
Slice-sampled Bayesian PRF mapping

Silvan C. Quax1, Thomas C. van Koppen1,2, Pasi Jylänki1, Serge
O. Dumoulin2, and Marcel A.J. van Gerven1

1Donders Institute for Brain, Cognition and Behaviour,Radboud University,
Nijmegen, The Netherlands

2Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The
Netherlands

Abstract

Functional magnetic resonance imaging (FMRI) allows to non-invasively
measure human brain activity at the millimeter scale. As such, it is widely
used in computational neuroimaging studies that aim to build models to
predict stimulus-induced neural responses in visual cortex. A popular
method is population receptive field (PRF) mapping, which is able to
characterize responses to a large range of stimuli. For each voxel, the
PRF method estimates the best fitting receptive field properties (such
as location and size in the visual field) using a coarse-to-fine approach
which minimizes, but not eliminates, the risk of returning a local mini-
mum. Here, we provide a Bayesian approach to the PRF method based on
the slice sampler. Using this approach, we provide estimates of receptive
field properties while at the same time being able to quantify their uncer-
tainty. We test the performance of conventional and Bayesian approaches
on simulated and empirical data.

1 Introduction

In visual neuroscience, the investigation of receptive field properties has been
one of the major advancements in understanding the visual system. Conven-
tionally, the term receptive field has been used to describe the region of visual
space that, when illuminated, would trigger a response in a retinal neuron [1]. In
modern usage, the term receptive field can be used in recording sites along the
entire visual pathway, and has been expanded to include stimulus features such
as orientation, motion, direction, and color. Early electrophysiological studies
in monkeys have found an orderly structure in which input from the retina is
mapped onto the early visual cortex [2, 3, 4]. This structure respects topol-
ogy, in a way that neighboring locations in the visual field are nearby in the
primary visual cortex (V1). Furthermore, it was found that the entire visual
field is represented multiple times throughout the visual cortex, corresponding
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to different visual areas [5, 6]. Receptive field properties (i.e., location of the
receptive field) provide a way to construct the preferred positions in the visual
field of each recording site, from which visual field maps can be constructed.
Furthermore, by creating a model for the receptive field, one can predict neural
responses to different stimuli. Recording techniques that are used in investigat-
ing human receptive field properties often take the responses of many neurons.
In creating receptive field models at this scale, one refers to the model as a
population receptive field (PRF) model as it measures the pooled response from
several million neurons [7].

In humans, functional magnetic resonance imaging (FMRI) provides an ex-
cellent instrument to measure brain activity as a response to visual stimuli, and
is often used in visual field mapping. Conventional visual field maps are ob-
tained by phase encoded methods that estimates a single location in the visual
field that, when stimulated, evokes the largest blood oxygenated level dependent
(BOLD) response in the visual cortex [8, 6]. However, several studies quantified
a range of possible locations that effectively activated a voxel in the early visual
cortex [9, 10]. This formed the foundation for a framework to non-invasively
estimate PRF properties for FMRI that was introduced by Dumoulin and Wan-
dell [11]. The PRF method provides a model for the receptive field of a voxel
in the visual cortex and a way to estimate receptive field properties (i.e. loca-
tion, size). By modeling receptive fields, the method by Dumoulin and Wandell
provides a way to compare modeled properties obtained by different recording
instruments, as they are expressed in units of visual space (i.e. degree visual an-
gle) as opposed to instrument-specific units (e.g., BOLD, FMRI; voltage, LFP).
Additionally, this method is able to estimate PRF properties using a wide range
of visual stimuli, as opposed to the widely used moving wedge and contracting
ring stimuli in phase-encoded retinotopic mapping.

The standard PRF approach uses a binary representation for the stimulus
aperture and combines this with a model for the population receptive field.
Often this receptive field model is taken to be a symmetric two-dimensional
Gaussian, but many extensions have already been made to allow for more com-
plex models that include surround suppression or use asymmetric shapes [12].
The PRF model is estimated on a voxel-by-voxel basis using a two-stage ap-
proach which consists of a coarse stage and a fine stage, where the best fitting
model parameters are fitted by minimizing the residual sum of squares (RSS).
In the coarse stage a grid of roughly 100.000 plausible combinations of PRF
parameters (location: x0, y0 and width: φ), are used to create predictions. The
coarse stage is done on a smoothed cortical surface, as this imposes a spa-
tial correlation between neighboring voxels. The fine stage uses voxels from
the coarse stage to fine-tune the model parameters on a non-smoothed surface.
This method increases processing time, but maximizes the likelihood of finding
a global minimum. For each voxel, the method effectively provides the best set
of PRF parameters from the data.

Here, we develop a Bayesian inference approach for the PRF method which
provides us with underlying distributions for each model parameter, and gives
us information on how certain we are of each parameter’s estimate. The un-
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derlying distributions add a new way of assessing data. For instance, we can
investigate how this distribution behaves under different task conditions. It
has been shown that receptive fields are not rigid over time, but can change
due to attention effects or task demands [13]. This new method enables us to
quantify how variable our underlying receptive field is by the uncertainty of the
posterior estimate. Additionally, we can express our beliefs in the distribution
of model parameters by defining (informative) priors based on knowledge about
the distribution of receptive field densities and sizes [14, 11]. By incorporating
priors, we make the method more robust when using less data, or under noisy
observations. To test our Bayesian PRF framework, we use simulated data to
test for performance compared to the PRF method. We evaluate our model on
fMRI data to retrieve empirical PRF maps.

2 Methods and Materials

2.1 Population receptive field model

Here we describe the PRF method as a starting point to define our Bayesian
model, for a more detailed explanation of the PRF method we refer the reader
to the paper by Dumoulin and Wandell [11].

The PRF model assumes that the voxel response to a stimulus can be accu-
rately described in terms of a receptive field parameterized by a set of parameters
θ. In case of the two-dimensional Gaussian PRF model, which we describe here,
these parameters are center location m = (mx,my), and width (or standard de-
viation of the Gaussian) φ. The goal in PRF modeling is to fit the best set of
parameters by minimizing the residual sum of squares between prediction and
data.

The stimulus at time t is described by a function s(x, t) that marks the
stimulus intensity in the visual field at position x = (x, y) (in degrees of visual
angle).

Let gθ(x) denote a response function parameterized by θ characterizing how
a voxel responds to a point stimulus at location x. The neuronal population
response r(t) is given by the product between the stimulus and the receptive
field

r(t) =
N∑
n=1

s(xn, t)gθ(xn) (1)

when summing over all N possible locations (pixels). We can more conveniently
write the responses at all time points tk with 1 ≤ k ≤ T , in matrix notation as

r = Sg (2)

where S is a T × N matrix such that skn = s(xn, tk) and g is a N × 1 vector
such that gn = gθ(xn).

The neuronal response is indirectly measured at times uk with 1 ≤ k ≤ M .
Within a neuroimaging setting, these measurements depend on a convolution
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of the neural response with a hemodynamic response function (HRF) h(t). The
predicted response is thus given by:

p(t) = r(t) ∗ h(t) =
T∑
k=1

r(tk)h(t− tk) . (3)

This can be written in matrix notation for all M measurement times as

p = Hr = HSg (4)

where

H =



h1 0 . . . 0 0

h2 h1 . . .
...

...
h3 h2 . . . 0 0
... h3 . . . h1 0

hm−1

... . . . h2 h1

hm hm−1

...
... h2

0 hm . . . hm−2

...
0 0 . . . hm−1 hm−2

...
...

... hm hm−1

0 0 0 . . . hm



(5)

is the M × T convolution (Toeplitz) matrix.
We express the measured BOLD timeseries in one voxel as

y = βp + ε (6)

where β is a scaling factor and εt ∼ N (0, σ2) is Gaussian white (measurement)
noise.

The model is completed by choosing a particular functional form for the
response function which characterizes a neuron’s receptive field. Here, for con-
venience, we assume that it is given by a Gaussian function

gθ(x) = exp

(
− 1

2φ2
‖x−m‖22

)
(7)

with parameters θ = (m, φ2), where m = (mx,my) is the center of the receptive
field and φ2 is the size of the receptive field. Using these definitions we can write
down the likelihood function

p(y | S,H,ψ, β) = N (βp, σ2IT ) (8)

where we used ψ = (θ, σ2).
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2.2 Bayesian estimation of population receptive fields

In a Bayesian setting, the goal is to compute the posterior density for the pa-
rameters of interest ψ given the stimuli S, the HRF H, and the observed data
y. In order to write down this posterior, we require the likelihood (8) as well as
suitable priors on the parameters. These terms may in turn depend on suitably
chosen hyper-parameters (given by ξ). In the appendix we define the required
priors, which can be uninformed or chosen based on physiological knowledge.

For our purposes, we are not interested in β, as it is simply a scaling factor
that contains no information for our receptive field model. Therefore, we in-
terpret the scaling factor as a nuisance parameter, and we can integrate it out
after we approximate our posterior distribution (see below). Using our apriori
assumptions for the scaling factor β and noise ε we note that our noise and
scaling factor are both drawn from a Gaussian. Using Equation (6) and invok-
ing properties of multivariate Gaussian distributions we can write the likelihood
function (8) as:

p(y | S,ψ, µβ , ν2β) = N (µβp,pν2βpᵀ + σ2IT ) . (9)

2.2.1 Approximate inference

To find the distributions for our model parameters, we would like to compute
the posterior:

p(ψ | y,S,H, ξ) =
p(y | S,H,ψ, ξ)p(ψ | ξ)

p(y | S,H, ξ)

which follows from Bayes’ rule. The left hand side of this equation, the posterior,
is the probability of our parameters after observing our data. The right hand
side numerator is given by a product of the likelihood, which is the probability
of observing the data given the parameters, and the parameter priors, which
expresses our beliefs in the model parameters before observing. The right hand
side denominator is the marginal likelihood and is a normalizing constant that
involves a multidimensional integral, which is often costly to compute.

We approximate the posterior using a Markov chain Monte Carlo (MCMC)
approach, which draws samples ψt from the posterior, where ψt depends on
the previously drawn sample ψt−1. MCMC does not require evaluation of the
normalizing constant p(y | S,H, ξ) =

∫
p(y,ψ | S,H, ξ) dψ. If we take enough

samples using our MCMC method, we approximate the distribution well enough
to avoid computing the marginal likelihood. For our priors we assume indepen-
dence between parameters. This allows us to write the prior as a product of
individual beliefs in our parameters:

p(ψ | ξ) = p(m | ξ)p(φ2 | ξ)p(σ2 | ξ)

For our MCMC method, we use the slice sampler [15] to generate draws from
the posterior. This method allows us to approximate the posterior without hav-
ing to solve the integral, even if we add more parameters. To prevent numerical

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2016. ; https://doi.org/10.1101/093724doi: bioRxiv preprint 

https://doi.org/10.1101/093724
http://creativecommons.org/licenses/by/4.0/


issues, and to increase the speed of drawing samples, sampling proceeds in the
log domain (see Appendix A for a derivation of the required log joint PDF).

2.3 Simulation

To validate the Bayesian PRF model, we compare the model as well as the
original PRF fitting procedure by Dumoulin and Wandell [11] against ground
truth by using simulations. The simulations were generated using the Gaussian
PRF model defined before, which both analysis techniques assume as the ground
truth model in this case. Validation of both models was done by testing the
efficiency and accuracy with which the parameters of the ground truth model
were recovered.

We test this model on data simulated using the standard moving bar stimuli
and an HRF that was obtained from data from one subject in a prior exper-
iment. The bar stimuli consisted of a bar (of width 1.56 degree visual angle)
spanning over the entire stimulus window (radius 6.25) moving in four orienta-
tions (0◦, 45◦, 90◦, and 135◦) for two different motion directions, giving a total
of 8 different bar passes. Additionally, 4 mean luminance (blank) periods were
inserted, giving a total of 12 periods (8 bar passes/4 blanks), each lasting 20
frames of 1.5 seconds. For each voxel, we generate two-dimensional symmet-
ric Gaussian RFs using some m and φ. To generate the data we multiplied the
known RFs with stimulus aperture at each time and convolved them with a fixed
HRF. We chose the combinations of RF parameters (centers,between -1.00 and
1.00 degree visual angle; spread, between 0.25 and 1.50 degree visual angle) so
that 99.98 percent of the receptive fields would stay within the stimulus window
(-6.25 to 6.25 degree visual angle) to minimize issues that might arise due to
boundary effects [16]. We chose the scaling factor β to be 1, and generated 1280
voxels with added random white noise with increasing amplitude σJ to create
the training set. The noise amplitude corresponded with a signal-to-noise (SNR)
ratio as given by:

SNR =

√
Ps
PN

=

√
1
T

∫ T
0
p(t)2dt

σ2
J

(10)

We repeated this process with the same parameters to create the test set. For
both the Bayesian PRF model and the conventional PRF we assumed a known
HRF and provided the HRF that was used in generating the data. Figure 1
shows the simulated timeseries of a voxel with an RF centered at m = [0.17, 0.57]
with φ = 1.24.

We tested for convergence using the convergence statistic described in Ap-
pendix B. For each voxel we ran four chains to test for convergence. As starting
points for our slice sampler we choose random initial values for each chain for
m (between -8 and 8 deg), φ (between 0 and 8 deg), σ2 (between 0 and 2 times
the variance in the timeseries).
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Figure 1: Simulated BOLD response of a voxel centered at m = [0.17, 0.57]
with φ = 1.24 (A). Coresponding receptive field (B). The stimulus aperture
sequence included 8 bar passes and 4 blanks (C).

2.4 Empirical data

To see how our model performs on real neuroimaging data we tested our model
on a previously obtained FMRI data set [12]. This data set consisted of ∼160000
voxels in the posterior half of the brain of a single subject. The stimuli used
were the same moving bars as in the simulations. This resulted in 240 time
points of data per voxel. The FMRI data provided ROIs that were drawn on a
gray/white segmented (inflated) cortical surface from estimates obtained with
the PRF method. Additionally, the data provided a HRF that was obtained
during the study. For the Bayesian model, we had to follow the preprocessing
steps (e.g., detrending, percent-bold-conversion) used in the PRF method as
described in [11]. Furthermore, we ran the Bayesian model with non-informative
priors on location and PRF size. Since the data consisted of 12 scans of the
same stimuli, we could divide the data into a training set and a test set. This
enabled us to validate our estimated models predictions against the test set.
We ran our estimation analysis with an uninformed (flat) prior as well as with
a weakly informed prior. Initial tests with a strong prior turned out to bias
the estimation to strongly. The weakly informed prior consisted of a normal
distribution N (µ = 0, σ = 8) over the center of the receptive field, a lognormal
distribution LogNormal(µ = 3, σ = 1.8) over the receptive field size and a
lognormal distribution LogNormal(µ = 3, σ = 1.3) on the noise.

2.5 Choosing priors

In our simulation study we have used uninformative priors. For real data, we
also looked at the influence of an informative prior. These priors are based
on previous literature concerning general relationships of receptive fields in the
human brain.
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Prior: location For the location parameter m, we assume independent nor-
mal distributions for the x and y directions:

mx | µx, ν2x ∼ N (µx, ν
2
x)

my | µy, ν2y ∼ N (µy, ν
2
y)

In choosing the parameters µx, ν2x, µy, and ν2y we use literature on the cortical
magnification factor (CMF). The CMF is a measure of neuronal organization
in the visual cortex and is defined as the cortical surface distance between two
points with visual field position spaced 1◦ apart [2]. We can use the CMF to
construct our prior on location, as the CMF is a measure of how many neurons
are ’dedicated’ to a part in the visual field, assuming a constant neuron density
within different areas of visual cortex [17]. A higher CMF means that more
neurons are selective to that part in the visual field. In other words, we can
think of the CMF as corresponding to the PRF density over the visual field.
Several studies have investigated the properties of the CMF in humans using
FMRI [14, 18].

For the primary visual cortex (V1), studies show a linear relationship be-
tween inverse cortical magnification factor M−1 and eccentricity, as described
by fitting the following equation:

M−1 = aE + b (11)

where E is eccentricity, and a and b are fitting parameters. Duncan & Boyn-
ton [14] found a linear relationship between the inverse magnification factor and
eccentricity:

M−1 = 0.065E + 0.054 . (12)

Using this linear relation for M−1 we can identify a suitable prior for location
parameter m, using M (i.e., the PRF density) as our measure for the probability
density function. We use this to estimate the variance ν2 for our prior on
location according to a zero mean normal distribution.

mx | µx, ν2x ∼ N (µx = 0, ν2x = 10.092)

my | µy, ν2y ∼ N (µy = 0, ν2y = 10.092)

Prior: Receptive field size Similarly, we would like to construct a prior for
the receptive field size φ2. As we expect more smaller receptive fields due to
over representation of foveal locations, we suggest a candidate function being a
log-normal distribution given by:

φ | µφ, ν2φ ∼ LogNormal(µφ, ν
2
φ) . (13)

To obtain values for the hyperparameters µφ and ν2φ for the prior on location,
we look at two known linear relationships. The first is the linear relationship
between the CMF and eccentricity as described above. The second is the rela-
tionship between PRF size and eccentricity. Linear fits to data for visual field
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maps in V1-V3 have been found [11] . Using this data we can obtain a linear
relationship for V1, taken from the average of the three areas:

φ = 0.069E + 0.24 . (14)

We can now combine this relationship with the relationship of the CMF with
eccentricity by the PRF size.

If we now use the linear relationship between φ and eccentricity we can fit
our log-normal distribution. We obtain the following prior:

φ | µφ, ν2φ ∼ LogNormal(µφ = 2.86, ν2φ = 0.642) . (15)

By using the M-scaling as a basis for the priors on location and φ, we do vio-
late the conditional independence requirement for our priors, that enables the
factorization of our posterior. Additionally, we should note that both the CMF-
eccentricity and the PRF size-eccentricity relationships vary for each visual area.
Ideally, one would have to obtain different relationships for these areas to con-
struct priors for each visual area. Additionally, one would have to define the
areas by obtaining initial PRF estimates by running a non-informative approach.

3 Results

3.1 Simulation

To test how our model behaves we ran several simulations. Since our method
is able to quantify the uncertainty in the estimation of our parameters it is
interesting to see how this uncertainty changes with noise in the simulated
data. Here we show the sampled marginal distributions after 600 iterations
(taking only the last 400 iterations) for voxels under three different noise levels.
Additionally, we show the model predictions for both the Bayesian and the
conventional PRF method. Our potential scale reduction factor converged to 1
within 600 samples for the data set.

In Figure 2, we show a sampled distribution for a voxel with a high signal-
to-noise ratio (SNR=9.35). For this voxel, the Bayesian estimates lie closer to
the ground truth values than the conventional estimates for both location and
PRF size. The distributions are highly confined in parameter space (as shown
by the interval range on the horizontal axis), showing that we are certain of
our estimates. The predicted timeseries from both the conventional and the
Bayesian method are similar for these noise levels.

Figure 3 shows the results for a voxel with a more realistic signal-to-noise
ratio (SNR=1.71). Here we see that the distributions are wider than the low
noise condition, showing we are less certain of our estimates. For this voxel, we
see that the y0 estimate from the PRF method is closer to ground truth than the
Bayesian method. The estimates for x0 and φ are slightly closer to ground truth
for the Bayesian method. Again, the predicted time series for both methods are
very similar.
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Figure 2: The sampled probability densities (of which the last 400 are shown)
of slice sampling for a single voxel under low noise conditions (SNR=9.35) are
shown in panel A. Green indicates simulation (true) values, red indicates PRF
estimates, and blue indicates median estimates using the Bayesian method. For
this voxel, the Bayesian estimates lie closer to the simulation values for both
location and PRF size. Panel B shows the resulting predicted timeseries, where
the simulated data is shown in green. No clear differences in predictions between
the Bayesian (blue) and the PRF method (red) can be seen, as they overlap.

Figure 4 shows the results for a voxel with a very low signal-to-noise ratio
(SNR=0.17) to illustrate what happens under highly noisy conditions. Here
we can see that the distributions span over the entire slice sampler window,
indicating that we are completely uncertain of our parameter estimates. No
information is conveyed by both the conventional and the Bayesian model. We
should note that the relative proximity of the ground truth values and the
PRF estimates for the location parameter x0 and y0 do not signify a better fit.
Instead, they are the result of our location parameter ground truth values chosen
at center locations (between -1 and 1 degree visual angle), and the conventional
method defaulting near these values when no suitable fit can be found in the
grid fid stage.

Figure 5 shows the performance of the conventional and the Bayesian ap-
proach on the test set. Predictions that explained less than .15 (the lower
threshold in many PRF experiments) of the variance in the test set were omit-
ted, resulting in N=1074 for the Bayesian method and N=1068 for the conven-
tional method. The first panel (A) shows the performance in estimating the
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RF center position by the conventional (red) and the Bayesian method (blue).
Here, the Bayesian model performed better in retrieving ground truth location
estimates for all noise levels in the test set. Panel B shows the absolute error
in RF size with increasing noise levels. Similarly, the Bayesian model outper-
formed the conventional method in retrieving PRF size for all noise levels. Panel
C shows the explained variance of the predictions on the test set, with an upper
bound of .15 explained variance. The explained variance did not show significant
differences between the Bayesian and the conventional method.

3.2 Empirical data

To validate our analysis technique we used previously obtained data (see Meth-
ods) [12]. We checked whether we can obtain PRF maps similar to other tech-
niques. For illustration purposes, we show a voxel in V1 that contained a signal
with a reasonable SNR. Figure 6 shows the resulting distributions and prediction
for both the median Bayesian estimate (blue), and the conventional estimate
(red). For this voxel, both methods provide similar estimates for the location
parameters, and differ slightly in PRF size estimates.

To see whether our model retrieves PRF maps similar to [11] we ran our

Figure 3: The sampled probability densities for a voxel under realistic noise
conditions (SNR=1.71). For each parameter, we see the probability densities
span a larger portion of parameter space, showing that we are less certain of our
estimates compared to the low noise condition. The predicted timeseries show
no clear differences in predictions between the Bayesian and the PRF method.
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Figure 4: The sampled probability densities for a voxel under high noise con-
ditions (SNR=0.17) that was taken from a different data set. Under these
conditions, the distributions span over the entire slice sampler window. The
predicted time series clearly differ, but both convey no information on the data.

Figure 5: Performance of the PRF and BPRF methods on the test set (N=1280
voxels, after thresholding N=1074 for BPRF; N=1068 for PRF). Panel A shows
the error in absolute distance between simulated RF centers and RF centers
obtained by the Bayesian (blue) and PRF (red) with increasing noise levels (in-
verse of the signal-to-noise ratio (SNR). Panel B shows the absolute error in RF
size (φ). Panel C shows the explained variance on the test set by the prediction
with RF properties estimated in the training set. The upper bound for the
SNR−1 corresponds with 0.15 explained variance, we chose this value as this is
the usual lower threshold to include voxels during in-vivo PRF experiments.
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Figure 6: Example run on a voxel from real data obtained from an experiment.
A shows the sampled distributions after 600 samples for x0, y0 and φ. Red
shows PRF estimates and blue shows median Bayesian estimates. B shows the
predicted response, here the data (converted to percent BOLD and detrended)
is shown in green.

analysis on all 164912 voxels. Initially we used an uninformed prior to see how
our model performed without any prior knowledge. Our sampling method takes
on average ∼ 30 seconds to estimate the parameters of a single voxel, though
this can vary greatly depending on noise level and how well our model fits the
data. Luckily every voxel is estimated independently so we can run multiple
sampling chains in parallel. Using 50 nodes on a computing cluster this resulted
in ∼6 hours needed to estimate PRF parameters for one subject.

The results of our PRF map estimation are shown in Figure 7. The eccen-
tricity, receptive field size and polar angle are shown for voxels with an explained
variance above 0.15. Because we now also have a measure of the uncertainty
of our estimations we can make uncertainty maps for the different estimated
parameters for all voxels (Figure 8).

Results show clearly that our estimates are better for early visual areas,
while becoming worse when we move towards more anterior parts of the brain.
The estimates of the measurement noise do not show this difference (Figure 9),
which indicates that the Gaussian PRF model is a good model for activities
in early visual cortex, but not for activity in higher visual and parietal cortex,
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A

B

C

Figure 7: Maps of PRFs in the cortex as estimated by our Bayesian approach.
From top to bottom: eccentricity, PRF size, polar angle.
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A

B

C

Figure 8: Uncertainty maps of PRFs in the cortex as estimated by our Bayesian
approach. From top to bottom: eccentricity, PRF size, polar angle.
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consistent with previous findings [11] . The pattern of noise estimates seems to
follow the gyri of the brain, which indicates that there might be a physiological
feature of folds in the cortex influencing noise levels of voxels.

Figure 9: Noise estimation for every voxel

We compared how much variance our Bayesian estimation explained to the
grid search approach and found comparable but slightly lower explained vari-
ance with our method (Figure 10). When using a weakly informed prior (see
Methods) the explained variance increased slightly, demonstrating that carefully
choosing priors could improve our method’s performance.
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Figure 10: Explained variance for original grid search PRF method and Bayesian
PRF method without prior and weak prior.
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4 Discussion

4.1 Improved parameter estimation

Our simulation results show that the Bayesian approach can outperform the
conventional PRF method at retrieving the model parameter values that were
used in creating our simulated data. On the empirical data our model performed
slightly worse then the original grid-search PRF method, but our method pro-
vides the added benefit of estimating the full posterior distribution.

4.2 Benefits of posterior distribution

A major improvement over the conventional method is that the Bayesian PRF
approach adds a measure of uncertainty to each parameter estimate by provid-
ing the marginal distributions. First, this allows for direct assessment of how
well a model parameter has converged to a single value (even when running
a single chain). Indeed, by looking at the variance within each parameters’
marginal distribution we can assess the quality of the data. The method also
provides an estimate of the noise level, as we sample σ directly using the slice
sampler. Secondly, by providing the distribution, this method is able to find
interesting information within the distributions. Using the Bayesian approach,
one can look at how these distributions behave under different task conditions.
For example, interesting attentional effects have been found that imply dynam-
ics in receptive field properties [13, 19]. The distributions might be useful in
studying these effects. Furthermore, we can now obtain multimodal marginal
distributions. For example, one can imagine a voxel for which two sets of model
parameters are equally likely to describe the data. Assuming these parameter
values are different for at least one parameter, these would appear as a bimodal
distribution in the marginal distributions. Using the conventional PRF method,
an underlying bimodal distribution would go unnoticed, as only the best fit in
the coarse stage will proceed as a starting point for the fine fit stage.
The Bayesian framework for PRF estimation provides a starting point for future
studies. Here we would like to discuss several extensions that can be made to
make the framework more versatile.

4.3 Choosing priors

In our study we have looked at uninformative as well as informative priors on
the parameters of our model. Our weakly informative prior performed slightly
better than the uninformative prior. Experiments with strong priors led to
heavily biased results that became uninterpretable. Since our priors were based
on average relationships over all visual areas, there is significant room of im-
provement by using area-specific priors. It might also be beneficial to move
from an independent prior on receptive field size and position to a combined
prior, expressing the relationship between both parameters. Receptive fields
near the fovea will then have a higher chance of having small receptive fields
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where receptive fields in the periphery will have a higher chance of having large
receptive fields.

An important extension to the simulation study would be to investigate the
effects of boundary conditions on the resulting distributions. Boundary condi-
tions arise when a major part of the population receptive field lies outside the
stimulus aperture (the outer radius of the circular stimulus). Due to technical
limitations, often the field of view in a MRI scanner is limited to a few degrees
of visual angle. As a result, large parts of the receptive field will lie outside
this range and only a portion of the receptive field will be used in informing the
model. The simulation study could therefore be expanded to analyze effects on
the marginal distribution for the parameters on location and size under such
boundary conditions. In our simulations we used a stimulus aperture radius
of 6.25 degrees visual angle. Therefore, one could look at the performance of
retrieving PRF properties for voxels with eccentricities around or exceeding this
radius.

4.4 Different kernels

Another extension to the Bayesian model would be to use different PRF kernels
(i.e. the model for the receptive field). The kernel we used in this simulation
study is the two-dimensonal symmetric Gaussian (Equation 7). However, using
the conventional PRF method, several kernels have been used [12]. For exam-
ple, one widely used alternative kernel is the circular symmetric difference-of-
Gaussian (DoG), that accounts for surround suppression by modeling a positive
center and a negative surround. This and other kinds of kernels can easily be
incorporated in the Bayesian framework

4.5 Including HRF estimation

In our current approach we used a canonical HRF to map neural activity to
BOLD responses. Although the canonical HRF is widely used in FMRI re-
search, there is mounting evidence that the HRF various significantly across
voxels [20]. An elegant and likely beneficial extension of the current approach
would be to include the estimation of the HRF parameters in the sampling pro-
cedure. In addition to our PRF parameters, we can use the data to sample
hyperparameters for a parametrized HRF. A widely used parametrization for
the canonical HRF is a linear combination of two Gamma functions [21]. Us-
ing the Bayesian approach, we can sample the HRF parameters using the slice
sampler.

5 Conclusion

In conclusion, the Bayesian PRF approach described here provides a new way
of estimating PRF properties that builds on the conventional PRF method.
The Bayesian method is able to quantify the joint distribution using data and
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beliefs in parameter behavior from earlier studies, effectively adding a measure
of uncertainty to each parameter estimate. Simulations have shown an increased
performance of the non-informed Bayesian compared to the conventional PRF
method. On empirical data further improvement can be expected by choosing
priors more carefully and dealing with boundary effects. The added benefits of
our methods will provide a useful tool in unraveling the properties of population
receptive fields.
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A Computing the log joint probability density

The log joint PDF of interest is:

log p(y,θ | H,S,φ, ξ) = log p(y | S,ψ,φ) + log p(mx) + log p(my)

+ log p(log φ2) + log p(log σ2) (16)

The log PDF of y is given by

log p(y | S,ψ,φ) = logN (µβp,pν2βpᵀ + σ2IT )

= −T
2

log(2π)− 1

2
yᵀ(K + σ2IT )−1y

−1

2
log(|K + σ2I|) (17)

where we used K = pν2βpᵀ. To avoid inversion of a TxT matrix we rewrite:

yᵀ(K + σ2IT )−1y =
1

σ2
(yᵀy − yᵀp(σ2ν−2

β + pᵀp)−1pᵀy) . (18)

For the determinant we write:

log |pν2βpᵀ + σ2I| = log (|ν2β |(σ2)T |ν−2
β + pᵀpσ−2|)

= log(ν2β) + T log σ2 + log(ν−2
β + pᵀpσ−2)

(19)

Plugging these into Equation (17) gives:

p(y | S,ψ,φ) =− T

2
log(2π)− 1

2σ2

(
yᵀy − bᵀ

(
σ2

ν2β
+ s

)−1

b

)
− 1

2
log(ν2β)− T

2
log(σ2)− 1

2
log
(
ν−2
β +

s

σ2

) (20)

with b = pᵀy, and s = pᵀp.
If we consider the priors on location parameters to be normally distributed

then we have

log p(mx) = logN (mx;µx, ν
2
x)

= −1

2
log 2π − log νx − (mx − µx)2/2ν2x .

Analogously, we have

log p(my) = −1

2
log 2π − log νy − (my − µy)2/2ν2y .

For the kernel width, we have

log p(φ2) = log LogNormal(φ2;µφ, ν
2
φ)

= log
1√

2πν2φ

exp

(
− (log φ2 − µφ)2

2ν2φ

)

= −1

2
log 2π − log νφ −

(2 log φ− µφ)2

2ν2φ
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Analogously, a prior on noise could be:

log p(σ2) = −1

2
log 2σ − log νσ −

(2 log σ − µσ)2

2ν2σ

By plugging in the equations while ignoring irrelevant constants, the log
joint PDF is proportional to:

L(H,S,φ) = −T log(2π)− σ−2

(
yᵀy − bᵀ

(
σ2

ν2β
+ s

)−1

b

)
− log(ν2β)− T log(σ2)− log

(
ν−2
β +

s

σ2

)
−1

2
log ν2x −

1

2ν2x
(mx − µx)2

−1

2
log ν2y −

1

2ν2y
(my − µy)2

−1

2
log ν2φ −

1

2ν2φ
(2 log φ2 − µφ)2

−1

2
log ν2σ −

1

2ν2σ
(2 log σ2 − µσ)2 (21)

B Assessing convergence of sampling

To check convergence of our sampling approximation we used the potential scale
reduction [22]. By running multiple chains we can check whether our samples
mix and dividing our chains in multiple parts enables us to check stationar-
ity. After splitting we have m chains of length n. For each parameter ψ were
estimating we compute the within- and between-sequence variance (B and W
respectively)

B =
n

m− 1

m∑
j=1

(ψ.j − ψ..)2, where ψ.j =
1

n

n∑
i=1

ψij , ψ.. =
1

m

m∑
j=1

ψ.j

W =
1

m

m∑
j=1

s2j , where s2j =
1

n− 1

n∑
i=1

(ψij − ψ.j)2

(22)
where we label samples as ψij(i = 1, ..., n; j = 1, ...,m). From this we can
estimate the marginal posterior of the estimated parameter

var+(ψ | y) =
n− 1

n
W +

1

n
B. (23)

In the limit of n→∞, var(ψ | y) approaches W . To see how well our estimate
has converged for a certain number of samples n we compute the potential scale
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reduction

R =

√
var+(ψ | y)

W
(24)

which should converge to 1 for n→∞. We computed a number of samples such
that R approached the value of 1 sufficiently.
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