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Abstract

The Unix “make” program is widely used in bioinformatics pipelines,
but suffers from problems that limit its application to large analysis
datasets. These include reliance on file modification times to determine
whether a target is stale, lack of support for parallel execution on clusters,
and restricted flexibility to extend the underlying logic program. We
present BioMake, a make-like utility that is compatible with most features
of GNU Make and adds support for popular cluster-based job-queue en-
gines, MD5 signatures as an alternative to timestamps, and logic program-
ming extensions in Prolog. BioMake is available from https://github.
com/evoldoers/biomake under the Creative Commons Attribution 3.0 US
license. The only dependency is SWI-Prolog, available from http://www.
swi-prolog.org/. Contact: Ian Holmes ihholmes+biomake@gmail.com
or Chris Mungall cmungall+biomake@gmail . com.

Introduction

The familiar Unix GNU Make utility has become a favored tool for “bioin-
formatics in-the-large” (Parker et al., 2003). Alongside more elaborate
workflow management systems, GNU Make holds its own for several rea-
sons. Besides being ubiquitous and easy to use, with a simple syntax,

it offers a powerful mix of declarative logic (the specification of target-
dependency relationships from which Make deduces build chains) with
Uniz scripting (the lines of shell script that are executed when the build
chain runs). GNU Make combines these elements with functional programming-
inspired manipulation of text variables, lists, and directories, and includes
Guile — GNU’s Scheme interpreter — as an extension language.

In our usage of GNU Make for data analysis, a common pattern is
to analyze one or two examples manually, building up a Makefile recipe
(or recipes), then scale the analysis up to the whole dataset. Makefiles
remain, in our opinion, unrivalled for this purpose. However, GNU Make’s
origins were as a tool for managing build pipelines, not large-scale data
analyses, and it has several flaws that impede its use in bioinformatics.
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Results

We have developed a new tool, BioMake, that keeps the best features of
GNU Make (including the ability to read a GNU Makefile) while address-
ing its shortcomings. Chief innovations of BioMake include:

(1) MD?5 signatures as an alternative to time-stamps. GNU
Make uses file modification times to determine when files need to be re-
built. This is fragile, especially on networked filesystems or cloud storage,
where file timestamps may not be preserved or synchronized. In projects
where a big data analysis can take hours or days, a spurious rebuild can
be devastating, especially if it triggers further rebuilding of downstream
targets. Instead of using timestamps, BioMake can be directed to use
MD5 checksums: whenever a target is built, the MD5 hashes of that file
and its dependents are recorded and stored. This can be used in com-
bination with Makefile recipes that sort or canonicalize data to further
guard against spurious rebuilds.

(2) Support for cluster-based job queues. GNU Make can run
multiple jobs in parallel, but only on one machine. It is possible to write
cluster support directly into the Makefile, wrapping each recipe with a
call to a job submission script, but this spoils GNU Make’s otherwise clean
separation of concerns and often prevents it from tracking dependencies
properly. BioMake has built-in support for Sun Grid Engine, PBS, and
SLURM job submission systems, including dependency tracking (ensuring
a target is not built until all its dependents have been built). It also (like
GNU Make) offers built-in parallel execution on the same machine that
BioMake is being run on.

(3) Multiple wildcards per filename. GNU Make only allows a
single wildcard (“stems”) in a filename, represented by the percent symbol
(%) in the head of a recipe and by the automatic variable $* in the body.
In contrast, BioMake allows multiple wildcards: any unbound variable
that appears in the head of a recipe can serve as a wildcard, and can
subsequently be used in the body of the recipe.

(4) Easy integration with ontologies and description logics.
GNU Make’s domain-specific language extensions are based on Scheme,
which is a functional language, but the underlying structure of a Makefile
(rules such as “to build A, you must first build B’ and “to build B, you
must first build C and D”) is a logic program. BioMake’s domain-specific
language is Prolog, making it trivially easy to incorporate ontologies and
description logics such as the Gene Ontology (Blake, 2015) or the Sequence
Feature Ontology (Eilbeck et al., 2005). For example, we can easily cre-
ate BioMake recipes for targets such as “the whole-genome alignment for
species X and Y, where X is a mammal and Y is a vertebrate” or “the
GFF file containing co-ordinates of every human genomic feature of type
T, where T is a term descended from ‘biological-region’ in the Sequence
Ontology”’. In a Scheme program, we would have to write, test, and de-
bug functions that explicitly generated these lists of terms and taxa; in
a Prolog database, logical conditions such as “X is a mammal” or “T is
descended from biological-region” are trivially easy to model directly, and
the Prolog interpreter itself searches for all variable bindings that fit the
model.
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The Makefile in Figure 1 is a simple example illustrating multi-wildcard
pattern-matching (point 3, above) and Prolog extensions (point 4). Such
a Makefile could be used to build all alignment files whose names match
the pattern align-X-Y where X and Y form an ordered pair of recognized
species names.

prolog
sp(mouse) .
sp (human) .
sp(zebrafish) .
ordered_pair(X,Y) :- sp(X),sp(Y),X@<Y.
align_filename(F) :-
ordered_pair (X,Y),
format(atom(F),"align-"w-"w", [X,Y]).
endprolog

all: $(bagof F,align_filename(F))

align-$X-$Y: $X.fa $Y.fa { ordered_pair(X,Y) }
align $X.fa $Y.fa > $@

Figure 1: A hypothetical BioMake Makefile that runs align on all or-
dered pairs of files mouse.fa, human.fa and zebrafish.fa. The rule for file
align-$X-$Y creates an alignment (using the program align, assumed to ex-
ist on the user’s PATH) from any two files $X.fa and $Y.fa. However, it only
applied for those $X and $Y which are flagged as being valid species, via the
Prolog facts sp(X) which appear between prolog and endprolog directives.
The top-level target all uses BioMake’s $(bagof...) function, a wrapper for
the Prolog predicate bagof/3, to find all ordered pairs of species that match
the rule. This example is discussed in greater detail in the README.md file of the
BioMake github repository.

Discussion

We can contrast BioMake with other solutions for bioinformatics work-
flow management. Systems such as CWL* or Galaxy? have many useful
features such as web interfaces and cloud support, but they do not de-
duce the workflow from a series of declaratively-specified dependencies:

Thttp://commonwl.org/, accessed Dec 9, 2016.
2https://usegalaxy.org/, accessed Dec 9, 2016.
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rather, they require explicit specification of inputs, outputs, and ordering
of tasks.

There are also other GNU Make clones and variants, including some
in functional/parallel languages (Erlang make3), offering MD5 signatures
(omake*, makepp®) or supporting cluster-based parallelism (e.g. Ora-
cle Grid Engine’s qmake®). Some of these overlap in functionality with
BioMake, but none offers the full feature set described here.

Prolog for bioinformatics may seem esoteric, but it is a good fit for
some applications; both of us have used it before. Blipkit is a Prolog
toolkit for logic programming on ontologies and other data structures
(Mungall, 2009). PRISM is a probabilistic dialect of Prolog that was used
to implement HMMs, trellis models, and other probabilistic modeling for
sequence annotation (Mgrk and Holmes, 2012; Have and Mgrk, 2014).
BioMake is complementary to these applications, as it can stand alone
as a workflow management tool, but can also be integrated with other
Prolog approaches for additional power.
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