Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

KIF21A influences breast cancer metastasis and survival

Anton J. Lucanus, Victoria King, George W. Yip
doi: https://doi.org/10.1101/093047
Anton J. Lucanus
1School of Anatomy, Human Biology and Physiology, the University of Western Australia, Crawley, WA, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victoria King
2Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George W. Yip
2Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

Breast cancer pathogenesis is known to be propagated by the differential expression of a group of proteins called the Kinesin Superfamily (KIFs), which are instrumental in the intracellular transport of chromosomes along microtubules during mitosis. During mitosis, KIFs are strictly regulated through temporal synthesis so that they are only present when needed. However, their misregulation may contribute to uncontrolled cell growth due to premature sister chromatid separation, highlighting their involvement in tumorigenesis. One particular KIF, KIF21A, was recently found to promote the survival of human breast cancer cells in vitro. However, how KIF21A influences other cancerous phenotypes is currently unknown. This study therefore aimed to consolidate the in vitro role of KIF21A in breast cancer metastasis, while also analysing KIF21A expression in human breast cancer tissue to determine its prognostic value. This was achieved by silencing KIF21A in MCF-7 and MDA-MB-231 breast cancer cell lines via siRNA transfection. Migration, invasion, proliferation, and adhesion assays were then performed to measure the effects of KIF21A silencing on oncogenic behaviour. Immunohistochemistry was also conducted in 263 breast cancer tissue samples to compare KIF21A expression levels against various prognostic outcomes and clinicopathological parameters. KIF21A knockdown reduced cell migration (by 42.8% [MCF-7] and 69.7% [MDA-MB-231]) and invasion (by 72.5% [MCF-7] and 42.5% [MDA-MB-231]) in both cell lines, but had no effect on adhesion or proliferation, suggesting that KIF21A plays an important role in the early stages of breast cancer metastasis. Unexpectedly however, KIF21A was shown to negatively correlate with various pro-malignant clinicopathological parameters, including tumour size and histological grade, and high KIF21A expression predicted better breast cancer survival (hazard ratio = 0.45), suggesting that KIF21A is a tumour suppressor. The conflicting outcomes of in vitro and in vivo data may be due to the possible multi-functionality of KIF21A or study limitations, and means no definitive conclusions can be drawn about the role of KIF21A in breast cancer. This warrants further investigation, which may prove pivotal to the development of novel chemotherapeutic strategies to mediate KIF21A’s function and enhance prognostic outcomes.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted December 10, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
KIF21A influences breast cancer metastasis and survival
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
KIF21A influences breast cancer metastasis and survival
Anton J. Lucanus, Victoria King, George W. Yip
bioRxiv 093047; doi: https://doi.org/10.1101/093047
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
KIF21A influences breast cancer metastasis and survival
Anton J. Lucanus, Victoria King, George W. Yip
bioRxiv 093047; doi: https://doi.org/10.1101/093047

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cancer Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3514)
  • Biochemistry (7364)
  • Bioengineering (5341)
  • Bioinformatics (20316)
  • Biophysics (10038)
  • Cancer Biology (7769)
  • Cell Biology (11344)
  • Clinical Trials (138)
  • Developmental Biology (6445)
  • Ecology (9977)
  • Epidemiology (2065)
  • Evolutionary Biology (13351)
  • Genetics (9369)
  • Genomics (12603)
  • Immunology (7724)
  • Microbiology (19083)
  • Molecular Biology (7458)
  • Neuroscience (41125)
  • Paleontology (300)
  • Pathology (1235)
  • Pharmacology and Toxicology (2142)
  • Physiology (3174)
  • Plant Biology (6873)
  • Scientific Communication and Education (1276)
  • Synthetic Biology (1900)
  • Systems Biology (5324)
  • Zoology (1091)