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Abstract 19 

Artificial neural networks (ANN) are computing architectures with massively parallel interconnections of 20 

simple neurons and has been applied to biomedical fields such as imaging analysis and diagnosis.  We 21 

have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput 22 

transcriptomics data. In over 10 TCGA RNA-Seq data sets, Cox-nnet achieves a statistically significant 23 

increase in predictive accuracy, compared to the other three methods including Cox-proportional hazards 24 

(Cox-PH), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, 25 

from both pathway and gene levels.  The outputs from the hidden layer node can provide a new approach 26 

for survival-sensitive dimension reduction. In summary, we have developed a new method for more 27 

accurate and efficient prognosis prediction on high throughput data, with functional biological insights. 28 

The source code is freely available at https://github.com/lanagarmire/cox-nnet.   29 

  30 
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Introduction 31 

Artificial Neural networks (ANNs) were developed in 1943 in order to model the activity of neurons 1.  In 32 

recent years, ANNs have caught renewed attention, thanks to the increased parallel computing power and 33 

the promise of deep learning 2.  The original ANN extension of Cox Regression was not designed to 34 

handle high throughput input data3. Some recent attempts using ANNs to high dimensional survival data 35 

simplified the regression problem as either a binary classification or fitting discrete variables of survival 36 

time through binning , leading to loss of accuracy 4,5. Another study used time as an additional input in 37 

order to predict patient survival or censoring status6, with the potential to overfit if the survival time and 38 

censoring time are correlated. To avoid all these issues, we herein leverage the neural network extension 39 

of Cox regression by a high-performance and easy-to-use package, particularly fit for high dimensional 40 

data.   41 

Besides Cox-nnet, some other modeling methods exist to predict patient survival. The standard method is 42 

Cox proportional hazards (Cox-PH) regression, a semi-parametric and generalized linear model with an 43 

exponential link function7. Another method, CoxBoost 8, is an iterative “boosting” method modified from 44 

the Cox-PH model.  In each boosting iteration, it refits the parameters by maximizing the penalized 45 

likelihood function.  Rather than using L2 ridge regression common in Cox-PH, the number of boosting 46 

iterations is used as the complexity parameter in CoxBoost and optimized via cross-validation (CV) 8.  47 

Random Forests Survival (RF-S) is another ensemble, non-linear method 9.  It combines many 48 

bootstrapped decision trees in order to reduce the variance in the model, and then calculates a weighted 49 

average of all the decision trees.  Unlike Cox-PH and CoxBoost, RF-S does not use the log likelihood 50 

function to determine the fitness of the model. Instead, it predicts estimated survival times, and uses 51 

Harrel’s C-Index, a score that measures the correct ranking of individuals 9. 52 

The new software package we have developed here, named Cox-nnet, advances the ANN extension of 53 

Cox regression for survival prediction on high-throughput data. The caliber of this package is manifested 54 

in several aspects. First, it has improved technical performance in terms of both accuracy and speed. In 55 
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comparison with the other methods mentioned above (Cox-PH, RF-S and CoxBoost), Cox-nnet has better 56 

overall predictive accuracy. It is also optimized on graphics processing unit (GPU) with at least an order 57 

of computational speed-up over the central processing unit (CPU), making it a compelling new tool to 58 

predict disease prognosis in the era of precision medicine. Second, Cox-nnet utilizes feature importance 59 

scores based on the partial derivatives of gene features selected by the model, so that the relative 60 

importance of the genes to prognosis outcome can be directly assessed. Thirdly, the hidden layer node 61 

structure in ANN can be harnessed to reveal much richer information of featuring genes and biological 62 

pathways, compared to the Cox-PH method. Overall, Cox-nnet is a desirable survival analysis method 63 

with both excellent predictive power and usage to gain biological functions related to prognosis.  64 

Methods 65 

The Cox model 66 

The Cox-PH model is a log-linear model that estimates individual hazard, i.e., an instantaneous measure 67 

of the likelihood of an event, based on a set of features.  The hazard is given by the equation: 68 

   ( 1 ) 

   

 

( 2 ) 

Where  is the log hazard ratio for patient .  The partial likelihood is represented by the following 69 

formula: 70 

 
  

( 3 ) 

Where  is the censoring status of a patient, and  if the patient was censored or 1 if the 71 

patient died or had a recurrence event, etc.  The partial log-likelihood is used as the cost function: 72 
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( 4 ) 

In a Cox model with L2 ridge regression, a penalty term is added which is proportional to the L2 norm of 73 

the coefficients.  The cost function is minimized to find the best coefficients for the model: 74 

 
  

( 5 ) 

where the tuning parameter  is determined by maximizing CV.   75 

The cross-validated performance metric may be Harrel’s concordance index (C-index) 10 or the “cross-76 

validated partial likelihood” 11. Since the contribution of each patient in the partial likelihood is 77 

determined only in the context of all the other patients, the cross-validated partial likelihood is calculated 78 

subtracting full partial likelihood from the training set in the CV.  In the k-th iteration of a K-fold CV, the 79 

optimal coefficients  are found by minimizing the cost function on the training sub-samples.  If 80 

 is the partial likelihood of the training sub-samples, and  is the partial likelihood of 81 

the full dataset, then the cross-validated partial likelihood is the sum of differences: 82 

 
  

( 6 ) 

ANN extension of Cox regression 83 

The ANN extension of Cox regression (Cox-nnet) is a neural network whose output layer is replaced by a 84 

Cox model.  In a Cox-nnet model with one input layer of input features and one hidden layer composed 85 

of  hidden nodes, the linear predictor is replaced by the outputs of the hidden layer: 86 
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Where  is the coefficient weight matrix between the input and hidden layer with the size H x J,  is 87 

the bias term for each hidden node and  is the activation function (applied element-wise on a vector).  88 

Subsequently, the ridge regression cost function is modified to: 89 

 
  

( 8 ) 

In this manuscript, the tanh activation function is used, as it results in faster training time compared to the 90 

sigmoid activation 12.  The tanh function is: 91 

 
  

( 9 ) 

In addition to ridge regularization, we also employ dropout regularization13.  In this approach, nodes are 92 

removed during each training iteration with probability 1-p.  During evaluation, output from the nodes are 93 

multiplied by p.  The optimal dropout parameter, p, is determined through cross-validation on the training 94 

set.  Dropout regularization has been shown to reduce overfitting and improve performance over other 95 

regularization schemes13.   96 

The source code of cox-nnet can be found at: https://github.com/lgarmire/cox-nnet, and can be installed 97 

through the Python Package Index (PyPI).  Documentation of package can be found at 98 

http://lgarmire.github.io/cox-nnet/docs.  99 

Implementation in Python with Theano 100 

We implement Cox-nnet using a feed forward, back propagation network with gradient descent.  The 101 

partial log likelihood is usually written as a double conditional sum (equation 4).  To avoid the 102 

computational inefficiency of calculating the partial log likelihood (equation 4) using two nested for 103 

loops, we convert it into a formulation of matrix operations and basic sums.  First we define an indicator 104 

matrix  with elements: 105 
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(10 ) 

We also define an indicator vector  with elements given by the censoring of each patient.  An operation 106 

using  replaces the conditional sum over , and an operation using  replaces the conditional 107 

sum over  in equation 4.  In Theano, the partial log likelihood is: 108 

 pl=T.sum((theta - T.log(T.sum(T.exp(theta) * R,axis=1))) * C) ( 11 ) 

Model evaluation 109 

To evaluate the performance of all methods in comparison, we trained each model on 80% of the samples 110 

for each dataset (chosen randomly) and evaluated the performance on the 20% holdout test set. The 111 

output of Cox-PH, Cox-nnet and CoxBoost are the log hazard ratios (i.e., Prognosis Index, or PI) for each 112 

patient.  The hazard ratio describes the relative risk of a patient compared to a non-parametric baseline.  113 

On the other hand, the output of RF-S is an estimation of the survival time for each patient.   114 

We use C-index and log-ranked p-value based on dichotomization of the hold-out test data of the holdout 115 

test data to measure the performance of each model.  The C-index is a measure of how well the model 116 

prediction corresponds to the ranking of the survival data 14.  It is calculated for censored survival data, 117 

which evaluates a value between 0 and 1, with 0.5 equivalent to a random process.  The C-index can be 118 

computed as a summation over all events in the dataset, whereby patients with a higher survival time and 119 

lower log hazard ratios (and conversely patients with a lower survival time but higher log hazard ratios) 120 

are considered concordant.  The C-index is a measure of concordance of the data with the model 121 

prediction.  To calculate the log-ranked p-value, a PI cutoff threshold is used to dichotomize the patients 122 

in the data set into higher and lower risk groups, similar to our earlier report 15,16. A log-ranked p-value is 123 

then computed to differentiate the Kaplan-Meier survival curves between the higher vs. lower risk groups. 124 

In this report, we used the median log hazard ratio as the cutoff threshold.   125 
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Feature evaluation 126 

For computing the importance of a feature in Cox-nnet, we use a method of partial derivatives (PaD) 17,18.  127 

For each patient, we compute the partial derivatives of each input with respect to the linear output of the 128 

model (e.g., the log hazard ratio).  The average of the partial derivatives for each input across all patient 129 

samples is calculated as the feature score.   130 

Datasets 131 

In order to evaluate the performance of Cox-nnet, we analyzed 10 TCGA datasets which were combined 132 

into a pan-cancer dataset.  The TCGA datasets included the following cancer types: Bladder Urothelial 133 

Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Head and Neck squamous cell carcinoma 134 

(HNSC), Kidney renal clear cell carcinoma (KIRC), Brain Lower Grade Glioma (LGG), Liver 135 

hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma 136 

(LUSC), Ovarian serous cystadenocarcinoma (OV) and Stomach adenocarcinoma (STAD).  RNA-Seq 137 

expression and clinical data were downloaded from the Broad Institute GDAC 19.  Overall survival time 138 

and censoring information were extracted from the clinical follow-up data.  Raw count data were 139 

normalized using the DESeq2 R package 20 and then log-transformed.  Datasets were selected from 140 

TCGA based on the following criteria: > 300 samples with both RNASeq and survival data and > 50 141 

survival events.  In total, 5031 patient samples were used (see Table S1 for a patient tabulation by 142 

individual dataset).   143 

Results  144 

Cox-nnet structure and optimization 145 

Cox-nnet is the neural network extension of the Cox-PH model.  We created a package suitable for high 146 

dimensional datasets using the Theano math library in Python.  The neural network model used in this 147 

paper is shown in Figure 1 and an overview of modules in the Cox-nnet package is shown in Figure S1. 148 

As a proof of concept, the current ANN architecture is composed of three layers: one input layer, one 149 
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fully connected hidden layer and an output “Cox regression” layer.  The output layer of Cox-nnet replaces 150 

the linear predictors in the standard Cox-PH model.  Many other functions are implemented to improve 151 

the usability of the package, including CVSearch, CVProfile, CrossValidation, and TrainCoxMlp. 152 

CVSearch, CVProfile, CrossValidation are methods that perform CV to find the optimal regularization 153 

parameter. TrainCoxMlp performs optimization of coefficients on the regularized partial likelihood 154 

function. The optimization strategies include momentum gradient descent 21, Nesterov accelerated 155 

gradient 22 and Ada Delta 23. A comparison of these descent methods is shown in Figure S2A, where 156 

Nesterov accelerated gradient method achieved the best efficiency based on TCGA kidney renal clear cell 157 

carcinoma (KIRC) data. Moreover, this package can be run on multiple threads or a Graphics Processing 158 

Unit (GPU), and it achieves slightly faster training time compared to Random Forest and CoxBoost 159 

(Figure S2B).  Thus, Cox-nnet is a modern software implementation that can achieve efficient 160 

computational time.  161 

Performance comparison of survival prediction methods  162 

We compared four methods, including Cox-nnet, Cox-PH, CoxBoost and RF-S, on 10 datasets from The 163 

Cancer Genome Atlas (TCGA), which were selected based on having at least 50 death events (Table S1).  164 

For each dataset, we trained the model on 80% of the randomly selected samples and determined the 165 

regularization parameter using 5-fold CV on the training set. We used two types of regularizations, L2 166 

ridge regularization (also known as weight decay) and dropout regularization. We evaluated the 167 

performance on the remaining 20% holdout test set. Two metrics are used to evaluate the performance of 168 

the model. The first one is Harrell’s concordance index (C-index) calculated for censored survival data 169 

10,24.  It evaluates the relative ordering of the samples and ranges between 0 and 1, with 0.5 equivalent to a 170 

random process. The second metric is the log-ranked p-value from Kaplan-Meier survival curves of two 171 

different survival risk groups. This is done by using the median threshold of Prognosis Index (PI), the 172 

output of Cox-nnet, to dichotomize the patients into higher and lower risk groups, similar to our earlier 173 
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reports 15,16,24. A log-ranked p-value is then computed to differentiate the Kaplan-Meier survival curves 174 

from these two groups.  175 

The comparison of C-indices among the four methods over the 10 TCGA data is shown in Figure 2A. 176 

Overall, Cox-nnet has higher predictive accuracy over the other three methods, regardless of the 177 

regularization method. Cox-PH performs the second best, followed by CoxBoost and RF-S in descending 178 

order (Figure 2B).  The comparison of log-ranked p-values on the dichotomized survival risk groups is 179 

shown in Figure S3. Generally, log-ranked p-values in the 10 TCGA datasets are more significant in Cox-180 

nnet, compared to other methods. However, the dichotomization of patients ignores the differences within 181 

each dichotomized group, thus the resulting log-ranked p-values are less consistent than C-indices on the 182 

same data.  183 

Biological relevance of hidden layer nodes of Cox-nnet 184 

To explore the biological relevance of the hidden nodes of Cox-nnet, we used the TCGA KIRC dataset as 185 

an example.  We first extracted the contribution of each hidden node to the PI score for each patient 186 

(Figure 3A).  The contribution was calculated as the output value of each hidden node weighted by the 187 

corresponding coefficient at the Cox regression output layer.  As expected, the value of the hidden nodes 188 

strongly correlated to the PI score.  However, there is still significant heterogeneity among the nodes, 189 

suggesting that individual nodes may reflect different biological processes. We hypothesize that the top 190 

nodes may serve as surrogate features to discriminate patient survival. To explore this idea, we selected 191 

the top 20 nodes with the highest variances, and presented the patients PI scores using t-SNE, a popular 192 

method to enhance the separation among samples25. The nodes represent a dimension reduction of the 193 

original data and clearly discriminate samples by their PI scores (Figure 3B).  In contrast, the top 20 194 

principle components obtained from principal component analysis (PCA) in combination with t-SNE fail 195 

to separate the patient samples (Figure 3B).  This drastic difference demonstrates that the nodes in Cox-196 

nnet effectively capture the survival information, and the top node PI scores can be used as features for 197 

dimension reduction in survival analysis.   198 
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To further explore the biological relevance of the top 20 hidden nodes, we conducted Gene Set 199 

Enrichment Analysis (GSEA)26 using KEGG pathways 27. We calculated significantly enriched pathways 200 

using gene correlation to the output score of each node (Figure 3C and Table S2), and compared these 201 

enriched pathways to those from GSEA of the Cox-PH model (Table S3).  To calculate statistical 202 

significance of the pathways, we performed 10,000 permutations, followed by multiple hypothesis testing 203 

with Benjamini Hochberg adjustment. A total of 110 (out of 187) significantly enriched pathways (Table 204 

S2) were identified in at least one node, including seven pathways enriched in all 20 nodes that were not 205 

found by the Cox-PH method (Table 1).  In contrast, Cox-PH only identified 30 significantly enriched 206 

pathways using the same significance threshold. Among the seven pathways, the P53 signaling pathway 207 

stands out as an important biologically relevant pathway (Figure 4 and Figure S4), since it was shown to 208 

be highly prognostic of patient survival in kidney cancer28. 209 

Next, we estimated the predicative accuracies of the leading edge genes (LEG) enriched in the KEGG 210 

pathways from Cox-nnet vs. those enriched in Cox-PH model. We used the C-index of each LEG, 211 

obtained from single-variable analysis (Figure 4).  Collectively, LEGs from Cox-nnet have significantly 212 

higher C-index scores (p = 5.79e-05) than those from Cox-PH, suggesting that Cox-nnet has selected 213 

more informative features.  In order to visualize these gene level and pathway level differences between 214 

Cox-nnet and Cox-PH, we reconstructed a bipartite graph between LEGs for Cox-nnet or feature genes 215 

(for Cox-PH) and their corresponding enriched pathways (Figure 5). Besides P53 pathway mentioned 216 

earlier that is specific to Cox-nnet, several other pathways, such as insulin signaling pathway, endocytosis 217 

and adherens junction, also have many more genes enriched in Cox-nnet. Among them, some have been 218 

previously reported to relevant to renal carcinoma development and prognosis, such as CASP929, 219 

TGFBR230, KDR (VEGFR)31. These results demonstrate that Cox-nnet model reveals richer biological 220 

information than Cox-PH. 221 

To further examine the importance of each gene relative to the survival outcome, we calculated the 222 

averaged partial derivative (PaD) of each input gene feature over all patients, with respect to the linear 223 
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output of the model (e.g., the log hazard ratio). As demonstrated by the LEGs in seven common pathways 224 

of all nodes in Cox-nnet, the feature importance scores produce stronger biological insight (Figure S4).  225 

For example, the feature importance for the BAI1 gene in the P53 pathway is much higher in the Cox-226 

nnet model compared to the Cox-PH model.  Corresponding to our finding, the BAI gene family was 227 

found to be involved in several types of cancers including renal cancer32 33 34 35.  BAI1 acts as an inhibitor 228 

to angiogenesis and is transcriptionally regulated by P53 36. Its expression level was significantly 229 

decreased in tumor vs. normal kidney tissue, and was even lower in advanced stage renal carcinoma35. 230 

Mice kidney cancer models treated with BAI1 showed slower tumor growth and proliferation 37.  231 

Additionally, the MAPK1 gene (also known as ERK2) has a much higher feature importance score in 232 

Cox-nnet compared to Cox-PH, and is annotated in the Adherens Junction pathway as well as the Insulin 233 

Signalling Pathway found by Cox-nnet.  MAPK1 is one of the key kinases in intra-cellular transduction, 234 

and was found constitutively activated in renal cell carcinoma 38. Drugs inhibiting the MAPK cascade 235 

have been targeted for development39.    236 

 237 

Discussion 238 

In this report, we have implemented Cox-nnet, a new non-linear ANN method, to predict patient survival 239 

from high throughput omics data.  Cox-nnet is an improved, modern alternative to the standard Cox-PH 240 

regression, as demonstrated by increased performance for survival prediction and the capabilities to 241 

explore more deeply the biological information. 242 

First, through in-depth comparison of 10 TCGA RNA-Seq, Cox-nnet achieves overall statistically 243 

significant improvements over Cox-PH on its predictive accuracy, as measured by C-indices. 244 

Interestingly, the ensemble-based method RF-S consistently ranks worse than Cox-nnet and Cox-PH.  245 

Because RF-S bootstraps both samples and features for individual trees, many uninformative features in 246 

each tree may be chosen for node splitting in particularly high dimensional datasets, leading to a decrease 247 
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in overall accuracy 40. In contrast, the dropout and L2-regularization approach used by both Cox-nnet and 248 

Cox-PH can prune out uninformative features.  249 

Second, Cox-nnet can reveal a lot richer biological information than Cox-PH. This is manifested both at 250 

the pathway and gene levels. The hidden nodes in the Cox-nnet model have distinct expression patterns, 251 

and can serve as surrogate features for survival-sensitive dimension reduction. Many more significant 252 

KEGG pathways are enriched which correlate with top nodes in Cox-nnet, as compared to those from the 253 

Cox-PH model. A critical pathway for renal cancer development, P53 pathway, is only enriched by Cox-254 

nnet but not Cox-PH model in TCGA KIRC. Other pathways, including insulin signaling pathway, 255 

endocytosis and adherens junction, have many more genes enriched by Cox-mmet. Moreover, leading 256 

edge genes (LEGs) obtained from these KEGG pathways enriched by Cox-nnet (which are a fraction of 257 

the gene features considered by the model) have collectively higher associations with survival.  258 

As a promising new predictive method for prognosis, the current Cox-nnet implementation has some 259 

limitations.  Its architecture includes 3-layer ANN, and it is possible to incorporate other more 260 

sophisticated architecture into the model, such as including more layers of neurons. A convolutional 261 

neural network approach using convolutional and pooling layers could also be used, as those reported in 262 

processing imaging or other types of positional data 41.  Additionally, it is possible to embed a priori 263 

biological pathway information into the network architecture, e.g., by connecting genes in a pathway to a 264 

common node in the next hidden layer of neurons. In the future, we plan to further analyze how different 265 

neural network architectures affect the performance of Cox-nnet and compare the biological insights from 266 

the various models. 267 
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 374 

 375 

 376 

Figures 377 

Figure 1.  An overview of the neural network architecture used in this study. 378 

Figure 2. A. Barplot of the C-index of the 10 TCGA datasets using four prognosis-predicting methods 379 

(Cox-nnet, CoxBoost, Cox-PH and RF-S).  Each dataset was randomly split into 80% training and 20% 380 

testing sets.  B. Heatmap of the performance rank of each dataset.    381 

Figure 3. A. Hidden node output of the TCGA KIRC dataset.  B. t-SNE plot of the top 20 hidden nodes 382 

and the top 20 principal components in PCA analysis. C. Gene Set Enrichment Analysis: significantly 383 

enriched KEGG pathways of the top 20 hidden nodes (adjusted p-value < 0.05).   384 

Figure 4. Single variable C-index scores of the leading edge genes from Cox-nnet and Cox-PH.  Cox-nnet 385 

has significantly higher C-index scores (p = 5.79e-5).    386 
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Figure 5. Enriched pathway-gene bipartite network from the leading edge genes and significantly 387 

enriched pathways.  Significantly enriched pathways common to all 20 hidden nodes are labeled in green.  388 

Leading edge genes found uniquely in Cox-nnet are labeled in orange, and genes found in both Cox-nnet 389 

and Cox-PH are labeled in blue.   390 

Table 1.  Cox-nnet node-associated pathways.  Significantly enriched pathways from common to all 20 391 

hidden nodes that are not found in the Cox-PH Gene Set Enrichment Analysis (Adjusted p < 0.05).   392 

Pathway P.value P.adjusted Nodes 

 

KEGG adherens junction 
 

0.000 
 

0.001 
 

120 

 

KEGG endocytosis 
 

0.000 
 

0.001 
 

120 

 

KEGG insulin signaling pathway 
 

0.000 
 

0.001 
 

120 

 

KEGG lysine degradation 
 

0.000 
 

0.003 
 

120 

 

KEGG p53 signaling pathway 
 

0.000 
 

0.003 
 

120 

 

KEGG pyruvate metabolism 
 

0.000 
 

0.001 
 

120 

 

KEGG sphingolipid metabolism 
 

0.001 
 

0.005 
 

120 

 393 

Supplemental Figures 394 

Figure S1.  An overview of the structure, methods and classes in Cox-nnet package.   395 

Figure S2.  A: comparison of descent methods on the TCGA KIRC dataset.  The change in cost function 396 

is evaluated over 100,000 iterations for three methods: gradient descent, momentum gradient descent and 397 

the Nesterov accelerated gradient. B: Training time comparing CPU training time vs. GPU training time 398 

on the same dataset. 399 

Figure S3. Log-rank p-value bar plot of the 10 TCGA datasets.  400 
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Figure S4. Variable importance of the common leading edge genes of enriched KEGG pathways.   401 

 402 

Table S1.  Tabulation of TCGA patients by individual dataset.   403 

Table S2.  Significantly enriched pathways from the Cox-PH method (p < 0.05).   404 

Table S3.  Significantly enriched pathways from the Cox-nnet method (p < 0.05).   405 

 406 

 407 
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