show that, compared to the sSC, the fraction of the positive OS/DS cells decrease (OS: p = 4.4 × 

10−10, DS: p = 3.5 × 10−5) and the fraction of the negative OS/DS cells increase in the dSC (OS: p = 6.3 

× 10−10, DS: p = 5.5 × 10−7). Only a small fraction (7.6 ± 1.2%) of the OS/DS cells responded with both 

positive and negative firing rate change (the maximum firing rate was significantly above the 

spontaneous firing rate and the minimum firing rate was significantly below the spontaneous firing 

rate), while all the other cells had either positive or negative firing rate change. 

Suppressed-by-contrast cells are enriched in the dSC, and show little overlap with negative 
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OS/DS cells 

Suppressed-by-contrast (SuC) cells are a known example of a cell type with a decrease in firing rate in 

the presence of a high-contrast visual stimuli. As the negative OS/DS cells also have a firing rate 

reduction by the drifting gratings stimuli, an overlap between the SuC cells and the negative OS/DS 

cells might be expected. To measure the fractions of the stimulated-by-contrast (StC) cells and the SuC 

cells, we used the ‘contrast modulated noise movie’ adopted from (Niell and Stryker, 2008) (Fig. 5A). 

For this analysis, we used 551 neurons from 14 mice. The fraction of the StC and SuC cells as a 

function of depth is shown in Fig. 5B. The sSC consists mostly of StC cells (71 ± 3%) while the 

fraction of the SuC cells increases at ~400 µm in depth, and remains constant thereafter. The fractions 

of these cells in each category are summarized in Fig. 5C. In the dSC, the fraction of the StC cells 

decreases while the fraction of SuC cells and other cells increases. 

To determine if the negative OS/DS cells are a subset of the SuC cells, we measured the overlap 

between these cells. 77 ± 4% of the positive OS/DS cells were StC cells (chance value: 49 ± 2%), while 

only 22 ± 5% of the negative OS/DS cells were SuC (chance value: 12 ± 1%). Although they have 

more-than-chance overlap, a majority (78 ± 5%) of the negative OS/DS cells are not SuC cells. This 

result suggests that the negative OS/DS cells are not a subset of the SuC cells, and that they encode 

different specific visual features. 

Most of the dSC cells have complex-cell-like spatial summation nonlinearity 

The ratio of the stimulus frequency response to the mean response, F1/F0, to a drifting sinusoidal 

grating, is a standard quantitative metric of response linearity and has been used to discriminate cortical 

simple cells from complex cells (Skottun et al., 1991). Here we define the cells with F1/F0 < 1 as C-like 

nonlinear cells and F1/F0 ≥ 1 as linear cells. This metric has been applied to mouse cortical cells (Niell 
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and Stryker, 2008) and sSC cells (Wang et al., 2010). We have applied it to our data and found 

examples of both linear cells and C-like nonlinear cells in the SC (Fig. 6A). Note that the linear cell has 

a rhythmic response to the drifting gratings, while the C-like nonlinear cell elevates its firing rate 

regardless of the phase of the stimulus. Most cells with a linear response appear in the sSC (Fig. 6B) 

and most cells with a negative OS/DS response amplitude are C-like nonlinear (see Fig. 6C). Moreover, 

we see a clear difference between the cells with a positive response and the cells with a negative 

response (Fig. 6D). The dSC is enriched with negative OS/DS cells, which also means that they are 

enriched with C-like nonlinear cells. Even among the positive OS/DS cells, the distribution of the F1/F0 

linearity was significantly different between the sSC and the dSC (p = 1.8 × 10−6, KS test; Fig. 6E), 

further highlighting the smaller fraction of linear cells and predominance of the C-like nonlinear cells 

in the dSC (Fig. 6F). 

Some dSC OS/DS cells do not respond to flashing spots 

We also determined the response of the cells to a flashing spot stimulus (Fig. 7A, top), which is 

effective at stimulating sSC cells (Wang et al., 2010). For this analysis, we used a total number of 967 

neurons. First, we quantified the fraction of the cells that are responsive to flashing spots in the sSC and 

the dSC. We found that the majority of the responsive cells respond both to the onset of a white 

flashing spot (ON stimulus) and the onset of a black flashing spot (OFF stimulus), consistent with a 

previous report (Wang et al., 2010). An example of an ON-OFF cell, responding to both white and 

black flashing spots, is shown in Fig. 7A (bottom). The percentages of the ON, OFF, ON-OFF and non-

responsive cells were 8 ± 1%, 16 ± 2%, 58 ± 2% and 17 ± 2% in the sSC and 5 ± 1%, 20 ± 2%, 31 ± 

2%, and 44 ± 2% in the dSC, respectively. These non-responsive cells may respond to other visual 

stimuli, or they are non-visually-responsive cells such as auditory- and/or somatosensory-responsive 

cells. 
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Next, we characterized flashing spot responses of OS/DS cells, which are known to be visually 

responsive. For this analysis, we used only positive OS/DS cells, as it was statistically difficult to 

quantify negative responses to flashing spots (see ‘Analysis of flashing spot response’ in Methods) For 

this analysis, we used 209 positive OS/DS cells. We found that some of the dSC OS/DS cells do not 

respond to flashing spots. In order to illustrate the difference of the response between the sSC and the 

dSC, we chose an example cell from each region. Despite their similar orientation selectivity (Fig. 7B 

and E), these cells have very different responses to the flashing spot stimulus: the sSC neuron has a 

sharp response to the onset of the white and black flashing spots (Fig. 7C and D, respectively; red 

arrows), while the dSC cell has no response at all (Fig. 7F and G). The fraction of cells with no flashing 

spot response was 7 ± 2% and 33 ± 6% in the sSC and dSC, respectively (Fig. 7H). All the dSC OS/DS 

cells that lack a flashing spot response (n = 18) were also C-like nonlinear cells (defined above by F1/F0 

< 1). To summarize, some C-like nonlinear cells in the dSC ‘selectively’ respond to gratings drifting in 

their preferred orientation/direction, but not to flashing spots.  

Y-like nonlinear cells are restricted to the sSC 

The Y-like response, the nonlinear rectification of fine spatial texture, has not been previously 

characterized in the mouse brain. We characterized the Y-like nonlinearity and found a difference 

between the sSC and the dSC. For this analysis, we used 977 neurons. X-like cells show a response 

with the same frequency as the stimulus frequency at low spatial frequencies and this response decays 

as the spatial frequency increases (Fig. 8B, C). Y-like nonlinear cells show a frequency-doubling 

response at a high spatial frequency (Fig. 8A) as demonstrated in Fig. 8D, E. A significant fraction (8.3 

± 1.3%) of the cells in the sSC have this Y-like nonlinearity, while almost none of the cells (0.2 ± 0.2%) 

in the dSC have this property (Fig. 8F). 
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Discussion 

In this study, we used high-density silicon probe recordings in awake, behaving mice to examine the 

visual response properties of mouse SC cells, with particular attention to the less characterized dSC 

cells. In contrast to the sSC cells, the dSC cells have the following characteristics in visual response 

properties: (1) the majority of OS/DS cells encode their preferred orientations/directions by 

suppression of the firing rate; (2) almost all the cells have C-like nonlinearity and about one-third of the 

positive OS/DS cells lack a flashing spot response; and (3) Y-like nonlinearity is absent. These results 

provide important and novel details about the visual coding properties of the mouse SC as elaborated in 

the following discussion. 

Negative encoding in the dSC 

Neurons in the early visual system (i.e. the retina, dorsal lateral geniculate nucleus (dLGN), V1, and 

sSC) typically encode information by a positive change of the firing rate. There are cases that non-

preferred stimuli lead to inhibition of these visual cells, but such inhibition is usually in conjunction 

with stronger excitation to the preferred stimuli. A known exception to such positive encoding is the 

‘suppressed-by-contrast’ cells (also known as ‘uniformity detectors’) that reduce their firing rate with a 

high-contrast stimulus. In mice, they are known to exist in the retina (Tien et al., 2015), dLGN (Piscopo 

et al., 2013), and V1 (Niell and Stryker, 2010). We find these cells in the SC, at the level of 6.2 ± 1.5% 

in the sSC, increasing to 16 ± 2% in the dSC. One hypothesis is that these cells are reporting self-

generated stimuli (saccade or blink) (Tien et al., 2015), but their detailed properties and functional roles 

remain unknown. 

We found that 58 ± 4% of OS/DS cells in the dSC are ‘negative’ OS/DS cells, in contrast to the 

25 ± 2% detected in the sSC. What is the role of these negative OS/DS cells? One hypothesis is that 
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these are inhibitory cells that gate motor output. In fact, an in-vitro study showed that 74% of 

GABAergic neurons in the SGI (in our study called the dSC) have high spontaneous firing rates, and 

provide tonic inhibition in the local circuitry (Sooksawate et al., 2011). Unfortunately, inhibitory and 

excitatory neurons cannot be distinguished using the action potential waveforms in the SC, as was done 

in V1 (Niell and Stryker, 2008). Therefore, we will need further experiments to identify negative 

OS/DS cells as inhibitory or excitatory. 

Increased C-like nonlinearity and lack of response to flashing spots indicate that the mouse dSC 

cells are selective to visual features 

Almost all of the cells (96.5 ± 0.9%) that respond to drifting gratings in the dSC have C-like 

nonlinearity; the fraction of the positive OS/DS cells that lack flashing spot responses was 7 ± 2% in 

the sSC and 33 ± 6% in the dSC. The dSC is characterized by predominance of C-like nonlinearity and 

lack of response to flashing spots compared to the sSC. Interestingly, these transitions are similar to 

those between the cortical simple and complex cells (nonlinearity: Skottun et al., 1991; lack of spot 

response: Hubel and Wiesel, 1962). Furthermore, both SC and V1 are laminar structures, and complex 

cells are enriched within their output layers (deep layers of the SC and layer 5 of V1, Niell and Stryker, 

2008) This result suggests that the SC is performing visual feature extraction similar to those proposed 

for complex cells in V1. 

 In studies of the primate SC, few DS cells were found (Humphrey, 1968), and the visual 

response properties of the majority of the cells have been described as ‘event detectors’, which means 

that they respond to almost any stimuli in their receptive fields (non-selective to visual features) if the 

stimulus size is appropriate (Schiller and Koerner, 1971), and these properties do not change 

qualitatively in the dSC (Humphrey, 1968; Cynader and Berman, 1972; Goldberg and Wurtz, 1972). 

Such a visual response is not useful for finding out what the object is, but is useful for encoding the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2016. ; https://doi.org/10.1101/092981doi: bioRxiv preprint 

https://doi.org/10.1101/092981


22 

appearance and location of an object (Boehnke and Munoz, 2008), which are relevant information for 

producing an accurate gaze shift toward the object. 

 On the other hand, recent studies of anesthetized mice showed that the sSC cells are ‘selective’ 

to visual features (Wang et al., 2010; Gale and Murphy, 2014). We have confirmed visual selectivity in 

awake mice and showed that the dSC cells are even more selective than the sSC cells. Although we do 

not know why such a ‘selective’ versus ‘non-selective’ difference between mouse SC and primate SC 

arises, it is worth noting that there are two important differences between them. The primate SC is 

innervated by only ~10% of retinal ganglion cells (RGCs), while the mouse SC is innervated by at least 

70% of RGCs (May, 2005), and the mouse does not have a fovea. It should also be noted that we did 

experiments with the visual cortex preserved. Therefore, some of the responses we find may be relayed 

from the visual cortex, as it has been shown that multiple areas of the visual cortex project to the SC 

(Wang and Burkhalter, 2013). Nevertheless, the mouse SC cells are more similar to the mouse or 

primate V1 cells than to the primate SC cells in the sense that they are selective to visual features, and 

this property may support the surprising visual task capability of mice that develop without a visual 

cortex (Shanks et al., 2016), and other visually guided behaviors (Liang et al., 2015; Shang et al., 2015; 

Wei et al., 2015). 

Cells with a Y-like nonlinear spatial summation property are found only in the sSC 

We found cells with a Y-like nonlinearity in the sSC (8.3 ± 1.3%), but not in the dSC (0.2 ± 0.2%). This 

Y-like nonlinearity is a well-known property of the alpha/Y-type RGCs, originally found in the cat 

retina (Hochstein and Shapley, 1976), and subsequently in primates (de Monasterio, 1978; Petrusca et 

al., 2007), guinea pigs (Demb et al., 1999) and mice (Stone and Pinto, 1993). The Y-like nonlinearity of 

the sSC cells could be inherited from these RGCs. One of the alpha RGC types in mice, the transient 

OFF alpha RGCs (i.e. the PV-5 ganglion cells), have strong sensitivity to a looming spot stimulus, 
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which imitates an approaching object (Münch et al., 2009). This stimulus causes an innate defensive 

response (Yilmaz and Meister, 2013) proposed to be through a retina-SC-lateral posterior nucleus (LP, 

also known as the pulvinar)-amygdala pathway (Shang et al., 2015; Wei et al., 2015). The SC cells that 

project to the LP have been identified as the wide-field cells, which do not project to the dSC (Gale and 

Murphy, 2014); this is consistent with our inability to detect dSC cells with these Y-like properties. 

Therefore, our results are consistent with the hypothesis that the wide-field cells in the sSC obtain their 

Y-like nonlinearity from the retina, and transmit them to the LP, but not to the dSC. 

Advantages of the model-based analysis and high-density silicon probes 

We used simple model functions (see Methods) to describe the OS and DS cells. This model-based 

analysis extracts the response parameters of SC cells with their corresponding correlated uncertainties, 

and provides a method for significance tests between parameters. Using this analysis, we discovered a 

novel type of OS/DS cells that respond with suppression of their firing rate. This method can also be 

applied to the visual cortex, which may also contain negative OS/DS cells that have been overlooked. 

In addition to this new method of analysis, the large-scale silicon probe recording system was 

important for the detailed characterization of the cells. For example, because the electrodes are dense 

(~32 µm between electrodes), the spike of a single cell is recorded simultaneously on several electrodes 

with different amplitudes and waveforms. These signals may seem redundant, but they improve both 

the single unit identification (Litke et al., 2004) and the cell position estimates. Furthermore, the large-

scale recording provides high statistical power. We recorded from 1445 cells, and this is the first 

electrophysiological study of the mouse SC conducted at this scale. This large dataset allowed us to 

characterize small populations such as negative OS/DS cells, suppressed-by-contrast cells and Y-like 

nonlinear cells, and to perform a blind analysis that increased confidence in the results. 
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Conclusion 

We characterized the visual response properties of both the sSC and the dSC using advanced hardware 

and software, and discovered that the dSC encodes stimulus orientation and direction with the 

suppression of the firing rate, performs cortex-like visual feature extraction, and lacks Y-like 

nonlinearity. This is the first report of the presence of negative OS/DS cells anywhere in the 

mammalian visual system, and they were discovered using the model-based analysis that we developed 

for the present study, combined with the large-scale silicon probe recording system. The cortex-like 

selective feature extraction suggests that the mouse SC contributes to visual functions that are often 

attributed to V1. These findings are an important step to understand how the SC processes visual 

images and contributes to visually-guided behavior of the mouse.  
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Legends 

 

Figure 1: Experimental setup. A: A drawing of the recording setup. During the recording, the head-

fixed mouse is awake, behaving on a floating spherical treadmill and watching a variety of visual 

stimuli. B: A schematic of a 128-electrode, 4-shank silicon probe (150 µm shank pitch, each shank is 

65 µm wide and 23 µm thick; 2 columns of electrodes on each shank, 20 µm pitch; 16 electrodes on 

each column, 50 µm pitch; 775 µm active length, 470 µm lateral extent; used for 5 of 20 recordings). 

The background image is a sagittal section of the SC, taken from the Allen Mouse Brain Atlas (Lein et 

al., 2007) with labels modified to match the terms in the present study. The scale bar is 400 µm. C: A 

schematic of a 256-electrode, 4-shank silicon probe (200 µm shank pitch, each shank is 86 µm wide 

and 23 µm thick; 3 columns of electrodes on each shank, 20 µm pitch; 21–22 electrodes on each 

column, 50 µm pitch; 1050 µm active length, 640 µm lateral extent; used for 15 of 20 recordings). The 

scale bar is 400 µm. D: A photograph of a parasagittal section of the SC after recording, indicating the 

probe location as marked by DiI. The dotted cyan lines indicate the recording shank locations 

reconstructed by the DiI traces (red channel). A dashed white line indicates the electrophysiologically 

estimated surface of the SC, which agrees well with the actual surface. A dashed yellow line indicates 

the estimated border between the sSC and the dSC, which is 400 µm below the estimated surface of the 

SC. The scale bar is 400 µm.  

 

Figure 2: SC surface estimation, and firing rate distribution. A: An image of the average LFP evoked 

by a checkerboard stimulus. The image represents data collected from electrodes in one 22-electrode 

column. The color indicates the LFP voltage. The vertical axis gives the depth from the top electrode. 

The horizontal axis gives the time after the contrast reversal of the checkerboard stimulus. The black 
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dashed line indicates the time when the amplitude of the LFP response is maximized. B: The LFP 

voltage as a function of depth at the time indicated by the black dashed line in (A). The red dashed line 

indicates the estimated surface of the SC for the electrode column, where the LFP voltage is 1/2 of its 

maximum amplitude. Error bars are SEM over 600 trials. C: Number of identified neurons as a function 

of the depth. The neurons with a negative depth are cortical neurons. The gap between the cortex and 

the SC right above zero confirms that the depth of the SC surface is estimated well. D: Distribution of 

the spontaneous firing rate of the sSC (blue) and dSC (red) cells. The dSC cells are more spontaneously 

active. 

 

Figure 3: Model fit examples. A: Example drifting gratings responses of a positive OS cell. The 

circularly placed raster plots are the responses to the gratings moving toward the corresponding 

directions. The gray horizontal bars indicate the beginning and end of the stimulus. The inset bar graph 

indicates the average response firing rate for each direction (black histogram), the spontaneous firing 

rate (red line), and the result of a function fit (blue solid line). The error bars indicate the SEM of 12 

trials. Two polar plots to the right of the histogram indicate the polar plot representation of the response 

histogram. The polar plots are the direction tuning curves (DTCs) of the cell without (top) and with 

(bottom) the spontaneous firing rate subtracted. B: The same set of figures as A for a negative DS cell. 

The firing rate is significantly lower than the spontaneous rate around 190°. Note that the polar plots no 

longer represent the correct characterization of the response property of this neuron. C: A response 

histogram of a negative OS cell. Note that the spontaneous firing rate is above the responses for all the 

directions, thus this neuron would be neglected with the traditional approach of spontaneous firing rate 

subtraction. D: A response histogram of a DS cell that responds both positively and negatively relative 

to the spontaneous firing rate. This neuron also has a particularly large range of response firing rate, 

and the firing rate seems to saturate near its preferred direction. Such a response causes deformation in 
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the sinusoidal or Gaussian shapes, and results in a poor fit (p = 1 − 2 × 10−6). 

E: Distribution of the fit p-values (of χ2) for all the neurons. If the fit is consistent with the data points 

and their corresponding errors, the expected distribution is flat. We can estimate the fraction of neurons 

that were modeled poorly by the fit by counting the number of neurons above the expected flat line. 

~17% of the neurons exceeded the flat line, indicating that ~83% of the neurons were well-modeled by 

our fit models. 

 

 

Figure 4: Response signs of the OS/DS cells. A, B: Fraction of cells that are OS (A) and DS (B) cells 

as a function of depth. The surface of the SC is enriched with DS cells. C, D: A scatter plot of the 

spontaneous firing rate (FR) vs. the maximum response to drifting gratings of OS cells in the 

superficial (C) and deep (D) SC areas. The red dots indicate neurons with a positive response (the 

maximum FR is significantly (p<0.01) above the spontaneous rate). A larger fraction of cells in the sSC 

have positive response. Inset shows the direction tuning curve of the cell that is arrowed in C. E, F: The 

same figures as C and D for DS cells. G, H: A scatter plot of the spontaneous FR vs. the minimum 

response to drifting gratings of OS cells in the superficial (G) and deep (H) areas. The red dots indicate 

neurons with negative response (the minimum firing rate is significantly (p<0.01) below the 

spontaneous rate). A larger fraction of cells in the dSC have negative response. I, J: The same figures as 

G and H for DS cells. K, L: Fractions of the cells that are OS (K) and DS (L) cells that have positive, 

negative, and both responses to the drifting gratings. The ‘positive’ OS/DS cells decrease, and the 

‘negative’ OS/DS cells increase in the dSC (p < 0.001 for all combinations). 

 

Figure 5: Suppressed-by-contrast cells. A: Panels showing the example stimulus pattern of the contrast 

modulated noise movie. The contrast of the movie is sinusoidally modulated over a 10 s period. B: 
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Fraction of the cells, across the depth, that are conventional stimulated-by-contrast cells, suppressed-

by-contrast cells, or cells in neither of these categories. The sSC is dominated by the stimulated-by-

contrast cells. Soon after passing 400 µm, the fraction of stimulated-by-contrast cells decreases and the 

fraction of suppressed-by-contrast cells increases. C: Comparison of the fractions of the stimulated-by-

contrast and suppressed-by-contrast cells and non-responsive cells in the superficial and deep areas. 

Note that the fraction of the suppressed-by-contrast cells and non-responsive cells increased in the deep 

area. 

 

Figure 6: Difference of F1/F0 linearity between the sSC and the dSC. A: Typical temporal response of 

linear (red, F1/F0 = 1.97) and C-like nonlinear (blue, F1/F0 = 0.03) cells to drifting gratings. The linear 

cell responds rhythmically at the stimulus frequency (2 Hz), while the C-like nonlinear cell elevates the 

firing rate without a temporal pattern. B: A scatter plot of the depth and the F1/F0 nonlinearity. Note that 

F0 can have a negative value when the evoked firing rate is below the spontaneous firing rate, resulting 

in a negative F1/F0. C: Histograms of F1/F0 of neurons with positive and negative response. The 

distributions differ significantly (KS test, p=5 × 10−30). Most of the negative cells have a small value of 

F1/|F0|, indicating that they are C-like nonlinear. D: A bar graph comparing the fractions of the linear 

cells in positive and negative responding cells. The fraction of the cells that are linear is significantly 

larger among the cells with positive response than the cells with negative response (p = 7 × 10−36). E: 

Histograms of F1/F0 for positively responding cells. The distribution is different between the sSC and 

the dSC, showing a larger fraction of C-like nonlinear cells (F1/F0 < 1) in the dSC (KS test, p = 1.8 × 

10−6). F: A bar graph comparing the fraction of the C-like nonlinear cells in the sSC and dSC. The dSC 

has a significantly larger fraction of the C-like nonlinear cells than the sSC (p = 1.9 × 10−20). 

 

Figure 7: Lack of the flashing spot response in the dSC OS/DS cells. A: Flashing spot stimulus patterns 
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and example responses. Example flashing white (top left) and black (top right) spot patterns are shown. 

These patterns were shown at different grid locations on the screen. Firing rates of an example neuron 

elicited by white (bottom left) and black (bottom right) spots at each grid location are shown in 

grayscale. This neuron responds to both black and white spots shown at a localized area of the screen. 

B: Response of an sSC OS cell to a drifting sinusoidal grating, and C, D: its response to a flashing 

white (C) or black (D) spot at different grid locations. A red arrow points to the crisp response of the 

cell to the appearance of a spot. The scale bars are 500 ms (horizontal) and 50 Hz (vertical). E, F, G: 

The same figures as B through D for a dSC OS cell. No response to either white or black flashing spots 

is observed. H: Fractions of the positive OS/DS cells that lack a flashing spot response in the sSC and 

dSC (***: p < 0.001). In the sSC, only 7 ± 2% of the positive OS/DS cells have no spot response, while 

in the dSC, 36 ± 7% of the positive OS/DS cells have no spot response. 

 

Figure 8: Y-like nonlinear cells appear only in the sSC. A: An example frame of a contrast reversing 

grating. Instead of moving across the screen, the contrast of the pattern changes sinusoidally at 4 Hz. B: 

The F1 (4 Hz) and F2 (8 Hz) Fourier components as a function of spatial frequency. This cell shows an 

X-like response, which has a strong F1 component. C: A time course of the response of the cell shown 

in (B). The response is taken at the spatial frequency indicated by the black dotted line in (B). In one 

stimulus cycle (250 ms), the cell shows only one peak. D: A figure corresponding to (B) for a Y-like 

cell. Although the F1 component is dominant at low frequency, the F2 component increases at high 

frequency and exceeds the F1 component. E: A time course of the response of the cell used for (D). 

Note that there are two peaks in one stimulus cycle. F: Fractions of the Y-like cells found in the sSC 

and the dSC. Almost all (42 of 43) of the Y-like cells were found in the sSC. 
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Illustrations and Tables 

Figure 1 
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Figure 2 
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Figure 3 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2016. ; https://doi.org/10.1101/092981doi: bioRxiv preprint 

https://doi.org/10.1101/092981


38 

Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Table 1: Calculation of the OS/DS properties by fit parameters 

 Gaussian Sinusoid 

Evoked baseline firing rate A A 

OS Amplitude (B + C) / 2 C 

DS Amplitude (B - C) 2B 

Preferred Orientation/Direction E, E + π D, D + π 

Tuning width D N/A 

Maximum firing rate A + max(B, C) max(A + |B| + C, A - B2 / 4C) 

Minimum firing rate A + min(B, C) min(A - |B| + C, A - B2 / 4C) 
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