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ABSTRACT10

In http://dx.doi.org/10.1101/079087, we presented adaptive models for calling somatic mutations in
high-throughput sequencing data. These models were developed by training deep neural networks
with semi-simulated data. In this continuation, I evaluate how such models can predict known somatic
mutations in a real dataset. To address this question, I tested the approach using samples from the
International Cancer Genome Consortium (ICGC) and the previously published ground-truth mutations
(GoldSet). This evaluation revealed that training models with semi-simulation does produce models
that exhibit strong performance in real datasets. I found a linear relationship between the performance
observed on a semi-simulated validation set and independent ground-truth in the gold set (R2 = 0.952,
P < 2−16). I also found that semi-simulation can be used to pre-train models before continuing training
with true labels and that this pre-training improves model performance substantially on the real dataset
compared to training models only with the real dataset. The best model pre-trained with semi-simulation
achieved an AUC of 0.969 [0.957-0.982] (95% confidence interval) compared to 0.911 [0.890-0.932]
when training with real labels only. These data demonstrate that semi-simulation can be a very effective
approach to training filtering and ranking probabilistic models.
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INTRODUCTION26

This manuscript is a continuation to Torracinta et al. [2016]1. The reader is referred to Torracinta et al.27

[2016] for background and details of the adaptive deep learning concept tested in this continuation.28

1A continuation is a preprint that continues where an earlier preprint left off. The term can also be used to refer to the initial
preprint and one or more continuations of the preprint.

The title of a continuation starts with the DOI of the first preprint in a continuation, followed by the word CONTINUATION in
uppercase and a colon. A short sentence summarizes the results presented in the continuation. Authors of a continuation should be
listed who have contributed to the material presented in the continuation, rather than to the original preprint (since these authors
received credit in the first preprint already).

Instead of repeating introduction and methods that are common with the prior preprint, or revising the initial preprint and force
readers to read old material to discover new one, this format encourages brevity of reporting. New results or changes to methods
are reported in a continuation. An important advantage of the continuation format is that it makes it possible to report results
chronologically in preprints, and clearly expose the steps taken during a research study.

A manuscript submitted for publication may later show only a subset of the results presented in these preprints, and may change
the order of results in its presentation, in order to improve clarity for readers who encounter the ideas for the first time. Since
the article can cite the preprints, it is understood that chronology is described accurately in the continuation format, while the
peer-reviewed article is a simplifying summary designed to distill the key elements of a new scientific contribution.
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RESULTS29

Following our earlier presentation of deep-learning methods to train probabilistic models for somatic30

variation calling, I evaluated the performance of adaptive models with data from the International Cancer31

Genome Consortium (ICGC). The ICGC recently published a benchmark dataset: the ICGC GoldSet32

Alioto et al. [2015].33

The ICGC GoldSet consists of data from a matched normal and tumor sample, which both have been34

subjected to high coverage sequencing (e.g., about 300x). The high-coverage data were used by members35

of the Alioto study to determine the ground truth of somatic variation in the tumor sample. Using these36

data, new somatic mutation calling approaches can be evaluated in the reduced coverage datasets using37

ground-truth variations. A drawback of the ICGC GoldSet evaluation protocol is that some mutations with38

low frequencies (e.g., 10%) that are visible in the 300x data can be undetectable in the reduced coverage39

datasets. Such mutations are labeled as ”GOLD” only in Supplementary Table 1 of Alioto et al. [2015],40

because they were called only in the high-coverage dataset and could not be identified by any caller in the41

normal coverage dataset.

# Training Examples # Validation Examples # Test examples # Features

ICGC-10 semi 21,137,888 1,172,049 1,173,442 280
ICGC gold-set 37,920 18,690 N/A 280

Table 1. Dataset Characteristics
42
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Figure 1. Receiver Operating Characteristic (ROC) Curve and Reliability Diagram for model
predictions on GoldSet. A model trained exclusively by semi-simulation (simulated labels only) is
evaluated on gold standard ground truth from the ICGC GoldSet (Alioto et al. [2015]). Left presents the
ROC curve. Right presents the reliability diagram. Forecast probability is the probability generated by the
model. Observed relative frequency is the proportion of true labels in a set of sites. Both plots indicate
that the model performs extremely well for a majority of sites (corresponding to about 65% sensitivity),
then has degraded performance and fails to identify some true positive sites described in the ICGC
GoldSet. Despite the drop in performance such a model is suitable for prediction in a real dataset because
strong performance is obtained for sites with highest forecast probabilities.

To evaluate semi-simulation, I trained adaptive models using the ICGC GoldSet normal and tumor43

samples (see Methods). In the absence of two germline samples, I used the tumor sample as the sample in44

which semi-simulation plants mutations. The drawback of this training protocol is that the probability of45

mutation can be slightly underestimated at the true mutation sites. The model was trained with a random46
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sample of 10% of the sites sequenced by ICGC. Site sampling was random and made no attempt to include47

the true mutation sites described by ICGC (in supplementary material of Alioto et al. [2015]). If some true48

sites are included in the semi-simulated dataset, their label is completely controlled by semi-simulation,49

and not influenced by the GoldSet ground-truth. Table 1 provides a description of the training, validation50

and test sets used to train semi-simulation models with these data (ICGC-10 semi).51

The model trained on ICGC-10 obtained an AUC of 0.9581 on the validation set and a test set AUC of52

0.955 (95% confidence interval [0.951-0.959], calculated using 10,000 random examples from the test set,53

see Methods).54

To determine if such a semi-simulation trained model can be predictive on a real dataset, I evaluated55

the performance of the model on the ICGC gold-set dataset (labeled ICGC gold-set in Table 1). The56

model obtained an Area Under the ROC Curve (AUC) of 0.883 [0.870-0.896] 95% confidence interval.57

While the model suffers a drop in performance on the real dataset, it is clearly predictive despite having58

been trained only with simulated labels for this dataset. Figure 1 shows the Received Operating Curve59

(ROC) for this model on the GoldSet (left) and the reliability diagram (right). The ROC indicates that60

the model performs well for a majority of true mutations in the ICGC GoldSet. The reliability diagram61

shows that predictions assigned a strong probability by the model (e.g., > 0.90) have an 85% chance of62

being true positives. These performance measures are similar, albeit not directly comparable, with the63

ones reported for state of the art somatic mutation callers in Alioto et al. [2015].64
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Figure 2. Performance of alternative models. Alternative models can be constructed by varying
hyper-parameters of the training procedure (number of training examples used, learning rate, dropout rate,
L2 regularization rate). Most of the alternative models are expected to have sub-optimal performance.
This plot compares the performance of alternative models obtained on the validation set to the
performance obtained on the GoldSet. The strong linear fit (R2=0.952, P < 2−16, N=37 alternative
models) with a slope of 0.75 indicates that hyper-parameter search on a semi-simulated dataset can guide
model selection even in the absence of a real dataset.

To better characterize how performance of semi-simulated models translate to the GoldSet, I generated65

a number of alternative models with random hyper-parameter choices. As usual when sampling hyper-66

parameters, a full range of performance is expected, from non-predictive models (AUC close to 0.5) all67

the way to close to the performance of the best model that can be derived from the dataset, but including68
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models of intermediate performance. Figure 2 presents the performance of these alternative models on69

the GoldSet. This figure shows an almost linear relationship between performance estimates obtained70

on the semi-simulated ICGC-10 validation set and performance on the GoldSet (for models which were71

trained exclusively on ICGC-10 with semi-simulation). These data confirm that semi-simulation can help72

train models that perform well on a similarly distributed real dataset. Furthermore, the plot establishes73

that validation performance on the semi-simulated dataset can be used as a guide for selecting a model74

expected to perform well on a real dataset.75
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Figure 3. Impact of semi-simulation pre-training on labeled training. This experiment looks at the
impact of pre-training with semi-simulated datasets on the validation performance of trained models.
Each panel shows two violin plots of the model validation AUC. Left: direct training with labeled data
from GoldSet. Right, models pre-trained with semi-simulated data before additional training with
GoldSet. All models trained to initial convergence (first decrease in validation AUC stops training). I
repeat the comparison for two kinds of datasets, one where only the location of the site is used to indicate
that the site is a somatic mutation, the other where the site and identity of the base mutated are used to
train the model. In each experiment I find that pre-training greatly increases the proportion of
high-performing models. The standard error on each AUC estimate for high-performance models is not
shown, but is reported in the text for the top performing models. White dots indicate the position of the
larger density in each violin plot. Width of the grey shapes indicates the density of points in this region of
AUC values.

Semi-simulation does not require true labels, and none were used for training the models presented so76

far. However, an interesting question is whether performance of semi-simulated models can be improved77

in cases where some amount of real labels is available. In this case, a fully trained semi-simulated model78

can continue training with a dataset containing real labels. In practice, this can be accomplished by loading79

the parameters of a trained model and resuming training with a new training and validation set (with80

labels from a real dataset). I have tested this scenario in Figure 3. It compares the performance of about81

50 alternative models (sample of hyper-parameter choices) when the model is trained exclusively with the82
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labeled data (Direct training with GoldSet, left), or when the model is trained with the semi-simulated data83

(ICGC-10, Pre-training), then re-trained with real data (GoldSet, right). Figure 3 shows that pre-training84

with semi-simulated data helps find many more alternative models with strong performance than is85

possible when training directly with labeled data from the GoldSet. This can be explained in large part86

because the models have about 1.6 million parameters, and are challenging to train in a dataset with only87

about 38,000 examples, of which only 700 are identified as somatic variations in the training set. In this88

case, pre-training with semi-simulation likely helps optimize most parameters of the model that do not89

need to be adjusted when the second training set is presented. As a result, the best models are obtained90

with pre-training with semi-simulation (e.g., 0.969 [0.957-0.982]) compared to 0.911 [0.890-0.932] with91

direct training.92

DISCUSSION93

While training models with semi-simulated data may appear to train models with no supervised data,94

and learn something from nothing, this is not accurate. Semi-simulation relies on an understanding of95

the process that generates the labels, to simulate true signal and plant it in real, noisy, datasets. Semi-96

simulation therefore substitutes a conceptual model of a process, implemented in a simulation tool, to the97

usual observations of labels used so far for supervised learning. Semi-simulation is expected to help in98

cases where the process that generates the signal is sufficiently well understood that reasonably realistic99

simulations can be developed. Simulation of somatic mutations is one such problem where simulating100

mutations is orders of magnitude more cost effective than developing benchmark datasets to identify101

true mutations. Semi-simulation is therefore expected to be useful in applications where conceptual102

models are developed (e.g., in scientific research). It would be much less useful in applications of deep103

learning to domains where collecting labeled data is more cost-effective (e.g., face recognition in pictures,104

reinforcement learning to learn to play games).105

Taken together, these results indicate that models trained with semi-simulation can yield competitive106

ranking and filtering approaches for genomic datasets. This evidence is important because semi-simulation107

makes it possible to develop models for specific assays and analysis protocols, which can adapt to the108

noise characteristics of assay and analysis methods, as we have illustrated in our first report about109

semi-simulation Torracinta et al. [2016].110

I also showed that pre-training models with semi-simulated datasets can help train more predictive111

models. This result is important because it suggests that semi-simulation can be used not only to train112

models when large amounts of labeled data are not available, i.e., such as for a new assay, but also when113

labeled data starts to become available. We can therefore envision developing models for new assays114

with semi-simulation only, and iteratively refining the models as more labeled data are produced (e.g., by115

independent experimental validation of results ranked by prior iterations of the models). I anticipate that116

this iterative model development approach will yield state of the art filtering and ranking models for many117

assays.118

METHODS119

GoldSet sample processing120

ICGC GoldSet samples for normal and tumor samples were downloaded from the European Genomics121

Archive (EGA) using accession code EGAD00001001859 in the FASTQ format.122

Reads were converted to the Goby compact-reads format Campagne et al. [2013]: EGAD00001001859-123

LA-tumor 619,412,062 reads, 96.5 GB, EGAD00001001859-LA-normal 456,984,733 reads, 72.6 GB.124

Compact-reads were uploaded to an internal instance of GobyWeb Dorff et al. [2013]. Reads125

were aligned with GobyWeb using bwa-mem, implemented in the BWA MEM ARTIFACT Gob-126

yWeb plugin (https://github.com/CampagneLaboratory/gobyweb2-plugins/tree/127

plugins-SDK/plugins/aligners/BWA_MEM_ARTIFACT). This process produced two align-128

ments in the Goby format Campagne et al. [2013].129

Semi-simulation130

Normal and tumor alignments were processed with GobyWeb Dorff et al. [2013]. We used the Goby131

Web Sequence Base Information plugin (SBI, https://github.com/CampagneLaboratory/132

gobyweb2-plugins/tree/plugins-SDK/plugins/analyses/SEQUENCE_BASE_133
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INFORMATION) to produce raw and semi-simulated mutated .sbi files. The SBI plugin uses version 1.1134

of the variationanalysis project (version 1.0 was described previously Torracinta et al. [2016]). The plugin135

was configured to realign reads around indels, call indels and keep sites with at least one base supporting136

a variation and keep sites with a single distinct read index.137

The OneSampleCanonicalSimulationStrategy was used for semi-simulation, which considers sites138

canonical when the germline site has up to two alleles with more than 90% of bases. The plugin was139

configured to randomly sample 10% of sites across the genome to yield a semi-simulated training set with140

23,483,379 genomic sites. This set was randomly split into a training set with 21,137,888 sites, a validation141

set with 1,172,049 and a test set with 1,173,442 sites. The normal sample was marked as germline and142

the tumor sample was marked as somatic (where mutations will be planted by semi-simulation).143

Feature Mapper144

The feature mapper used in this work extends that presented in Torracinta et al. [2016] and maps145

information about the genomic context of a site (10 bases before and after are one-hot encoded),146

the density of insert sizes, read quality and mapping qualities at the site. We used implementation147

org.campagnelab.dl.somatic.mappers.FeatureMapperV25 (see Campagne and Torracinta [2016])148

Training with Semi-Simulation149

Learning rate was set to 5 and training performed with the Adagrad optimizer, which decreases learning150

rate for each parameter independently during training. Other hyper-parameters for the model were151

searched with the search-hyper-params.sh tool in the variationaanalysis project (release 1.1+) to determine152

the dropout rate and regularization rate that maximizes AUC on the first 10,000 sites of the validation set153

(training models with the first 10,000 sites of the training set). The same model architecture as presented154

in Torracinta et al. [2016] was used for training models in this continuation. Training with the full training155

set was performed on an NVIDIA GPU GTX 1080 with early stopping, using this command line:156

train-somatic.sh 10g -t RRRELWX-mutated-randomized-training.sbi157

-v RRRELWX-mutated-randomized-validation.sbi158

--learning-rate 5159

--net-architecture org.campagnelab.dl.somatic.learning.architecture.\160

graphs.SixDenseLayersNarrower2WithFrequencyAndBase161

--mini-batch-size 512162

--feature-mapper org.campagnelab.dl.somatic.mappers.FeatureMapperV25163

-x 10000164

--validate-every 1165

--regularization-rate 0.01166

--dropout-rate 0.9167

Hyper-parameters searches168

Models with various hyper-parameters were produced with the search-hyper-params.sh tool provided169

in version 1.1.1 of the variationanalysis project (Campagne and Torracinta [2016]). For instance, for170

Figure 2, the following commands generated 100 models with different learning rate:171

search-hyper-params.sh 100 train-somatic.sh 20g172

-t RRRELWX-mutated-randomized-training.sbi173

-v RRRELWX-mutated-randomized-validation.sbi174

--net-architecture org.campagnelab.dl.somatic.learning.architecture.\175

graphs.SixDenseLayersNarrower2WithFrequencyAndBase176

--mini-batch-size 512177

--experimental-condition WithFreqBase178

--feature-mapper org.campagnelab.dl.somatic.mappers.FeatureMapperV25179

-x 10000180

--max-epochs 50181

-n ::: 1000 10000 50000 100000 :::182
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Gold Standard Data Set183

A Gold Standard dataset was constructed with the GobyWeb SBI plugin and the GoldSet annotations184

(SNV and indels) to yield a dataset with 79,637 genomic sites of which about 1405 sites are annotated as185

mutated and are true mutations in the ICGC gold set (supplementary table to Alioto et al. [2015]).186

AUC estimations187

AUC, or Area Under the Receiver Operating Curve (ROC), was estimated by the exact method, by188

calculating the number of pairs of positive and negative examples where the positive example scores189

higher than the negative, and dividing by the number of pairs. Standard error of the AUC was estimated190

with the method of Hanley and McNeil [1982]. 95% Confidence intervals were derived by adding191

and substracting 2.96 times the standard error to the AUC estimate. This calculation is implemented192

by the variationanalysis predict.sh tool. When evaluating performance for several models, I used the193

predict-all.sh tool of variation analysis. For instance, to estimate AUC of models shown in Figure 2, the194

following command was used:195

predict-all.sh gold-predictions-tobases.sbi196

The previous command scans the models defined in the model-conditions.txt file and evaluates the197

performance of each model again the dataset provided in argument.198
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