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 30	

 31	

 32	

Abstract 33	

Transcriptional regulatory networks (TRNs) can be developed by computational approaches that 34	

infer regulator-target gene interactions from transcriptional assays.  Successful algorithms that 35	

generate predictive, accurate TRNs enable the identification of regulator-target relationships in 36	

conditions where experimentally determining regulatory interactions is a challenge.  Improving 37	

the ability of TRNs to successfully predict known regulator-target relationships in model species 38	

will enhance confidence in applying these approaches to determine regulator-target interactions 39	

in non-model species where experimental validation is challenging.  Many transcriptional 40	

profiling experiments are performed across multiple time points; therefore we sought to improve 41	

regulator-target predictions by adjusting how time is incorporated into the network.  We created 42	

ExRANGES, which incorporates Expression in a Rate-Normalized GEne Specific manner 43	

that adjusts how expression data is provided to the network algorithm.  We tested this on a two 44	

different network construction approaches and found that ExRANGES prioritizes targets 45	

differently than traditional expression and improves the ability of these networks to accurately 46	

predict known regulator targets.  ExRANGES improved the ability to correctly identify targets of 47	

transcription factors in large data sets in four different model systems: mouse, human, 48	

Arabidopsis, and yeast.  Finally, we examined the performance of ExRANGES on a small data 49	

set from field-grown Oryza sativa and found that it also improved the ability to identify known 50	

targets even with a limited data set.  51	

 52	
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Author Summary 53	

To understand how organisms can turn a collection of genes into a physiological response, we 54	

need to understand how certain genes are turned on and off.  In model organisms, the ability to 55	

identify direct targets of transcription factors via ChIP-Seq in a high-throughput manner has 56	

advanced our understanding of transcriptional regulatory networks and how organisms regulate 57	

gene expression.  However, for non-model organisms, it remains a challenge to identify TF–58	

target relationships through experimental approaches such as ChIP-Seq. Without this 59	

information, the ability to understand regulatory control is limited.  Computational approaches to 60	

identify regulator-target relationships in silico from easily attainable transcriptional data offer a 61	

solution.  Several approaches exist for identifying gene regulatory networks, including many that 62	

take advantage of time series data.  Most of these approaches weigh the relationship between 63	

regulators and putative targets at all time points equally.  However, many regulators may control 64	

a single target in response to different inputs.  In our approach, we focus on the association 65	

between regulators and targets primarily at times when there is a significant change in 66	

expression. ExRANGES essentially weights the expression value of each time point by the slope 67	

change after that time point so that relationships between regulators and targets are emphasized 68	

at the time points when the transcript levels are changing.  This change in input into network 69	

identification algorithms improves the ability to predict regulator-target interactions and could be 70	

applied to many different algorithms We hope this improvement will increase the ability to 71	

identify regulators of interest in non-model species.  72	

 73	

 74	

 75	
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 76	

 77	

Introduction 78	

Transcriptional regulatory networks provide a framework for understanding how signals are 79	

propagated throughout the transcriptome of an organism. These regulatory networks are 80	

biological computational modules that carry out decision-making processes and, in many cases, 81	

determine the ultimate response of an organism to a stimulus [1].  Understanding the regulatory 82	

networks that drive responses of an organism to the environment provide access points to 83	

modulate these responses through breeding or genetic modifications.  The first step in 84	

constructing such networks is to identify the primary relationships between transcription factor 85	

(TF) regulators and the target genes they control. 86	

Experimental approaches such as ChIP-Seq can identify direct targets of transcriptional 87	

regulators.  However, ChIP-Seq must be optimized to each specific TF and specific antibodies 88	

must be used that recognize either the native TF or a tagged version of the protein.  This can 89	

present a technical challenge particularly for TFs where the tag interferes with function, for 90	

species that are not easily transformable, or for tissues that are limited in availability [2].  Since 91	

global transcript levels are comparatively easy to measure in most species and tissues, several 92	

approaches have been developed to identify connections between regulators and their targets by 93	

examining the changes in transcription levels across many samples [3–6].  The assumption of 94	

these approaches is that there is a correspondence between the expression of the regulator gene 95	

and its targets that can be discerned from RNA levels.  Therefore, given sufficient variation in 96	

expression, the targets of a given factor can be predicted based on associated changes in 97	

expression.  Initial approaches focused on the correlation between regulators and targets such 98	
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that activators are positively correlated and repressors are negatively correlated with their target 99	

expression levels.  These approaches have been successful in identifying some relationships [7].  100	

More recent methods improved the ability to identify connections between regulators and targets 101	

even in sparse and noisy data sets [4–6,8–10]. The DREAM5 challenge compared many methods 102	

for their ability to identify transcriptional regulatory networks from gene expression datasets 103	

[11]. One of the top performing methods was GENIE3 [8]. This method identifies targets for 104	

selected regulators by taking advantage of the regressive capabilities of the random forest 105	

machine learning algorithm [12] and [13]. Other successfully implemented approaches include 106	

SVM [3], CLR [6], CSI [14,15], ARACNE [5], Inferelator [4], and DELDBN [9].  Common to 107	

these methods is the use of the transcript abundance levels to evaluate the relationship between a 108	

regulator and its putative targets. However, correlation between expression levels alone may not 109	

utilize all information available in time series data. Many approaches have been developed that 110	

take advantage of the additional information available from time series data [reviewed in [16,17].  111	

Here we present an approach that expands upon these existing algorithms by using the 112	

rate of change between consecutive time points to emphasize the relationships between regulator 113	

and targets at times when expression is significantly changing. We predict that: 1) Focusing on 114	

the rate of change will utilize different characteristics in the data and identify different regulatory 115	

relationships than using the expression values.  2) Combining expression level and the rate of 116	

change will result in improved identification of true regulatory relationships.  117	

We first evaluated the effects of incorporating the rate of change, and developed 118	

RANGES RAte Normalized in a GEne Specific manner to evaluate the significance of the rate 119	

changes at each consecutive time point.  This approach has a similar recall rate to using 120	

expression values alone, but identifies a distinct set of true-positive targets.  We then combined 121	
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the expression and slope change in ExRANGES (Expression by RANGES) to emphasize the 122	

connections between regulators and targets at time points before a significant change in gene 123	

expression. ExRANGES improves the ability to identify experimentally validated TF targets in 124	

microarray and RNA-Seq data sets across multiple experimental designs, and in several different 125	

species.  We demonstrate that this approach improves the identification of experimentally 126	

validated TF targets for GENIE3 [8] and INFERELATOR [4], but anticipate that it will offer a 127	

similar benefit to when combined with other network inference algorithms.  128	

 129	

Results 130	

RANGES Identifies Significant Changes in Rate of Expression  131	

We hypothesized that for experiments measuring RNA levels across multiple time points 132	

incorporating the rate of change between consecutive time points would identify regulator -target 133	

relationships missed by comparing expression values alone. If a gene is changing in expression 134	

at only a few time points across a data series these time points may be more important samples 135	

for considering the relationship between potential regulators of that gene than time points where 136	

the target is expressed at a stable level.  Therefore, we developed an approach that evaluates the 137	

rate of change of target genes across all consecutive time points and weights the change between 138	

each consecutive time point based on the background variance observed across the dataset for 139	

each gene. We predict that this approach focuses the comparison between regulatory factors and 140	

their targets to the time points where the effects of active regulation can be observed based on 141	

changes in RNA levels and will therefore identify regulatory relationships not detected by 142	

comparing expression values alone.  143	
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The first step in incorporating the rate of change into the identification of regulatory 144	

networks is to distinguish significant rate changes from normal variation between time points 145	

caused by sampling or measurement error.  Our method determines the significance of the 146	

change in expression between two consecutive time points on a per gene basis enabling us to 147	

assess the significance of the change at each time step for a given gene.  For each gene, we 148	

quantified the significance of the change in expression at a given time point by estimating a p-149	

value for the change in expression between the consecutive time points under evaluation against 150	

the background of all possible time steps.  The background was constructed from the change in 151	

expression at all consecutive time steps in all samples across all experiments from a given data 152	

set (Fig 1A).  For example, if we consider the mammalian circadian data set available from 153	

CIRCADB [18], the data set consists of time series experiments from 12 different tissues, 154	

sampled every 2 h for 48 h (288 samples).  Therefore, the change in expression levels between 155	

time t and time t +1 can be determined for each consecutive time point.  Since this data is 156	

cyclical, the interval between the last time point and the first time point is also included.  We 157	

defined the background as the change in expression for each consecutive time interval across the 158	

entire time series.  For this data set, the background consists of 288 slopes (12 tissues x 24 time 159	

points) for each gene.  At each time step, t the slope between t and t + 1 was compared to this 160	

background a p-value is estimated.  This was done for each gene and the resulting p-value was 161	

transformed to the negative log 10 and the sign of the change in slope was preserved (R script 162	

provided).  We call this value RANGES (for RAte Normalized in a GEne Specific manner).  The 163	

RANGES value was used in lieu of the expression in generation of a regulatory network using 164	

GENIE3 [8].  We considered 1690 TFs as the regulators [19].  To determine the potential for the 165	

rate of change to identify targets of each TF we compared RANGES to the standard approach of 166	
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using expression values (hereinafter after called EXPRESSION).  For the EXPRESSION 167	

approach, the input into the regression analysis included the expression values across the 288 168	

samples for each of the 1690 TFs as regulators and the expression values of 35,556 genes as 169	

potential targets across the same samples. For the RANGES approach, the –log10 of the p-value 170	

for the significance of each change in time across the 24 time steps was used as the input for both 171	

the 35,556 targets and 1690 regulators.  For both approaches all TFs were also included in the 172	

target list to identify regulatory connections between TFs.  173	

To evaluate the ability of each approach to correctly identify targets of the TFs, we 174	

compared the resulting targets of each TF identified by either the RANGES or EXPRESSION 175	

approach with the targets identified by ChIP-Seq for five TFs involved in circadian regulation 176	

where three replicates of each ChIP-Seq experiment were performed: PER1, CLOCK, NPAS2, 177	

NR1d2, and ARNTL [20,21].  Targets identified by each approach that were considered 178	

significant targets by these published ChIP-Seq experiments were scored as true positive targets 179	

of that TF.  180	

 181	

RANGES and EXPRESSION Values Identify Different Sets of True Positive Targets  182	

We compared the targets identified by using RANGES to those identified using EXPRESSION. 183	

For PER1 both approaches identified true targets more than would be expected by chance (ROC 184	

curve, Fig S1).  EXPRESSION showed a larger area under the ROC curve, indicating higher 185	

accuracy in identifying true positive targets of PER1.  However, there was little overlap in the 186	

top true positive targets identified by each approach (Fig 1B).  Many genes that were scored 187	

strongly by RANGES as PER1 targets, including many true positive targets of PER1, had low 188	

scores when evaluated using the EXPRESSION approach.  Likewise, several of the top scoring 189	
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true positive targets by EXPRESSION had low RANGE scores.  This difference in the targets 190	

identified by each approach, including true positives, was also observed for the other four TFs 191	

we evaluated (Fig S2).  These results indicate that information contained in the relationship 192	

between the rate of change of the TF and target identifies TF-target relationships missed by 193	

analyzing expression levels alone.  194	

 195	

Figure 1: A) Overview of RANGES approach.  For each Genei, the slope is calculated for all possible consecutive changes 

time points.  From this background distribution of changes in expression the significance of each time point change is 

calculated.  The –log10 of the p-value is calculated and the sign change of direction is preserved.  In the RANGES approach, 

this significance value is used as the input into network inference using GENIE3 [8] for both the transcription factor (TF) 

regulators and targets. For the EXPRESSION approach, the expression values at each time point are provided for both the 

regulator and target to GENIE3.  The predictive ability of each approach was compared to the targets experimentally 

identified for each TF by ChIP-Seq. B) Targets identified by RANGES and EXPRESSION approaches show little overlap.  

Scatter plot of targets of PER1 as identified by EXPRESSION or RANGES approaches.  PER1 targets identified with similar 

rank by both approaches are shown in grey. PER1 targets identified as high ranking by RANGES are shown in blue and those 

ranking higher by EXPRESSION are red.  PER1 targets identified by ChIP-Seq [20] are marked as stars.  Genes identified as 

PER1 targets by each approach that were not identified in the ChIP-Seq identified targets are plotted as points.  
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Rate Change Identified Samples with Lower Variation Between Tissues 196	

To understand why some targets are identified by EXPRESSION only and others by RANGES 197	

only we compared the expression of the top predicted PER1 targets for each method (Fig 2A).  198	

We observed that the top hits identified by EXPRESSION showed more variation between each 199	

tissue than in those identified by RANGES. We therefore examined the variance between each 200	

tissue by calculating the variance of the mean expression for each of the 12 tissue samples for the 201	

top 1000 targets for all five of the TFs with ChIP-Seq data available (Fig 2B) [20].  As observed 202	

for the top PER1 targets, the targets identified by EXPRESSION generally showed more 203	

variation between tissues than the targets identified by RANGES.  We also examined the within 204	

tissue variation to evaluate how well each approach identified targets that show a range of 205	

expression throughout the day within each time series (Fig 2C).  The targets identified by 206	

RANGES showed more variation in the time series within each tissue suggesting that this 207	

approach might be more sensitive to changes that are dependent on the rate of expression as we 208	

would expect for this rate-based approach.  To evaluate if the increased variance within each 209	

tissue observed for top TF targets identified by the RANGES approach is limited to circadian 210	

associated TFs, we compared the between tissue and within tissue standard deviation for the top 211	

1000 targets identified by EXPRESSION or RANGES for all 1690 TF regulators (Figs 2D and 212	

E).  As we observed for the circadian TFs, the targets identified by EXPRESSION showed more 213	

variation between tissue types (Fig 2D).  The RANGES approach was able to identify targets 214	

with increased variation within each tissue time series compared to the EXPRESSION approach 215	

(Fig 2E).    216	

We also compared the mean intensity level of the top 1000 predicted targets of the 217	

RANGES and EXPRESSION approaches.  We observed that the top 1000 targets of PER1 218	
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identified by EXPRESSION had higher intensity levels compared to the distribution of 219	

expression of all transcripts on the microarray (Fig S3A).  In contrast, the top 1000 predicted 220	

targets of PER1 identified by RANGES resembled the background distribution of intensity for 221	

all the transcripts on the array (Fig S3B).  Likewise, the hybridization intensity of the genes 222	

identified as the top 1000 targets identified by EXPRESSION of all 1690 TFs considered as 223	

regulators was shifted higher compared to the background distribution levels (Fig S3C).  While 224	

the top 1000 targets of all 1690 TFs identified by RANGES reflected the background distribution 225	

of hybridization intensity (Fig S3D). While hybridization intensity cannot directly be translated 226	

into expression levels, these observations suggest that there are features of the targets identified 227	

by RANGES that are distinct from those identified by EXPRESSION.  We hypothesized that 228	

combining these two approaches would improve the overall ability to detect true positive targets 229	

of each regulator.  230	

 231	

ExRANGES Combines Rate Change with Expression Levels 232	

Since many of the true positive targets of the TFs we evaluated identified by RANGES were not 233	

identified by EXPRESSION and visa versa, we hypothesized that combining these two would 234	

improve the overall ability to predict true positive targets.  To combine these approaches we took 235	

the product of the expression at time point t by the RANGES p-values for the change in 236	

expression from time point t to t+1 for each target (ExRANGES) (Fig 3A).  This adjusts each 237	

time point by the rate of change in the following time interval.  Therefore, the value of the time 238	

point preceding a significant change in expression is higher than the value of a time point when 239	

the following expression remains unchanged.  We anticipate that this will enhance the signal 240	

between the regulator and target for the time points where regulation is occurring, thus 241	
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improving the ability to correctly identify targets of each TF. For the regulators, only the 242	

expression value of the TF was provided.  For all targets, this ExRANGES value was provided to 243	

Figure 2:  A) Top targets for RANGES and EXPRESSION show different expression features.  The expression values of the 

top three targets of PER1 identified by EXPRESSION (left; Pck1, Alb, GAPDH) and RANGES (right; RGS6, Rhpn2, Stx16) 

across the two day time series performed in twelve tissues [18]. The order of the tissues are:  Brainstem, Lung, Kidney, 

Brown fat, White fat, Cerebellum, Hypothalamus, Aorta, Liver, Adrenal gland, Skeletal muscle, and Heart.  Each tissue is 

plotted side by side in different colors.  The points within a tissue represent expression levels every 2 hours over 48 hours.  

PER1 expression is shown in the center for comparison.  B) Targets of the circadian TFs identified by EXPRESSION show 

higher standard deviation in expression levels across all samples than targets identified by RANGES.  The standard deviation 

across all samples for the top 1000 targets of each circadian TF (ARNTL, CLOCK, NPAS, NR1D2, and PER1) identified by 

either the EXPRESSION or RANGES approach.  C) Most circadian TF targets identified by RANGES show higher within 

tissue standard deviation.   The standard deviation across the time series for each individual tissue was calculated for the top 

1000 targets of each circadian TF (Arntl Clock, Npas, Nr1d2, and Per1) identified by either the EXPRESSION or RANGES 

approach.  The mean of these within tissue standard deviations is plotted.  D) EXPRESSION identified TF targets show 

greater variation in expression across all samples.  Box plot showing the standard deviation of the top 1000 targets of all TFs 

identified by either EXPRESSION or RANGES.  E) RANGES identified TF targets show greater within tissue variation.  

The standard deviation was calculated for each time series in each tissue for the top 1000 targets of all TFs identified by 

EXPRESSION or RANGES.  Boxplot showing the mean standard deviation for each tissue for these top targets.   
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GENIE3.  All TFs were also considered as potential targets and the ExRANGES value was used 244	

in the target matrix for all TFs.  245	

Using the identified ChIP-Seq targets as true positives from Koike et al. [20], we 246	

calculated the area under the ROC curve to compare the identification of true targets attained by 247	

EXPRESSION to the combination of expression and p-values using ExRANGES.  We observed 248	

that for all five TFs there was an improvement in the ability to identify ChIP-Seq targets (Fig 249	

3B).   250	

  A modification of GENIE3 uses a time delay to identify transcriptional changes in the 251	

regulator that precedes the effects on the target by a defined time step as incorporation of a delay 252	

between regulator expression and target expression has previously been shown to improve the 253	

ability to identify regulatory networks [22].  We compared our approach to this modified 254	

implementation of GENIE3 that includes the time delay step.  As previously reported, we 255	

observed that the time step delay improved target identification for some transcription factors, 256	

compared to EXPRESSION alone, although in this data set, target identification for CLOCK, 257	

PER1, and NR1D2 TFs did not improve.  However, for all five TFs, ExRANGES outperformed 258	

both the EXPRESSION and time-delay approaches in identifying the true positive targets of each 259	

TF; although for CLOCK, this improvement was very small (Fig 3B).  260	

 261	

The ExRANGES Approach Improves Target Identification for TFs That Are Not 262	

Components of the Circadian Clock  263	

To evaluate the performance of ExRANGES on TFs that are not core components of the 264	

circadian clock, we compared the ability to identify targets of additional TFs validated by ChIP-265	

Seq.  To test ExRANGES performance across tissue types, we selected seven TFs in our 266	
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regulator list that have available ChIP-Seq data from at least two experimental replicates 267	

performed in epithelial cells, a tissue not included in the circadian time series samples.  The 268	

seven TFs that we tested are: ESR1, STAT5A, STAT5B, POL2A, FOXA1, TFAP2A, and CHD4 269	

[23].  We observed improvement of the area under the ROC curve for five of the seven TFs 270	

(ESR1, POL2A, FOXA1, TFAP2A, and CHD4) by combining expression and rate change 271	

information using ExRANGES (Fig 3C).  As we observed above for CLOCK, STAT5A and 272	

STAT5B performed equally well, but did not show significant improvement.  STAT5A and 273	

STAT5B are known to be activated post-transcriptionally perhaps indicating why evaluating the 274	

change in expression of these TFs did not lead to improved identification of targets [24–29].  275	

This suggests that for TFs that show little variation in expression throughout the day in each time 276	

series the addition of the RANGES component may not offer much improvement. (Fig S4). 277	

 278	

ExRANGES Improves Identification of TF Targets in Unevenly Spaced Time Series Data 279	

Although circadian and diel time series experiments are a rich resource providing substantial 280	

variance for identifying regulatory relationships, most available experimental data is not 281	

collected with this design.  Often sample collection cannot be controlled precisely to attain 282	

evenly spaced time points.  For example, in human studies, the subject may not be available for 283	

consistent sampling.  To evaluate the ability of ExRANGES to identify true targets of TFs across 284	

unevenly spaced and heterogeneous genotypes, we analyzed expression studies of viral 285	

infections in various individuals [30,31] using both ExRANGES and EXPRESSION approaches.  286	

This data set consists of a series of blood samples from human patients taken over a seven to 287	

nine day period, depending on the specific study.  Sampling was not evenly spaced between time 288	

points.  Seven studies that each sampled multiple individuals before and after respiratory 289	
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infection are included.  In total 2372 samples were used, providing a background of 2231 290	

consecutive time steps.   Overall, the variance between samples was lower for this study than the 291	

circadian study examined above (Figure 4A). The significance of a change in expression for each 292	

gene at each time step was compared to a background distribution of change in expression across 293	

all patients and time steps (2231 total slope changes).  For the 83 TFs on the HGU133 Plus 2.0 294	

microarray (Affymetrix, Santa Clara, CA) with ChIP-Seq data from blood tissue [32], we 295	

Figure 3:  ExRANGES combines EXPRESSION and RANGES approach.  A) Schematic of how ExRANGES combines 

expression value and slope change.  B) ExRANGES outperforms EXPRESSION. The targets of the circadian TFs (ARNTl 

CLOCK, NPAS, NR1D2, and PER1) identified by EXPRESSION or RANGES were validated against the ChIP-Seq 

identified targets for these TFs [20].  Area under the ROC Curve (AURC) is plotted for targets identified by EXPRESSION, 

EXPRESSION where the GENIE3 algorithm included a time step, and ExRANGES (without a time step).  C) ExRANGES 

improves identification of ChIP-Seq validated targets in TFs that are not core components of the circadian clock.  The 

EXPRESSION and RATE identified targets of seven TFs with ChIP-Seq identified targets available from CISTROME that 

are in our list of TFs and ChIP-Seq performed in epithelial cells which is a tissue not sampled in the circadian time series [23] 

were compared and the area under the ROC curve (AURC) is plotted.  ExRANGES showed increased AURC for five of the 

TFs (ESR1, POL2A, FOXA1, TFAP2A, and CHD4) over EXPRESSION or EXPRESSION including a time step. For 

STAT5A and STAT5B ExRANGES did not increase the AURC.     
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observed an overall improvement in the detection of ChIP-Seq identified targets (Fig 4B). The 296	

improvement varies by TF (Fig 4C).   297	

 298	

ExRANGES Improves Functional Cohesion of Identified Targets  299	

ChIP-Seq targets are one method to identify true targets of a TF.  Another approach is to look at 300	

functional enrichment of predicted targets for a given regulator.  The true targets of a TF are 301	

Figure 4: A) ExRANGES improves identification of TF targets in unevenly sampled and heterogeneous data.  Targets of 83 

TFs where ChIP-Seq data is available from Cistrome [23] were compared for EXPRESSION and ExRANGES.  Predictions 

of targets from EXPRESSION and ExRANGES were compared to ChIP-Seq identified targets and the results for all 83 TFs 

are presented as a box plot of area under the ROC curve (AURC).  B) Variance comparison of the viral and circadian data 

sets.  The index of dispersion is calculated by dividing the variance of each gene by its mean expression level and taking the 

mean of these values over all genes in the dataset.  The circadian data set showed a significantly higher Index of Variation 

than the viral data set (Student’s t-test, p-value < 10-15). Improvement observed in ExRANGES identified targets varies 

across the 83 TFs tested.  The difference between area under ROC curve of ExRANGES and EXPRESSION is plotted in 

ascending order for the 83 TFs tested.  TFs are colored by TF family.   
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likely to be involved in the same functional pathways and therefore true targets would be 302	

enriched for the same functional categories as measured by enrichment of GO terms.  303	

Comparison of functional enrichment of TF targets identified by each approach enables the 304	

evaluation of how each approach performs on identifying targets for TFs without available ChIP-305	

Seq data.  We compared the functional enrichment of the top 1000 targets of each TF predicted 306	

by either approach using Homo sapiens GO slim annotation categories.  We evaluated the 930 307	

TFs on the HGU133 microrarray [19].   Of these, the targets identified by ExRANGES for the 308	

majority of the TFs (590) showed improved functional enrichment compared to the targets 309	

Figure 5:  Functional Enrichment of ExRANGES identified targets.  Gene Ontology enrichment was calculated using Homo 

sapiens GO slim annotations for the top 1000 targets of each TF predicted by either ExRANGES or EXPRESSION.  The 

background annotations were limited the genes present on the HGU133 microarray.  Enrichment score is the sum of the –

log10 of the p-value of each GO category.  A) Summary table of the enrichment scores for the top targets of all 930 TFs on 

the microarray.  B) The distribution of enrichments scores from EXPRESSION targets (red) and ExRANGES targets (blue).  

C) Enrichment score difference of the 83 TFs with available ChIP-Seq data (Fig 4).  Positive values indicate TF targets with a 

higher enrichments score in ExRANGES compared to EXPRESSION. 
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identified by EXPRESSION (Fig 5A and B).  Likewise, when focusing on the 83 TFs with 310	

available ChIP-Seq data from blood, the majority of TF targets predicted by ExRANGES were 311	

more functionally cohesive compared to EXPRESSION targets as evaluated by GO slim (Fig 312	

5C).  We observed that the improvement ranking of ExRANGES over EXPRESSION varies 313	

between the two validation approaches.  For example, targets of the TF JUND identified by 314	

ExRANGES show no improvement over EXPRESSION when validated by ChIP-Seq identified 315	

targets, yet showed improved functional cohesion (Supplemental Table ST1).   316	

 317	

ExRANGES Improves TF Target Identification from RNA-Seq Data and Validated by 318	

Experimental Methods Other Than ChIP-Seq  319	

The previous evaluations of ExRANGES were performed on expression data obtained from 320	

microarray-based studies and true positives were based on ChIP-Seq identified targets of each 321	

TF.  To evaluate the performance of ExRANGES compared to EXPRESSION for RNA-Seq data 322	

we applied each approach to an RNA-Seq data set performed in Saccharomyces cerevisiae.  This 323	

data set consisted of samples collected from six different genotypes every fifteen minutes for six 324	

hours after transfer to media lacking phosphate.  The slope background was calculated from 144 325	

time steps.  To evaluate the performance of ExRANGES compared to EXPRESSION approaches 326	

we calculated the area under the ROC curve for the identified targets for each of the 52 TFs 327	

using the TF targets identified by protein binding microarray analysis as true positives [33].  For 328	

most TFs, the AUC was improved by the use of ExRANGES compared to EXPRESSION (Fig 329	

6A).  330	

 We next evaluated the performance of EXPRESSION and ExRANGES on a set of data 331	

from Arabidopsis consisting of 144 samples collected every four hours for two days in 12 332	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2017. ; https://doi.org/10.1101/093807doi: bioRxiv preprint 

https://doi.org/10.1101/093807
http://creativecommons.org/licenses/by-nc/4.0/


different growth conditions. Even though fewer ChIP-Seq data sets are available to validate the 333	

predicted targets in Arabidopsis, we were able to evaluate the performance of the algorithms for 334	

five TFs with available ChIP-Seq or ChIP-Chip identified targets performed in at least two 335	

replicates [34–38].  We observed that for all five TFs ExRANGES showed improved 336	

identification of the ChIP-based true positive TF targets (Fig 6B).  To evaluate a larger range of 337	

targets we compared our predicted targets by EXPRESSION or ExRANGES to 307 TFs targets 338	

identified by DAP-Seq [39].  We observed that ExRANGES also showed an improved ability to 339	

identify targets as validated by DAP-Seq compared to EXPRESSION (Fig 6C).    340	

 341	

Figure 6: ExRANGES improves identification of TF targets validated by different methods.  A) Targets identified for 52 

yeast TFs by ESPRESSION (red) and ExRANGES (blue) were validated against the targets identified for each TF using a 

protein binding microarray [33] and boxplots generated from the area under the ROC curve (AURC).  B)  AURC for targets 

of the five Arabidopsis TFs with replicated ChIP-Seq data available for EXPRESSION and ExRANGES identified targets.  

C).  AURC for targets identified for 307 TFs by EXPRESSION (red) and ExRANGES (blue) as validated against DAP-Seq 

identified targets [39]. 
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Application of ExRANGES to Smaller Data Sets with Limited Validation Resources 342	

Time series data offers several advantages, however the expense is also significantly increased.  343	

We have shown that using ExRANGES in conjunction with GENIE3 improves performance on 344	

large data sets as validated by ChIP-Seq (228 samples in mouse, 2372 in human, and 144 in 345	

arabidopsis) (Fig 7).  We also compared the use of the ExRANGES approach to EXPRESSION 346	

alone with the INFERELATOR algorithm, although ExRANGES showed an improved AUROC 347	

in all three data sets; the largest increase observed was in the Arabidopsis data set, which has the 348	

lowest sample number (Fig S4).  Since our interest is to develop a tool that can assist with the 349	

identification of regulatory networks in non-model species, we wanted to determine if 350	

ExRANGES could also improve identification of TF targets in more sparsely sampled data sets 351	

where there is only limited validation data available.  352	

Figure 7:  Summary of ExRANGES improvement across three data sets from different species.  ROC and Precision recall 

(PR) curves for targets of all ChIP-Seq validated TFs as identified by EXPRESSION (red) or ExRANGES (blue) for A) 

Circadian dataset from different mouse tissue samples B) Viral data set C) Circadian dataset from Arabidopsis across 

different environmental variables.  
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 To determine the effectiveness of the ExRANGES approach for experiments with limited 353	

time steps, we evaluated the targets identified by ExRANGES and EXPRESSION for a single 354	

time series consisting of 28 samples from seven unevenly sampled time points of field grown 355	

rice data. ChIP-Seq has only been performed for one transcription factor in rice, OsMADS1 [40].  356	

Therefore, we compared the ability of ExRANGES and EXPRESSION to identify the 357	

OsMADS1 targets identified by L. Khanday et al. Of the 3112 OsMADS1 targets identified by 358	

ChIP-Seq, ExRANGES showed an improved ability to identify these targets (Fig 8) compared to 359	

EXPRESSION. 360	

 361	

Discussion 362	

Computational approaches that can identify candidate targets of regulators can advance research.  363	

Many approaches have been developed to identify regulator targets, but most of these use 364	

expression values.  We have demonstrated that combining the expression levels and rate of 365	

change improves the ability to predict true targets of TFs across a range of species and 366	

experimental designs.  This approach improves the identification of targets as determined by 367	

ChIP-Seq and protein binding microarray across many different collections of time series data 368	

including experiments with replicates and without, with time series that have unevenly sampled 369	

time points, and even for time series with limited number of samples.  ExRANGES provides 370	

improvement in TF target identification over EXPRESSION values alone for time series 371	

performed with both microarray and RNA-Seq measurements of expression. 372	
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Expression analysis performed in time series, such as experiments evaluating the 373	

transcriptional changes throughout a circadian cycle, provide rich resources for identifying 374	

relationships between individual transcripts.  Since in many species the majority of transcripts 375	

show variation in expression levels throughout the day [18,41,42] circadian and diel data sets 376	

provide a snapshot of the potential ranges in expression that a regulator can attain.  The 377	

associated changes in target expression levels can be analyzed to identify potential regulatory 378	

relationships that may be enhanced in response to other perturbations such as stress.  Here, we 379	

Figure 8:  ExRANGES retains performance improvement on small data sets.  A) Area under the ROC curve (AURC) for the 

top 1000 targets of OsMADS1 identified by EXPRESSION (red) or ExRANGES (blue) using GENIE3 and validated against 

the OsMADS1 ChIP-Seq data.  B) Comparison of targets identified by EXPRESSION and ExRANGES using 

INFERELATOR. True positives indicated the number of OsMADS1 targets identified by each approach that were also 

detected by ChIP-Seq, False positives indicated the number predicted by each approach that were not identified as targets of 

OsMADS1 by ChIP-Seq.  C) Network of MADS TFs predicted by ExRANGES.  Interactions with OsMADS1 (green) 

determined by ExRANGES with other MADS TFs in rice are visualized as an interaction network.  ExRANGES predicted 

targets of OsMADS1 are indicated in orange [40].  OsMADS15 (red) is predicted to regulate OsMADS1 by ExRANGES 

(green arrow).  Interactions between other MADS TFs predicted by ExRANGES are indicated by black arrows.     
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show that data sets that combine circadian time series in multiple tissues can be a powerful 380	

resource for identifying regulatory relationships between TFs and their targets not just for 381	

circadian regulators, but also for regulators that are not components of the circadian clock. 382	

Targets identified using EXPRESSION as the features were those that showed large variance 383	

between tissue, while RANGES identified targets that showed larger variance within each time 384	

series.  ExRANGES takes advantage of both sources of variation and improves the identification 385	

of TF targets for most regulators tested, including for TF-target relationships in tissues not 386	

included in the transcriptional analysis.  Additionally, ExRANGES simplifies incorporation of 387	

replicate samples. 388	

 As implemented, ExRANGES improves the ability to identify regulator targets, however, 389	

there are many aspects that could be further optimized.  For example, we tested ExRANGES 390	

with the network inference algorithm GENIE3 and demonstrated that it improved the 391	

performance of this algorithm.  The ExRANGES method can be applied to most other machine 392	

learning applications such as Bayesian networks, mutual information networks, or even 393	

supervised machine learning tools.  In addition, we showed that ExRANGES outperformed a 394	

one-step time delay.  Conceptually, our method essentially increases the weight of the time point 395	

before a major change in expression level.  ExRANGES could be further modified to adjust 396	

where that weight is placed, a step or more in advance, depending on the time series data. Such 397	

incorporation of a time delay optimization into the ExRANGES approach could lead to further 398	

improvement for identification of some TF targets, although it would increase the computational 399	

cost.  400	

 Here, we compared ExRANGES based features to EXPRESSION based features by 401	

validating against TF targets identified by ChIP-Seq, ChIP-Chip, DAP-Seq, and protein binding 402	
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microarray.  While these experimental approaches identify potential TF targets in a genome-wide 403	

manner, they are not perfect as gold-standards for validation of transcriptional regulatory 404	

networks.  If there are systematic errors in target identification by ChIP-Seq, ExRANGES may 405	

perform better than indicated here.  Although ChIP-Seq may not be an ideal gold standard, it 406	

does provide a benchmark for comparing computational approaches to identifying TF targets.  407	

Unfortunately, high quality ChIP-Seq data is not available in most organisms for more than a 408	

handful of TFs.  For example, validation of this approach in rice was limited to one recently 409	

published ChIP-Seq dataset.  This lack of experimentally identified targets is a severe hindrance 410	

to advancing research in these species.  New experimental approaches such as DAP-Seq may 411	

provide alternatives for TF target identification in species recalcitrant to ChIP-Seq analysis [39].  412	

Additionally, the authors of this paper improved their recall of ChIP-Seq identified targets by 413	

selecting targets that were also supported by DNase-Seq sensitivity assays [43,44].  Likewise, 414	

distinguishing between direct and indirect targets predicted computationally could be enhanced 415	

by incorporation of DNase-Seq or motif occurrence information for the targets.  Incorporation of 416	

such a priori information on regions of open chromatin and occurrence of cis-regulatory 417	

elements leads to improved network reconstruction [10,45].  Use of ExRANGES could lead to 418	

improvement for these integrated approaches.  Although approaches such as DAP-Seq are more 419	

global in analyses than individual ChIP-Seq assays, these genome-wide approaches still require a 420	

significant investment from the community in the development of an expressed TF library 421	

collection.  For non-model systems, computational identification of TF targets can provide an 422	

economical first pass that can be followed up by experimental analysis of predicted targets, 423	

accepting the fact that there will be false positives in the validation pipeline.  In this strategy, a 424	

small improvement in the ability to identify true targets of a given TF can translate into a 425	
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reduced number of candidates to test and fewer experiments that must be performed.  We hope 426	

that the modest improvements to regulatory network algorithms provided by the ExRANGES 427	

approach can facilitate research in species where identification of TF targets is experimentally 428	

challenging.  Additionally, we hope that our finding of how gene expression values are 429	

incorporated in a network has a significant effect on the ability to identify regulatory 430	

relationships will stimulate evaluation of new approaches that use alternative methods to 431	

incorporate time signals into regulatory network analysis.   432	

In summary, we demonstrate that consideration of how expression data is incorporated 433	

can contribute to the success of transcriptional regulatory network reconstruction. ExRANGES is 434	

a first step at evaluating different approaches for how features are supplied to regulatory network 435	

inference algorithms.  We anticipate that further optimization and other novel methods for 436	

integrating expression information will lead to improvements in network reconstruction that 437	

ultimately will accelerate biological discovery.  438	

 439	

Materials and Methods 440	

Sources for Expression Data Sets  441	

Circadian Data Set 442	

Normalized expression data from murine sources was downloaded from CircaDB [18].   443	

Microarray-based expression levels from 288 samples were used in this study.  The data 444	

available was from twelve different tissues that were sampled every 2 h for 48 h.   445	

Viral Data Set 446	

The expression data used for the viral experimental analysis was downloaded from GEO 447	

GSE73072.  The data is composed of seven studies of individuals sampled before and after 448	
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respiratory infection.  Expression is data from blood samples of approximately twenty 449	

individuals taken over a seven to nine day period depending on the individual study.  Sampling 450	

was not evenly spaced between time points.  In total data from 2372 microarrays were used. The 451	

expression datasets used for the analyses described in this manuscript were contributed by Drs. 452	

Ephraim Tsalik and Geoffrey Ginsburg from Duke University and the Durham VA Medical 453	

Center. They were obtained as part of The Respiratory Viral DREAM Challenge through 454	

Synapse ID syn5647810 [31].  455	

S. cerevisiae RNA-Seq Data 456	

RNA-Seq based expression data from S. cerevisiae was downloaded from GEO GSE61668 [46].  457	

This data set evaluates phosphate starvation in six genotypes of S. cerevisiae.  Transcript 458	

expression was measured by RNA-Seq every 15m for six hours after transfer to reduced 459	

phosphate media (150 samples total). 460	

Arabidopsis Circadian Data 461	

Normalized microarray expression data for Arabidopsis was obtained from 462	

www.mocklerlab.org/diurnal [47].  This data set consisted of Arabidopsis plants of various ages 463	

grown in 12 different environmental conditions sampled every 4 h for 48 h for a total of 144 464	

samples.  465	

Oryza sativa Diel Data 466	

Rice variety IR64 was grown in the field at the International Rice Research Institute (, 467	

Philippines).  When the plants reached 50% flowering, panicle tissue was harvested at dawn, 468	

dawn + 3.5h, dawn + 7h, dawn + 10.5h, dusk, dawn + 14h, dawn + 17.5h, and dawn + 21h.  Four 469	

replicates were harvested for each of these eight time points for a total of 32 samples.  The third 470	

rachis of the panicle was ground in liquid nitrogen with a metal pestle.  The tissue was then 471	
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lyophilized at -60C°overnight.  Total RNA was isolated using RNeasy Plant Mini Kit (Qiagen, 472	

Germany) with the recommended RLT lysis buffer.  The RNA extraction protocol was modified 473	

to include and additional incubation with DNaseI.  mRNA was isolated from 2 µg of total RNA 474	

using magnetic oligo(dT) (NEB, Ipswich, MA).  Directional RNA-Seq libraries were prepared 475	

from isolated mRNA.  Libraries were quantified using a 2100 Bioanalyzer (Agilent, Santa Clara, 476	

CA) RNA-Seq was performed on a HiSeq 2500 (Illumina, San Diego, CA). Reads were trimmed 477	

using seqtk (https://github.com/lh3/seqtk).  Samples were aligned with Tophat2 to the IRGSP-1.0 478	

genome [48,49].  Counts per gene were identified by HTSeq Count [50].  Data is available 479	

through GSE92302.   480	

 481	

Selection of Regulators 482	

Transcription factors used as regulators for the murine circadian data and human viral data were 483	

obtained from http://www.bioguo.org/AnimalTFDB/index.php [19]. Arabidopsis transcription 484	

factor list were obtained from http://planttfdb.cbi.pku.edu.cn/ [51].  S. cerevisiae transcription 485	

factors were obtained from [33]. 486	

Sources for Validation Resources 487	

The direct targets for the five circadian TFs from murine data were obtained from the 488	

supplementary information provided in [20].  Targets for additional TFs and the validation of the 489	

viral data from human expression data were obtained from the cistrome project 490	

(http://cistrome.org/Cistrome/Cistrome_Project.html) [23].  Eighty-three TFs were selected as 491	

regulators that were labeled as evaluated blood tissue and present on the HGU133 microarray.  492	

ChIP-Seq targets were determined by BETA (http://cistrome.org/BETA/). If multiple ChIP-Seq 493	

were provided they were combined.  The Arabidopsis ChIP-Seq validations were obtained from 494	
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multiple sources [34–38].  The validation for the yeast analysis was obtained from a TF-DNA 495	

binding array from Zhu et al. [33].  496	

Slope and p-value Calculation for RANGES and ExRANGES 497	

The R package ExRANGES has been prepared and is available 498	

http://github.com/DohertyLab/ExRANGES.  Briefly the package performs the following 499	

modifications to expression data.  The slope was calculated as !"#$%&&'()!!!! !"#$%&&'()!
!"#$%&"'(!!!!!"#$%&"'(!

 .   500	

Sample from the R base package was used to sample 10,000 with replacement for the slopes 501	

calculated for each gene.  The sampling population is dependent on the time series length (i.e. 502	

the circadian data has 48 data points to sample from) P-values of the actual slope compared to 503	

the distribution of the background slopes were calculated using ecdf from the R stat package 504	

[52].  To preserve direction a duplicate version of the p-values matrix is created.  The tails are 505	

switched in this duplicated matrix by subtracting 1 from the matrix.  The original matrix and the 506	

switched matrix are both transformed by -log10.  The matrices are then combined by taking the 507	

higher value of the two matrices if the switched version is taken the sign is changed 508	

(ifelse(matrix.up<matrix.down, -(matrix.down), matrix.up)).  ExRANGES values were 509	

determined for each gene by multiplying the expression at tn by the weighted rate calculated 510	

from tn to tn+1. See R package provided in http://github.com/DohertyLab/ExRANGES.   511	

Network Inference using GENIE3 512	

To predict regulatory interaction between transcription factor and target gene, GENIE3 was used. 513	

GENIE3 script was taken from http://www.montefiore.ulg.ac.be/~huynh-thu/software.html on 514	

June 14, 2016 [8]. GENIE3 was modified by to be usable with parLapply from the R parallel 515	

package [52].  We used 2000 trees for random forest for all data sets except the viral data set.  516	
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For the viral data set we limited it to 100 trees due to the size.  The importance measure from 517	

random forest was used to calculate the area under ROC. 518	

 519	

Network Inference using INFERELATOR 520	

TF-target interactions were calculated from both EXPRESSION and ExRANGES for the 521	

Circadian, Viral, Arabidopsis, and rice datasets. TF and targets labels are identical to those used 522	

as GENIE3 input. Time information in the form of the time step between each sample was added 523	

to satisfy time course conditions as a parameter, default values were used for all other 524	

parameters. Only confidence scores of TF-target interactions greater than 0 were evaluated 525	

against ChIP-Seq standards. The confidence scores were used as the prediction score to evaluate 526	

against the targets identified for each TF from experimental ChIP-Seq data.  527	

 528	

ROC Calculation 529	

ROC values were determined by the ROCR package in R [53]. The importance measures were 530	

used as the prediction score and the targets from the respective experimental validation (ChIP-531	

Seq, protein binding array, or DAP-Seq) were used as the metric to evaluate the performance 532	

function. The area under the ROC is presented to summarize the accuracy.  533	
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Supporting Information 690	

 691	

FIGURES 692	

Figure 1: A) Overview of RANGES approach.  For each Genei, the slope is calculated for all 693	

possible consecutive changes time points.  From this background distribution of changes in 694	

expression the significance of each time point change is calculated.  The –log10 of the p-value is 695	

calculated and the sign change of direction is preserved.  In the RANGES approach, this 696	

significance value is used as the input into network inference using GENIE3 [8] for both the 697	

transcription factor (TF) regulators and targets. For the EXPRESSION approach, the expression 698	

values at each time point are provided for both the regulator and target to GENIE3.  The 699	

predictive ability of each approach was compared to the targets experimentally identified for 700	
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each TF by ChIP-Seq. B) Targets identified by RANGES and EXPRESSION approaches show 701	

little overlap.  Scatter plot of targets of PER1 as identified by EXPRESSION or RANGES 702	

approaches.  PER1 targets identified with similar rank by both approaches are shown in grey. 703	

PER1 targets identified as high ranking by RANGES are shown in blue and those ranking higher 704	

by EXPRESSION are red.  PER1 targets identified by ChIP-Seq [20] are marked as stars.  Genes 705	

identified as PER1 targets by each approach that were not identified in the ChIP-Seq identified 706	

targets are plotted as points.  707	

 708	
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 709	

Figure 2:  A) Top targets for RANGES and EXPRESSION show different expression 

features.  The expression values of the top three targets of PER1 identified by EXPRESSION 

(left; Pck1, Alb, GAPDH) and RANGES (right; RGS6, Rhpn2, Stx16) across the two day 

time series performed in twelve tissues [18]. The order of the tissues are:  Brainstem, Lung, 

Kidney, Brown fat, White fat, Cerebellum, Hypothalamus, Aorta, Liver, Adrenal gland, 

Skeletal muscle, and Heart.  Each tissue is plotted side by side in different colors.  The points 

within a tissue represent expression levels every 2 hours over 48 hours.  PER1 expression is 

shown in the center for comparison.  B) Targets of the circadian TFs identified by 

EXPRESSION show higher standard deviation in expression levels across all samples than 

targets identified by RANGES.  The standard deviation across all samples for the top 1000 

targets of each circadian TF (ARNTL, CLOCK, NPAS, NR1D2, and PER1) identified by 

either the EXPRESSION or RANGES approach.  C) Most circadian TF targets identified by 

RANGES show higher within tissue standard deviation.   The standard deviation across the 

time series for each individual tissue was calculated for the top 1000 targets of each circadian 

TF (Arntl Clock, Npas, Nr1d2, and Per1) identified by either the EXPRESSION or RANGES 

approach.  The mean of these within tissue standard deviations is plotted.  D) EXPRESSION 

identified TF targets show greater variation in expression across all samples.  Box plot 

showing the standard deviation of the top 1000 targets of all TFs identified by either 

EXPRESSION or RANGES.  E) RANGES identified TF targets show greater within tissue 

variation.  The standard deviation was calculated for each time series in each tissue for the top 

1000 targets of all TFs identified by EXPRESSION or RANGES.  Boxplot showing the mean 

standard deviation for each tissue for these top targets.   
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Figure 3:  ExRANGES combines EXPRESSION and RANGES approach.  A) Schematic of how 710	

ExRANGES combines expression value and slope change.  B) ExRANGES outperforms 711	

EXPRESSION. The targets of the circadian TFs (ARNTl CLOCK, NPAS, NR1D2, and PER1) 712	

identified by EXPRESSION or RANGES were validated against the ChIP-Seq identified targets 713	

for these TFs [20].  Area under the ROC Curve (AURC) is plotted for targets identified by 714	

EXPRESSION, EXPRESSION where the GENIE3 algorithm included a time step, and 715	

ExRANGES (without a time step).  C) ExRANGES improves identification of ChIP-Seq 716	

validated targets in TFs that are not core components of the circadian clock.  The EXPRESSION 717	

and RATE identified targets of seven TFs with ChIP-Seq identified targets available from 718	

CISTROME that are in our list of TFs and ChIP-Seq performed in epithelial cells which is a 719	

tissue not sampled in the circadian time series [23] were compared and the area under the ROC 720	

curve (AURC) is plotted.  ExRANGES showed increased AURC for five of the TFs (ESR1, 721	

POL2A, FOXA1, TFAP2A, and CHD4) over EXPRESSION or EXPRESSION including a time 722	

step. For STAT5A and STAT5B ExRANGES did not increase the AURC.     723	

 724	

Figure 4: A) ExRANGES improves identification of TF targets in unevenly sampled and 725	

heterogeneous data.  Targets of 83 TFs where ChIP-Seq data is available from Cistrome [23] 726	

were compared for EXPRESSION and ExRANGES.  Predictions of targets from EXPRESSION 727	

and ExRANGES were compared to ChIP-Seq identified targets and the results for all 83 TFs are 728	

presented as a box plot of area under the ROC curve (AURC).  B) Variance comparison of the 729	

viral and circadian data sets.  The index of dispersion is calculated by dividing the variance of 730	

each gene by its mean expression level and taking the mean of these values over all genes in the 731	

dataset.  The circadian data set showed a significantly higher Index of Variation than the viral 732	
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data set (Student’s t-test, p-value < 10-15). Improvement observed in ExRANGES identified 733	

targets varies across the 83 TFs tested.  The difference between area under ROC curve of 734	

ExRANGES and EXPRESSION is plotted in ascending order for the 83 TFs tested.  TFs are 735	

colored by TF family.   736	

 737	

Figure 5:  Functional Enrichment of ExRANGES identified targets.  Gene Ontology enrichment 738	

was calculated using Homo sapiens GO slim annotations for the top 1000 targets of each TF 739	

predicted by either ExRANGES or EXPRESSION.  The background annotations were limited 740	

the genes present on the HGU133 microarray.  Enrichment score is the sum of the –log10 of the 741	

p-value of each GO category.  A) Summary table of the enrichment scores for the top targets of 742	

all 930 TFs on the microarray.  B) The distribution of enrichments scores from EXPRESSION 743	

targets (red) and ExRANGES targets (blue).  C) Enrichment score difference of the 83 TFs with 744	

available ChIP-Seq data (Fig 4).  Positive values indicate TF targets with a higher enrichments 745	

score in ExRANGES compared to EXPRESSION. 746	

 747	

Figure 6: ExRANGES improves identification of TF targets validated by different methods.  A) 748	

Targets identified for 52 yeast TFs by ESPRESSION (red) and ExRANGES (blue) were 749	

validated against the targets identified for each TF using a protein binding microarray [33] and 750	

boxplots generated from the area under the ROC curve (AURC).  B)  AURC for targets of the 751	

five Arabidopsis TFs with replicated ChIP-Seq data available for EXPRESSION and 752	

ExRANGES identified targets.  C).  AURC for targets identified for 307 TFs by EXPRESSION 753	

(red) and ExRANGES (blue) as validated against DAP-Seq identified targets [39]. 754	

 755	
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Figure 7:  Summary of the improvement observed by using ExRANGES with GENIE3 across 756	

three data sets from different species.  ROC and Precision recall (PR) curves for targets of all 757	

ChIP-Seq validated TFs as identified by EXPRESSION (red) or ExRANGES (blue) with 758	

GENIE3 for A) Circadian dataset from different mouse tissue samples B) Viral data set C) 759	

Circadian dataset from Arabidopsis across different environmental variables.  760	

 761	

Figure 8:  ExRANGES retains performance improvement on small data sets.  A) Area under the 762	

ROC curve (AURC) for the top 1000 targets of OsMADS1 identified by EXPRESSION (red) or 763	

ExRANGES (blue) and validated against the OsMADS1 ChIP-Seq data.  B) Network of MADS 764	

TFs predicted by ExRANGES.  Interactions with OsMADS1 (green) determined by ExRANGES 765	

with other MADS TFs in rice are visualized as an interaction network.  ExRANGES predicted 766	

targets of OsMADS1 are indicated in orange [40].  OsMADS15 (red) is predicted to regulate 767	

OsMADS1 by ExRANGES (green arrow).  Interactions between other MADS TFs predicted by 768	

ExRANGES are indicated by black arrows.     769	

 770	

S1 Figure. ROC and precision recall (PR) curves. ROC and PR curves for A) EXPRESSSION 771	

B) RANGES and C) ExRANGES identified targets of the five circadian TFs based on true 772	

positives identified with ChIP-Seq data [20].   773	

S2 Figure. TF Targets identified differ when using EXPRESSION or EXPRESSION 774	

approaches as features.  Scatter plots showing targets for the TFs A) NPAS2 B) CLOCK C) 775	

NR1D1 and D) ARNTL.  TF targets identified with similar rank by both approaches are shown 776	

in black. Targets identified as high ranking by RANGES are shown in blue and those identified 777	

by EXPRESSION are red.  TF targets identified by ChIP-Seq [20] are marked as stars.  Genes 778	
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identified as TF targets by each approach that were not in the ChIP-Seq identified targets are 779	

plotted as points.  780	

S3 Figure. Targets identified using EXPRESSION or RANGES show different 781	

distributions of hybridization intensity. Histogram showing the top 1000 PER1 targets 782	

identified by A) EXPRESSION (red) have a higher distribution of expression as measured by 783	

hybridization intensities compared to the background distribution of all genes (grey).  B) 784	

RANGES (blue) identified targets show a similar expression distribution to the background 785	

genes.  C) The distribution of expression levels of the top 1000 targets identified by 786	

EXPRESSION (red) for all TFs is higher than the background gene expression (grey). D) The 787	

distribution of expression levels for the top 1000 targets of each TF identified by RANGES 788	

(blue) is similar to the distribution of the expression levels from all genes (grey).  789	

S4 Figure.  Using the INFERELATOR algorithm, ExRANGES shows the greatest 790	

improvement in identifying TF targets in the Arabidopsis data set. ROC and Precision recall 791	

(PR) curves for targets of all ChIP-Seq validated TFs as identified by EXPRESSION (red) or 792	

ExRANGES (blue) using INFERELATOR for A) Circadian dataset from different mouse tissue 793	

samples B) Viral data set C) Circadian dataset from Arabidopsis across different environmental 794	

variables.  795	

ST1 Table.  GO Enrichment for JUND.  GO categories enriched in expression in top 1000 796	

JUND targets identified by either EXPRESSION or ExRANGES (FDR adjusted p-value <0.01) 797	

show more target genes per category in ExRANGES top targets (32 categories) than in 798	

EXPRESSION top targets (8 categories).  The vacuolar transport category showed no change in 799	

the number of gene annotated in that category in EXPRESSION or ExRANGES targets.  800	

 801	
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