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Abstract 

Chromosomal rearrangements, despite being detrimental, are ubiquitous in cancer and often act            

as driver events. The effect of copy number variations (CNVs) on the cellular proteome of               

tumours is poorly understood. Therefore, we have analysed recently generated proteogenomic           

data-sets on 282 tumour samples to investigate the impact of CNVs in the proteome of these                

cells. We found that CNVs are post-transcriptionally attenuated in 23-33% of proteins with an              

enrichment for protein complexes. Complex subunits are highly co-regulated and some act as             

rate-limiting steps of complex assembly, indirectly controlling the abundance of other complex            

members. We identified 48 such regulatory interactions and experimentally validated AP3B1           

and GTF2E2 as controlling subunits. Lastly, we found that a gene-signature of protein             

attenuation is associated with increased resistance to chaperone and proteasome inhibitors.           

This study highlights the importance of post-transcriptional mechanisms in cancer which allow            

cells to cope with their altered genomes. 

 

Introduction 

Cancer development is driven by the acquisition of somatic genetic variation that includes point              

mutations, copy number variations (CNVs) and large chromosome rearrangements or          

duplications (i.e aneuploidy) ​(Beroukhim et al., 2010)​. These events can result in a fitness              

advantage and cancer progression but they are most often detrimental to cellular fitness. While              

somatic gene amplification of key oncogenes such as MYCN, AKT2, ERBB2 and others             

(Santarius et al., 2010) can drive cancer development, germline CNVs are rare and are under               

negative selection ​(Itsara et al., 2009)​. Gene amplifications and other CNVs are thought to be               

detrimental due to changes in gene-expression that cause an imbalance to the cell. In females,               
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one of the two X chromosomes is inactivated by a specialized RNA based silencing mechanism               

(Avner and Heard, 2001; Lyon, 1961) but such mechanism does not exist for gene dosage               

imbalances in the autosomal chromosomes. Protein and mRNA abundance measurements in           

models of aneuploidy in yeast ​(Dephoure et al., 2014) and human cells ​(Stingele et al., 2012)                

have shown that most autosomal gene duplications are propagated to the protein level, with the               

notable exception of protein complex subunits ​(Dephoure et al., 2014; Stingele et al., 2012)​. The               

lack of attenuation of changes in expression resulting from duplicated chromosomes causes            

global stress responses that include cell-cycle and metabolic defects and proteotoxic stress            

among others ​(Tang and Amon, 2013)​. While somatic CNVs are known to be drivers of cancer                

development and that aneuploidy is a common feature of tumor cells, the impact of gene               

dosage changes on the proteome of cancer cells have yet to be studied. 

 

Comprehensive characterisation of hundreds of tumour samples at the genomic and transcript            

level have been instrumental for the study of tumour heterogeneity across patients and to              

assess the implications of genomic alterations to cancer development ​(Cancer Genome Atlas            

Research Network et al., 2013)​. Functional annotation of genomic events have been limited to              

the transcript level until very recently, when the first broad proteomics studies with deep              

coverage of the proteome were made available ​(Mertins et al., 2016; Zhang et al., 2014, 2016)​. 

 

In this study, we investigated the implications of CNVs on the proteome of tumours by taking                

advantage of the comprehensive data-sets made available by the TCGA and CPTAC            

consortiums comprising copy-number, transcript and protein measurements for hundreds of          

tumours ​(Cancer Genome Atlas Network, 2012a, 2012b; Cancer Genome Atlas Research           

Network, 2011; Mertins et al., 2016; Zhang et al., 2014, 2016)​. This data revealed that CNVs                
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are often propagated to the protein level although we observed that post-transcriptional            

mechanisms attenuate this impact in 23-33% of the measured proteins. Protein complexes were             

notably attenuated, likely due to the degradation of free subunits, resulting in strong protein              

abundance coregulation across samples. Not all complex subunits are attenuated, with some            

acting as potential rate-limiting factors for complex assembly, and we identified 48 novel and              

known regulatory interactions, whereby the abundance of one of the subunits can modulate the              

abundance of other complex members. We experimentally validated AP3B1 and GTF2E2 as            

potential rate-limiting subunits capable of controlling the degradation rate of interacting partners.            

In addition, ranking the samples by their potential to attenuate gene dosage effects identified              

putative mechanisms involved in autosomal gene dosage compensation. Finally, a gene           

expression signature of attenuation potential was found to be associated with drugs targeting             

chaperones, the proteasome and the E3 ligase MDM2. Using 282 tumour samples we revealed              

the widespread importance of post-transcriptional mechanisms to ameliorate the impact of           

CNVs in cancer cells. 

Results 

Tumour pan-cancer proteomics reveals attenuation of copy-number alterations in         

protein complex subunits 

In order to study the implication of gene dosage changes on the proteome of cancer cells we                 

compiled and standardized existing data-sets made available by the TCGA and CPTAC            

consortiums, comprising 3 different cancer types: breast (BRCA) ​(Cancer Genome Atlas           

Network, 2012b; Mertins et al., 2016)​, high-grade serous ovarian (HGSC) ​(Cancer Genome            

Atlas Research Network, 2011; Zhang et al., 2016) and colon and rectal (COREAD) ​(Cancer              
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Genome Atlas Network, 2012a; Zhang et al., 2016) (Figure 1A). These data-sets provide             

molecular characterisation of gene CNVs, gene expression and protein abundance of solid            

tumour samples of 282 patients for which clinical information is also available (Figure 1A, Supp.               

Table 1). 

 

Current methods can reliably measure the complete expressed transcriptome but measuring the            

total proteome is still a challenge with current techniques only providing partial snapshots             

(Nagaraj et al., 2011)​. Thus, we quantified the fraction of expressed transcripts measured in the               

proteomics experiments in each tumour sample (Figure 1B) (see Methods). COREAD samples            

displayed the lowest average coverage of the expressed transcriptome (22.3%) compared to            

the coverage measured for the HGSC (42.0%) and BRCA (56.1%) samples. The proteomics             

experiments were not conducted using the same methodologies, and therefore it is crucial to              

take in consideration the potential confounding effects. In particular, the COREAD ​(Zhang et al.,              

2014) quantifications were done with a label free approach while the HGSC and BRCA were               

quantified using isobaric labelling ​(Mertins et al., 2016; Zhang et al., 2016)​. To ensure              

comparable measurements among data-sets we removed confounding and systematic effects          

from the proteomics and transcriptomics, by regressing-out batch effects associated with           

experimental technologies used, patient gender and age and tumour type (see Methods). The             

associations between these possible confounding factors and the principal components were           

completely removed after correction (Figures S1 and S2). 

 

Having assembled this compendium of data-sets we then set out to understand the implication              

of CNVs events in the expression of the proteome (Figure 1C). For each gene we calculated the                 

agreement between the CNVs and transcriptomics and CNVs and proteomics using the pearson             
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correlation coefficient (Figure 1D). Transcript abundance is on average well correlated with            

gene CNVs changes (median pearson’s r=0.43) and this contrasts with the significant decrease             

(Welch's t-test p-value < 1e-4) of agreement of CNVs with protein abundance (median             

pearson’s r=0.20) (Figure 1D, Supp Table 2). As transcription is intermediate between the             

copy-number alterations and protein abundance, it sets the maximum possible agreement           

between both. We can then define as attenuated genes those that have a lower agreement               

between CNVs and protein abundance than expected by their CNV to gene-expression            

correlation (see Methods). In these samples we found 1,496 - 2,119 genes that are significantly               

attenuated by this definition, corresponding to 23-33% of all genes with available measurements             

(6,418). This result shows that a significant fraction of the proteome undergoes gene dosage              

balancing. Additionally, this group of attenuated genes highlight the complexity of the regulation             

of protein abundance, hinting at regulatory constraints that control protein translation or            

degradation rates. 

 

To understand the biological processes that are affected by this attenuation we performed an              

unbiased enrichment analysis using GO terms ​(Ashburner et al., 2000; Subramanian et al.,             

2005; The Gene Ontology Consortium, 2015) (Figure 2A) (see Methods). The enrichment            

analysis revealed that proteins involved in complexes and modules of functionally interacting            

proteins displayed a significant agreement at the transcript with the copy-number           

measurements but this agreement is generally lost at the protein level (Figure 2B). This              

attenuation of protein complex subunits recapitulates previous findings in models of aneuploidy            

in yeast ​(Dephoure et al., 2014) and human cell lines ​(Stingele et al., 2012) showing that the                 

underlying mechanism generalizes from the aneuploidy models to the hundreds of patient            

tumour samples studied here. In order to validate the generality of the set of attenuated genes                
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we confirmed that these are also recapitulated in an independent proteomic panel of triple              

negative breast cancer and ovarian cancer cell lines ​(Coscia et al., 2016; Lawrence et al., 2015)                

(Figure 2C). This attenuation mechanism has been shown, in yeast aneuploid strains, to be              

mostly due to control of protein abundance by degradation ​(Dephoure et al., 2014)​. For protein               

complexes in particular, this result fits with a model where subunits are degraded when free               

from the complex ​(Abovich et al., 1985)​. To test if degradation plays a role in the attenuation                 

observed in human cells, we used publically available data on changes in protein ubiquitination              

after proteasome inhibition as markers of degradation ​(Kim et al., 2011)​. We observed that              

genes defined as attenuated in our study show a faster increase in ubiquitination after              

proteasome inhibition than other genes (Figure 2D), suggesting that degradation plays a key a              

role in the attenuation of these genes. Recently some studies have shown, in degradation              

time-series experiments, that many protein complex subunits have degradation profiles that are            

best fit by a two-state model, suggesting that the degradation rate of these proteins changes,               

presumably when free or when assembled into the complex ​(McShane et al., 2016)​. These              

results suggest that the abundance of protein subunits of large stable protein complexes are              

under active control to maintain their co-regulation, possibly to guarantee the stability and             

formation of the associations or prevent the accumulation of free subunits that might be prone to                

aggregate. 

Proteomic correlation analysis uncovers strong co-regulation of protein        

complexes 

Considering that protein complexes seem to be coregulated to maintain their abundance, likely             

via the degradation of free subunits, we systematically explored this by performing            

protein-protein correlation analysis using the proteomics measurements (Figure 3A). We          
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performed all possible pair-wise correlation of protein abundance for all the 6,434 proteins             

measured in at least 50% of the samples across the 3 different tumour types (see Methods).                

Consistently, proteins within the same complexes display coordinated changes of abundance           

across samples (Figure 3A). Then, we assessed if this co-regulation effect is ubiquitous in a               

curated set of human protein complexes from the CORUM database ​(Ruepp et al., 2010)​. Pairs               

of proteins present together in a complex display a degree of co-regulation (mean pearson’s              

r=0.25) that is significantly higher than what is observed for random pairs (mean pearson's r=0).               

We also assessed if this co-regulation was visible at the transcript level, and while there is a                 

significant increase over random associations (mean pearson’s r=0.15) this correlation is           

significantly lower than the one seen at the protein level (Figure 3B). Protein pairs that have                

functional interactions but are not complex subunits show a lower degree of abundance             

correlation (mean pearson’s r=0.15) that is also closer to the observed at the transcript level               

(mean pearson’s r=0.11) (Figure 3B). 

 

In light of this agreement between functionally related proteins we examined the capacity of              

protein-protein correlation profiles to predict known protein-protein interactions (Figure 3C) (see           

Methods). We found that direct and indirect functional interactions could be well identified with              

proteomics (AROC 0.86 and 0.75, respectively), and significantly worst predicted with           

transcriptomics (AROC 0.69 and 0.67, respectively) (Figure 3C). This finding goes in line with a               

recent work that showed that proteins within similar biological processes or pathways display             

better agreement at the protein than at the transcript level ​(Wang et al., 2016)​. We noticed that                 

protein interactions derived from signalling networks displayed in general poor agreement at the             

protein and transcript abundance levels (AROC 0.55 and 0.54) (Figure 3C), suggesting that the              

abundance of signalling proteins in the same pathway does not necessarily need to be              
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coordinated. Furthermore, metabolic enzymes involved in the same metabolic pathways          

displayed some degree of agreement at the protein and transcript level (AROC 0.65 and 0.62)               

(Figure 3C). 

Proteogenomics analysis identifies subunits that control the protein abundance         

levels of other members of the complex  

Previous studies conducted in aneuploidy models have indicated that, while protein complex            

members tend to be attenuated, not all subunits are. It has been hypothesized that these               

non-attenuated subunits could act as scaffolding proteins or rate-limiting for the assembly of the              

complex ​(Dephoure et al., 2014)​. However, these studies were conducted on a small number of               

yeast strains or cell lines ​(Dephoure et al., 2014; Stingele et al., 2012)​. Given the large number                 

of tumour samples analyzed here we reasoned that we could more readily identify such              

subunits that can act as drivers of complex assembly​. To study this we assessed if CNVs of a                  

given protein within the complex could explain the changes in abundance of other subunits once               

we discount their transcriptional changes (see Methods). In other words, if the presence or              

absence of certain proteins of the complex could be associated with the protein degradation rate               

of other members. This was performed systematically for all identifiable protein-pairs within            

protein complexes using linear regression models where the CNVs of a protein (Px) was used to                

estimate the protein abundance variation of the paired protein (Py) (Figure 4A) (see Methods).              

To consider the differences in degradation or translation rates of the protein, the transcript              

measurements were regressed-out from the protein abundance (Figure 4A) (see Methods). This            

allowed us to consider the variability arising only from post-transcriptional regulatory events and,             

importantly, to discard possible confounding regulatory events occurring at the genomic and            

transcript level, such as close genomic localization. Out of the 58,627 possible directed protein              
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interactions 64 were found to be significantly associated (FDR < 5%) (Figure 4A, Supp Table 3)                

(see Methods). To ensure that the association was not only visible at the genomic but also at                 

the transcript level, the same associations were performed using transcriptomics          

measurements. As expected since that transcript abundance is a closer measurement to the             

protein abundance, we found a substantial increase of significant associations, 2,846 (FDR <             

5%) (Figure S3, Supp Table 3). Also, 75% (48) of the associations found at the genomic level                 

were found to be significant at the transcript level (Figure 4A, Supp Table 3). 

 

This analysis identified putative regulators of the assembly of protein complexes that are             

potentially rate-limiting for the assembly of the full complex. We found, for example, an              

association between the copy-number of COG3 and the protein variability of COG2 (pearson’s             

r=0.39, p-value 9.90e-12) (Figure 4B). COG3 is also significantly associated with COG4 (Figure             

4B) increasing the possibility that COG3 is a regulator of the assembly of the COG complex.                

These findings are corroborated by an existing study where COG3 knockdown leads to a              

decreased abundance of COG2 and COG4 ​(Zolov and Lupashin, 2005)​. Besides hinting at             

known regulatory interactions our analysis also points to possibly novel interactions within the             

COG complex with COG6 being significantly associated with COG2 (Figure 4A, C). Additional             

positive regulatory interactions were found for subunits of the eukaryotic Initiation Factor 3             

(eIF3), Transcription Factor IIH (TFIIH), Adaptor Related Protein Complex 3 (AP3), among            

others (Supp Table 3), providing with information on the putative assembly pathways of these              

complexes. 

 

The number of significant negative associations was remarkably lower than the number of             

positive associations (Figure 4A, Figure S3 C). SMARCA2 copy-number alterations were           
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significantly negatively associated with the degradation of SMARCA4 (Figure 4A) and this was             

also visible at the protein level (Figure 4B). Negative associations are likely to represent              

mutually exclusive events of the protein complex regulation, thus when one protein is present              

the other will not be necessary for the complex formation and may undergo degradation.              

Indeed, current evidence in the literature suggest that SMARCA2 and SMARCA4 are paralogs             

(Ori et al., 2016) and mutually exclusive ​(Karnezis et al., 2016) within the SWI/SNF complex ​(Ori                

et al., 2016)​. The lower number of negative associations suggests that these types of events are                

less frequent. 

 

We experimentally validated two of the top significant positive associations (Figure 5A). These             

were found within protein complex subunits of the adaptor protein complex 3 (AP3) and the               

Transcription initiation factor IIE (TFIIE), AP3B1 - AP3M1 and GTF2E2 - GTF2E1 respectively.             

To assess their implication we performed shRNA knockdown of the putative regulatory proteins,             

AP3B1 and GTF2E2, in shRNA transfected HCT116 human colon cancer cell lines followed by              

western blot. This showed that knocking down the regulatory proteins not only affected their              

abundance, AP3B1 and GTF2E2, but also the abundance of the interacting proteins within the              

protein complex subunit, AP3M1 and GTF2E1 (Figure 5B). This supports the validity of the              

regulatory interactions found and that these can be transferred between tumours and cell lines. 

 

Besides providing us with clues on the assembly pathways of protein complexes, these             

associations provide concrete examples of trans protein quantitative loci associations (pQTLs)           

(Chick et al., 2016)​, illustrating how the genomic variation can have consequences through             

protein interaction partners. 
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Protein complex amplifications associated with high attenuation potential 

Having assessed the attenuation of CNVs effects in the proteome we set out to quantify the                

extent of this regulation in each tumour sample. We reasoned that by stratifying the samples by                

their capacity to attenuate the CNV changes, we could identify the underlying attenuation             

mechanisms. Similarly to the protein analysis (Figure 1D) we performed a correlation analysis             

between the CNVs and transcriptomics and proteomics for each sample (Figure 6A), instead of              

each protein. Furthermore, recurring to a gaussian mixture model we classified 50 samples             

(18%) as those having a general strong attenuation effect (see Methods). Such tumour samples              

have a higher number of genes with strong attenuation, suggesting either an overall increase in               

degradation or decrease in translation rates in these samples. We then searched for complexes              

and complex subunits that are more likely to be amplified in the tumours with stronger               

attenuation and could therefore contribute to the attenuation potential (see Methods). Tumours            

with strong attenuation effects displayed a significant enrichment of gene amplifications in            

several complex subunits including genes involved in the endoplasmic reticulum-associated          

degradation (ERAD) pathway (DERL1 and VIMP), cell polarity (SCRIB, LLGL2 and VANGL2),            

GPI-anchor biosynthesis (PIGT and PIGU) and RNA interference (AGO2) (Figure 6B and 6C).             

SCRIB protein complexes have been previously reported to play an important role in cancer              

progression in breast cancer and their inhibition has been linked to a decrease in cell migration                

(Anastas et al., 2012)​. The proteasome system is important for the regulation of focal adhesions               

in migrating cells ​(Teckchandani and Cooper, 2016) and inhibition of the proteasome inhibits             

migration and invasion in breast cancer cells ​(Xie et al., 2009)​. However, it is not clear how the                  

overexpression of these cell polarity factors would result in an increase in attenuation potential.              

Interestingly and consistently with the increased protein attenuation profile of these tumours, we             
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observe amplifications of the ERAD components DERL1 and VIMP, that are part of an              

endoplasmatic reticulum (ER) complex which is responsible for the retrotranslocation of           

misfolded proteins to the cytosol for proteasomal degradation ​(Lilley and Ploegh, 2004; Ye et              

al., 2004)​. The association between increased attenuation and amplification of AGO2 could be             

explained by its role in repressing the initiation of mRNA translation ​(Kiriakidou et al., 2007)​. 

Gene expression profile of protein attenuation is associated with specific drug           

responses 

Since the tumours with strong attenuation of CNVs effects displayed particular characteristics,            

we defined a gene expression signature by systematically correlating each gene with the             

attenuation potential (see Methods). This signature provides a putative ranking of the            

agreement between gene expression and the protein attenuation profile of the samples. Next,             

we explored the capacity of this signature to identify particular cellular states that can be               

informative for drug response. Samples with a strong correlation with the signature would be              

predicted to have higher attenuation and could, for example, display a higher proteasomal             

capacity. Thus, we considered an independent cell line panel for which gene expression and              

drug response is available ​(Iorio et al., 2016b)​, and ranked the cell lines according to their                

predicted protein attenuation potential (see Methods). Then we assessed the association           

between this predicted attenuation potential and drug response measurements for 265           

compounds (see Methods) (Figure 6D and 6E). Among the top predicted compounds are a              

proteasome (Bortezomib and MG-132) and chaperone inhibitors (AUY922, 17-AAG, Elesclomol,          

CCT018159 and SNX-2112) which displayed a significant (FDR < 5%) positive association,            

suggesting that a stronger predicted attenuation potential is associated with increased           

resistance to proteasome/chaperone inhibitors (Supplementary Table 4). This unbiased search          
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also revealed significantly positive associations of Nutlin-3a and JNJ-26854165 and the           

proteome attenuation profile (pearson’s r 0.20 and 0.16, respectively). Interestingly, both           

compounds target the oncoprotein E3 ligase murine double minute 2 (MDM2) which, in p53 wild               

type tumours, suppresses the activity of p53 by ubiquitination and thereby is a potential              

therapeutical target ​(Shangary and Wang, 2008)​. The protein attenuation potential predicted for            

the cell lines also displayed tissue specificity, supporting the idea that proteasomal capacity is              

constrained by the tissue of origin. This analysis suggests that the gene expression signature              

for the proteome attenuation may be associated with an increased capacity of the protein quality               

control machinery and an increased resistance to drugs that target this system. 

Discussion 

Although chromosomal rearrangements is an ubiquitous feature of cancer cells, still little is             

known about their impact on the cellular phenotype, in particular on the regulation of the               

proteome. Recent proteogenomics studies released by the CPTAC consortium ​(Cancer          

Genome Atlas Research Network et al., 2013; Mertins et al., 2016; Zhang et al., 2014, 2016)                

presented for the first time a broad compendium of proteogenomics measurements across            

tumours, enabling a systematic analysis of this question. 

 
In this study, we observed that while CNVs have a good agreement with transcript              

measurements, 23-33% of the proteins undergo post-transcriptional regulation which attenuates          

the impact of CNVs (Figure 1 C, D). This information alone is very relevant for the identification                 

of causal genes within amplified genome regions. Since amplifications of the attenuated genes             

are not observed at the protein level, these are less likely to be drivers of cancer progression                 

and similarly less likely to explain changes in drug associations. Notably, this attenuation was              
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more pronounced in protein subunits and complexes, in agreement with previous observations            

(Dephoure et al., 2014; Stingele et al., 2012)​. This is likely explained by the fact that the                 

stoichiometry of complexes need to be preserved and that proteins over-represented compared            

to other members of the complex are likely degraded due to increased instability ​(McShane et               

al., 2016)​. Furthermore, we observed that proteins with stronger attenuation are more quickly             

ubiquitinated ​(Kim et al., 2011) (Figure 2D) suggesting that the attenuation may be mostly              

driven by changes in degradation instead of translation rates. 

 

Protein complex subunit abundance co-regulation was a general feature and this agreement            

was not so strikingly visible at the transcript abundance, recapitulating recent findings with the              

same data-set ​(Wang et al., 2016)​. Within these subunits we identified 48 putative-regulators             

that may act as rate-limiting factors for complex assembly, capable of regulating the abundance              

and assembly of other complex subunits (Figure 4A). This systematic analysis recapitulated            

known, COG3 - COG2 and COG3 - COG4, and putative new, COG6 - COG2, regulatory               

interactions within the conserved oligomeric Golgi (COG) complex, which is located in the golgi              

apparatus and involved in protein sorting and glycosylation (Smith & Lupashin, 2008). COG3             

associations were validated in an independent study where knocking down COG3 leads to the              

depletion of the interacting proteins ​(Zolov and Lupashin, 2005)​. Other putative-regulatory           

interactions were proposed within complexes with important roles in cancer, such as EIF3A             

regulation of several members of the eIF3 complex, which plays an important role in translation               

initiation and regulation of protein synthesis ​(des Georges et al., 2015; Zhang et al., 2007)​. Also,                

a regulatory interaction between RPA2 - RPA3 was reported, these proteins are part of the               

replication protein A (RPA) complex which is involved in the response to DNA damage and               

thereby is involved in the control of DNA repair mechanisms and the activation of DNA damage                
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checkpoints ​(Zou et al., 2006)​. We have experimentally validated two new regulatory            

interactions, AP3B1 - AP3M1 and GTF2E2 - GTF2E1, within the AP3 and TFIIE complexes,              

respectively (Figure 5). We also designed experimental validations for RPA2 - RPA3 and for              

EIF3A - EIF3E, but knocking down RPA2 or EIF3A proved to be lethal for the transfected                

HCT116 colon cancer cell lines. Interestingly, potential mutual exclusivity associations were           

present in much lower numbers. The most compelling negative association was SMARCA2 -             

SMARCA4, which was supported by current literature where the two are reported to be mutual               

exclusive ATPases ​(Karnezis et al., 2016) and paralogs ​(Ori et al., 2016) within the SWI/SNF               

complex. Dual deficiency of these proteins induces differentiation from a normal cell to             

high-grade tumour ​(Karnezis et al., 2016)​. These results provide examples and putative            

mechanistic explanations for how variation in copy number of gene expression of a protein can               

have trans effects in the abundance of interacting proteins, as seen in protein quantitative trait               

loci analyses ​(Chick et al., 2016)​. 

 

Tumour samples with strong attenuation of CNVs effects in protein abundance displayed a             

significant enrichment for amplifications of several protein complexes involved in the response            

to misfolded proteins in the ER, cell polarity, trafficking and gene repression. The amplification              

of genes associated with cell polarity in cells with increased attenuation potential would suggest              

that increased cell migration might result in an increased proteasomal function or decreased             

translation rates. We derived a gene expression signature to characterise the attenuation effect             

and used this to associate with drug responses in an independent large panel of approximately               

1,000 cell lines and 265 compounds ​(Iorio et al., 2016b) (Figure 6D). Proteome attenuation was               

associated with increased resistance to proteasome and chaperone inhibitors, suggesting that           

tumours where attenuation is more pronounced are more resistant to perturbations in the             
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chaperone/proteasome system. Interestingly, the two compounds in the screen targeting MDM2           

were among the top associated with the gene expression signature, suggesting that tumours             

with high predicted attenuation potential may have a high proteasome capacity and therefore be              

less sensitive to the inhibition of MDM2, that is the E3 ligase responsible for the degradation of                 

p53 in TP53 wild-type tumours ​(Shangary and Wang, 2008)​. Additional work will be required to               

conclusively validate the putative associations between the attenuation potential and the drug            

responses. 

 

In this study, we provide novel insights into how cancer cells regulate their proteome in the                

presence of abnormal chromosomal rearrangements, in particular of copy-number alterations.          

This study emphasises the importance of integrating multiple types of biological data to allow              

functional assessment of genomic alterations. While relevant insights were possible here, more            

tailored experimental work should be carried-out to understand the mechanisms of how are the              

co-regulatory effects of complexes maintained. Mutations can have similar implications to           

copy-number alterations by affecting the correct synthesis of the protein or its transcript, but              

these are generally harder to interpret. We have uncovered a potential way in how cancer cells                

manage to cope with often dramatic chromosomal rearrangements ​(Thompson and Compton,           

2011) and these can possibly provide insights into their functional implications and hopefully             

open novel therapeutic opportunities. 
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Methods 

Data compendium 

Proteomics measurements at the protein level for the three tumour types analysed here were              

compiled from the CPTAC data portal ​(Edwards et al., 2015) (accession date 2016/07/06) for              

the following publications: BRCA ​(Mertins et al., 2016)​, HGSC ​(Zhang et al., 2016) and              

COREAD ​(Zhang et al., 2014)​. Transcriptomics RNA-seq raw counts were acquired from            

(Rahman et al., 2015) (GSE62944) and processed using the Limma R package ​(Ritchie et al.,               

2015) with the voom transformation ​(Law et al., 2014)​. GISTIC ​(Mermel et al., 2011) thresholded               

copy-number variation measurements and clinical data were obtained from the          

http://firebrowse.org/​ portal (accession date 2016/06/08). 

Data processing and normalisation 

Transcriptomics raw counts were downloaded from ​(Rahman et al., 2015) (GSE62944). To            

ensure that lowly expressed transcripts are removed, genes with average counts per million             

(CPM) across samples lower or equal to 1 were excluded. Data was normalised by the trimmed                

mean of M-values (TMM) method ​(Robinson and Oshlack, 2010) using edgeR ​(Robinson et al.,              

2010) R package. Finally, the log-CPM values derived from the voom ​(Law et al., 2014) function                

in Limma ​(Ritchie et al., 2015)​ package were extracted for this analysis. 

 

Coverage of the proteomics samples was assessed using the jaccard index for each sample              

with matching transcriptomics. Transcriptomics and proteomics measurements were used at the           

gene symbol level annotation. For each sample it was only considered transcripts passing the              
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expression threshold, defined above, and proteins with matching measurement. The jaccard           

index for each sample was calculated with the intersection over the union. 

 

Considering that proteomics and transcriptomics principal component analysis (PCA) revealed          

associations with possible confounding factors, i.e. age, gender, tumour type and measurement            

technology, we regressed them out from the original data-sets using linear regression models             

(Figure S1). For each protein a multiple linear regression model was fitted with protein              

measurements across the tumour samples as the dependent variable and the confounding            

factors mentioned above as independent discrete variables, apart from the age which was             

represented with a continuous variable. Once the model was fitted the estimated weights of the               

covariates were used to regress-out their impact in the protein measurement and thereby             

removing their effects (Figure S2). Due to the sparseness of mass-spectrometry measurements            

for the proteomics data-set we only considered proteins that were consistently measured in at              

least 50% of the samples, leaving a total of 6,734 proteins. The same procedure was performed                

in the transcriptomics measurements. Transcript and protein measurements were normalised          

and centered across the samples using a gaussian kernel density estimation function. 

Proteome attenuation analysis 

Agreement between the copy-number variation and the transcriptomics and proteomics was           

calculated for each gene/protein across the tumour samples using pearson correlation           

coefficient. Enrichment of biological processes for proteins displaying an attenuation of the            

correlation at the protein level compared to the transcript level was performed using Gene Set               

Enrichment Analysis (GSEA) ​(Subramanian et al., 2005)​. For the enrichment we used the             

protein attenuation level, which is calculated by the difference between the pearson coefficient             
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of the transcript correlation (correlation between copy-number variation and transcript          

measurements) and the pearson coefficient of the protein correlation (correlation between           

copy-number and protein measurements). To ensure a normal distribution centered around zero            

for the GSEA enrichments a gaussian kernel density estimation function was used to normalise              

the protein attenuation distribution. Gene signatures of Gene Ontology (GO) ​(Ashburner et al.,             

2000; The Gene Ontology Consortium, 2015) terms for biological processes (BP) and cellular             

compartments (CC) were acquired from the MSigDB data-base ​(Subramanian et al., 2005)​.            

Gene signatures of post-translational modifications (PTMs) were also used and acquired from            

Uniprot data-base ​(The UniProt Consortium, 2015)​. The estimated enrichment scores were           

statistically assessed by performing 1,000 random permutations of the signatures and p-values            

were then adjusted using false-discovery rate (FDR). 

 

Proteins were classified according to their copy-number attenuation effect using a gaussian            

mixture model with 2 mixture components. Proteins in the group with larger mean attenuation              

were considered highly attenuated. More stringent classification of the attenuation effect was            

performed by only considering attenuated proteins with an absolute attenuation score higher            

than 0.3. 

 

For samples the attenuation potential was estimated similarly as for proteins but instead             

correlations were calculated across the proteins measured in the sample. Samples were then             

classified as before with a gaussian mixture model with 2 mixture components. Enrichment             

analysis of amplifications in protein complexes in tumour samples with high protein attenuation             

potential was performed using SLAPenrich ​(Iorio et al., 2016a)​. 
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A gene expression signature of the sample attenuation potential was calculated by            

systematically correlating the samples attenuation potential with each gene in the           

transcriptomics data-set. 

Pairwise correlation analysis 

Correlations between protein pairs, or genes, across samples were calculated using pearson            

correlation coefficient. Only proteins that were also measured at the transcript level were             

considered, i.e. 6,434. The systematic analysis of all unique pairwise correlations generated a             

total of 41,389,922 correlation coefficients both at the protein and gene level.  

 

Protein sets of known protein complexes were acquired from the CORUM data-base ​(Ruepp et              

al., 2010, 2008)​. A protein-protein interaction list of the complexes was assembled by             

considering that two proteins interact if they are present within the same complex at least once,                

this generated a total of 67,927 interactions. Indirect but functional associations were also             

considered by using the STRING data-base ​(Franceschini et al., 2013)​. For STRING only             

interactions with the highest confidence score (900) were used performing a total of 214,815              

interactions. 9,273 protein interactions within signalling pathways were assembled from          

kinase/phosphatase-substrate interactions reported in SIGNOR data-base ​(Perfetto et al.,         

2016)​. Metabolic enzyme interactions associated with metabolic pathways were extracted from           

KEGG pathways ​(Kanehisa et al., 2016) reported in MSigDB ​(Subramanian et al., 2005)​. Two              

enzymes were considered to be interacting if they were present in the same metabolic pathway,               

making a total of 121,134 interactions. Enrichment of the different types of protein-protein             

interactions, i.e. complexes, functional, signalling and metabolic, were estimated using receiving           

operating characteristic (ROC) curves and by calculating the area under the ROC curve             
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(AROC). True-positive sets of protein interactions were defined as the ones reported in the              

different resources used. Due to the strong unbalance between the number of true positives and               

false positives the ROC curves were calculated using 5 different and randomised sets within the               

false positive group. The variability of the AROC score is represented by error bars in Figure 3C. 

Proteogenomics analysis to identify protein complex regulators 

The identification of protein complex regulators only focused on protein-protein interactions           

reported in the CORUM data-base ​(Ruepp et al., 2010, 2008) with a protein-protein interaction              

list assembled as described before. 

 

For each protein-protein interaction reported within a complex, its association was tested using             

two linear regression models. Given a pair Protein Y ~ Protein X (Py ~ Px), a first linear model is                    

used to regress-out the transcript variability from the protein measurement of Py. The             

dependent variable of the model is the proteomics measurements of Py and the independent              

variable is the transcriptomics measurements (Ty) (Eq. 1):  

Eq. 1: y  . Ty P = β + ψ  

The model is fit with an intercept (for simplicity omitted from Eq.1) and noise term, . After               ψ   

fitting the estimated weight ( ), the residuals of Py (Py’) are calculated as (Eq. 2):β  

Eq. 2: y  y β . TyP ′ = P −   

Py’ represents the variability measured due to post-transcriptional and post-translational          

regulation. Then a second linear model is performed to calculate the association between Py’              

and the CNV of Px, (Px) (Eq: 3): 

Eq. 3: y  β . Px P ′ =  + ψ  
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Statistical significance is estimated by calculating an F statistic over an F-distribution, p-values             

are then adjusted using FDR correction. A total of 58,627 tests are performed. The same               

analysis is performed using transcriptomics measurements instead of the copy-number of Px,            

generating a total of 57,462 tests. Associations estimated with the copy-number variation that             

are significant with the transcriptomics are highlighted with a red border in Figure 3A. 

Cell lines drug response analysis 

Gene expression measurements (E-MTAB-3610) acquired with Affymetrix Human Genome         

U219 array for approximately 1,000 cell lines was used in this analysis ​(Iorio et al., 2016b)​. Drug                 

response measurements were obtained as the area under the curve (AUC) for 265 compounds              

(Iorio et al., 2016b)​. Cell lines proteome attenuation potential was calculated by performing             

pearson correlation between their transcriptomics profile and the proteome attenuation potential           

signature derived from tumours. Cell line correlations with the signature were then used as a               

feature in single linear regression models to systematically predict the response of each             

compound in the screen. 

Cell culture and sample collection 

The human colon cancer cell line HCT116 was cultivated in McCoys 5a medium supplemented              

with 10% FBS and 1% penicillin/streptomycin under standard culture condition. AP3B1 and            

GTF2E2 silencing was obtained by lentiviral short hairpin RNA (shRNA) delivery. shNT (“non             

target”) clones were used as control cells. For protein sample isolation, 10​6 cells of shNT,               

shAP3B1 or shGTF2E2 clones were plated in 10 cm culture dishes for 48h. Afterwards cells               

were lysed in RIPA buffer to obtain total protein samples. Protein content was determined by               
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DC™ protein assay as recommended by the manufacturer (Bio-Rad laboratories Inc, Cat.#:            

500-0116, Hercules, CA USA). 

shRNA delivery via lentiviral transduction 

The applied shRNA plasmids are part of the MISSION® shRNA product line of Sigma Aldrich               

(shAP3B1, Cat.#: SHCLND-NM_003664, TRC clone: TRCN0000286136; shGTF2E2, Cat.#:        

SHCLND-NM_002095, TRC clone: TRCN0000020775; shNT, Cat.#: SHC016-1EA) and were         

delivered via lentiviral transduction using a second generation lentiviral packaging system.           

Therefore, HEK293T cells were co-transfected with the appropriate pLKO.1 transfer-vector          

(shRNA containing vector), psPAX2 (the packaging vector) and pMD2.G (the vector that            

encodes for the viral envelope protein) using jetPEI transfection reagent according to            

manufacturer’s recommendation (Polyplus transfection, Cat.#: 101-10N, Illkirch, France).        

Virus-containing supernatants were used for cell transduction.  

Western Blot validation 

Predicted protein complex formations of AP3B1_AP3M1 and GTF2E2_GTF2E1 were validated          

by western blot technique. Total protein lysates (30 µg) were heat-denatured in NuPAGE LDS              

sample buffer containing dithiothreitol (Thermo Scientific, Cat.#: NP0008, Waltham, MA USA)           

and loaded on 12% denaturing polyacrylamide gels for separation. SDS-PAGE was conducted            

with a 2-Step protocol (Step1: 20min 50V constant, Step2: 120min 120V constant). Proteins             

were transferred to nitrocellulose membranes by tank-blotting (140min at 70V constant).           

Afterwards membranes were blocked with 5% milk (MP) in TBS-T. All washing steps were              

conducted with TBS-T. Membranes were incubated with primary antibodies mc mouse α-AP3B1            

(abnova, Cat.#: H00008546-B01P, Taipei City, Taiwan; 1:500), mc rabbit α-AP3M1 (abcam,           

Cat.#: ab201227, Cambridge, UK; 1:1000), mc rabbit α-GTF2E2/TFIIEbeta (abcam, Cat.#:          
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ab187143, Cambridge, UK; 1:10000) or mc rabbit α-GTF2E1/TFIIEalpha (abcam, Cat.#:          

ab140634, Cambridge, UK; 1:1000) overnight at 4°C. Protein expression of GAPDH was used             

as loading control using α-GAPDH(D15H11) antibody (CST, Cat.#: 5174S, Cambridge, UK;           

1:2000). All primary antibodies were diluted in 5% MP TBS-T. Secondary antibodies used in this               

work are: HRP-conjugated anti-rabbit IgG (CST, Cat.#: 7074S, Cambridge, UK) for the detection             

of AP3M1 (1:2000), GTF2E2 (1:1000), GTF2E1 (1:2000) & GAPDH (1:2000), and           

HRP-conjugated anti-mouse IgG (CST, Cat.#: 7076S, Cambridge, UK) for the detection of            

AP3B1 (1:5000). Secondary antibodies were diluted in TBS-T and incubated for 1h at room              

temperature. Quantity One® software (Bio-Rad laboratories Inc., Hercules, CA USA) was used            

for densitometry. 

Code availability 

All the computational analyses were performed in Python version 2.7.10, apart from the             

transcriptomics RNA-seq processing which as done in R version 3.3.1 with Limma package             

version 3.28.21 and edgeR 3.14.0, and are available under GNU General Public License V3 in a                

GitHub project in the following url ​https://github.com/saezlab/protein_attenuation​. Plotting was         

done using Python modules Matplotlib version 1.4.3 ​(Hunter, 2007) and Seaborn version 0.7.0             

(Waskom et al., 2014)​. Generalised linear models were built using Python module Sklearn             

version 0.17.1 ​(Pedregosa et al., 2011)​. Data analysis and structuring was carried out using              

Python module Pandas version 0.18.1 ​(McKinney and Others, 2010)​. 
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Figure and Table Legends 

 

Figure 1. Pan-cancer effects of copy-number variation on transcript and protein abundances. A)             

Overview of the number of samples used in this study overlapping with the proteomics              

measurements for each tumour type. B) Proteomics coverage of the expressed transcripts in             

each sample and for each tumour type. C) Diagram depicting the implication of copy-number              
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alterations along the central dogma of biology. D) Pearson correlation between copy-number            

variation and transcriptomics in the x axis and copy-number variation and proteomics in the y               

axis. A gaussian mixture model with two mixture components was used to identify proteins with               

high attenuation levels (colored in red). 

 

Figure 2. Enrichment analysis of the proteins undergoing copy-number attenuation. A)           

Enrichment analysis of the correlation differences between copy-number variation and          

transcriptomics and copy-number variation and proteomics. Protein subsets used represent          

biological processes (BP; green), cellular components (CC; red) and post-translational          

modifications (PTM; blue). B) The distribution of the enrichment scores for terms referring to              
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protein complexes or subunits are represented in red and all the rest in gray. C) Proteins                

classified according to their attenuation profile in tumours are mapped against their attenuation             

in breast and ovarian cancer cell lines. D) Ubiquitination site fold-changes over time after              

proteasome inhibition with bortezomib discretized according the protein attenuation level in           

tumours.  

 

Figure 3. Copy-number variation attenuation for protein complex subunits results in strong            

co-regulation of their abundances across samples. A) Protein-protein correlation matrix using           

pearson correlation coefficient and two representative cases of top correlated protein           

complexes. B) Distribution of all protein-protein correlation at the protein level (Proteomics), and             

transcript level (Transcriptomics). Protein interactions within complexes are represented by the           

Complex label and protein functional interactions, that are not necessarily direct, are            
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represented by the Functional label. C) Enrichment analysis by the means of the area under the                

receiving operating characteristic curves (AROC) using pairwise correlation coefficients, for both           

proteomics and transcriptomics measurements. Error bars display the variability obtained with           

five randomised true negative sets. 

 

Figure 4. Protein complex regulators. A) Volcano plot displaying the effect size and adjusted              

p-value of all the tested regulatory interactions. Associations were performed using the            

copy-number variation of the putative regulatory protein, Px, and the protein residuals of the              

regulated protein, Py. Significant associations found with the transcript measurements of Px are             

denoted with a red border. B) Representative significant associations. Boxplots show the            
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agreement between the copy-number variation of Px and the residuals of the regulated Py.              

Scatter plot show the agreement between the protein pairs in the proteomics measurements. 

 

Figure 5. Experimental validation of regulatory interactions among protein complex subunits. A)            

Correlation of the copy-number profile of the regulatory protein with the protein residuals of the               

regulated protein (left plot) and agreement at the protein level between the two proteins (right               

plot). B) Regulatory interactions within the adaptor protein complex 3 (AP3) and the             

Transcription initiation factor IIE (TFIIE) complexes. shRNA knockdown of the regulatory           

proteins, AP3B1 and GTF2E2, show strong decrease in the protein abundance of the regulated              

proteins, AP3M1 and GTF2E1, respectively. Protein abundance changes are measured and           

quantified by western blot using antibodies specific for the corresponding proteins. The            

quantified bands in the shAP3B1 and shGTF2E2 experiments were scored relative to the             

control shRNA (shNT). GAPDH was used as a loading control.  
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Figure 6. Putative mechanisms for tumour attenuation potential and its association with            

chaperone/proteasome drug resistance. A) Tumour sample correlations of the copy-number          

changes and the transcript (x axis) and protein (y axis) measurements. Samples classified with              

high attenuation potential, in red, display stronger attenuation of the copy-number variation. B)             

Protein complexes significantly enriched for gene amplifications (FDR < 5%) on the samples             

with high protein attenuation. C) Top strongly amplified genes within the significantly enriched             

complexes. D) Drug response associations performed in a large cell line panel using the cell               

lines putative attenuation potential as the predictive feature. Significant associations (FDR <            

5%) of chaperone and proteasome inhibitors are labelled and marked in red. Ubiquitin-protein             
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ligase MDM2 inhibitors are labelled. E) Boxplots representing the distributions of the drug             

associations effect sizes of all the proteasome and chaperones inhibitors in the drug panel. 

Supplemental Information 

 

Supplementary Figure 1. Proteomics data-sets PCA analysis using proteins consistently          

measured across all the samples and pearson correlation coefficient between the first 10             

principal components and the possible confounding factors, i.e. age, tumour type and gender.             

A) Analysis performed on the original proteomics data-sets. B) Analysis performed on the             

proteomics data-set after the confounding factors were regressed-out. 
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Supplementary Figure 2. Transcriptomics data-sets PCA analysis and pearson correlation          

coefficient between the first 10 principal components and the possible confounding factors, i.e.             

age, tumour type and gender. A) Analysis performed on the voom transformed transcriptomics             

measurements. B) Analysis performed on the transcriptomics data-set after the confounding           

factors were regressed-out. 
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Supplementary Figure 3. Protein complexes regulatory interactions identified using         

transcriptomics of the putative regulatory protein (Px). A) Volcano plot representing the effect             

size on the x axis and FDR adjusted p-value on the y axis. Diagram representing the linear                 

model used to perform the associations. B) Overlap between the significant regulatory            

associations found using the copy-number variation and transcriptomics of the Px proteins. C)             

Number of significant associations with a Positive or Negative effect size. 
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Supplementary Table 1. Overview of the biological measurements available for the TCGA and             

CPTAC samples. 

 

Supplementary Table 2. Pearson correlation coefficients for all genes overlapping between           

copy-number variation, transcriptomics and proteomics data-sets. 

 

Supplementary Table 3. Protein complex regulatory associations estimated between the          

putative regulatory protein, Px, and the regulated protein, Py, using the copy-number variation             

and transcriptomics measurements of Px. 

 

Supplementary Table 4. Tumour protein attenuation potential gene-expression signature and          

drug response analysis results. 
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