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Abstract 

 Working memory and conscious perception are thought to share similar brain 

mechanisms, yet recent reports of non-conscious working memory challenge this view. 

Combining visual masking with magnetoencephalography, we demonstrate the reality of non-

conscious working memory and dissect its neural mechanisms. In a spatial delayed-response 

task, participants reported the location of a subjectively unseen target above chance-level after 

a long delay. Conscious perception and conscious working memory were characterized by 

similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, 

and a decodable representation of target location in posterior sensors. During non-conscious 

working memory, such activity vanished. Our findings contradict models that identify 

working memory with sustained neural firing, but are compatible with recent proposals of 

‘activity-silent’ working memory. We present a theoretical framework and simulations 

showing how slowly decaying synaptic changes allow cell assemblies to go dormant during 

the delay, yet be retrieved above chance-level after several seconds. 
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Introduction 

 Prominent theories of working memory require information to be consciously 

maintained (Baars and Franklin, 2003; Baddeley, 2003; Oberauer, 2002). Conversely, 

influential models of visual awareness hold information maintenance as a key property of 

conscious perception, highlighting synchronous thalamocortical activity (Tononi and Koch, 

2008), cortical recurrence (Lamme and Roelfsema, 2000), or the sustained recruitment of 

parietal and dorsolateral prefrontal regions (i.e., the same areas as in working memory; 

Naghavi and Nyberg, 2005) in a global neuronal workspace (Dehaene and Changeux, 2011; 

Dehaene and Naccache, 2001). Experimentally, non-conscious priming only lasts a few 

hundred milliseconds (Dupoux et al., 2008; Greenwald et al., 1996) and unseen stimuli 

typically fail to induce late and sustained cerebral responses (Dehaene et al., 2014). Conscious 

perception, in contrast, exerts a durable influence on behavior, accompanied by sustained 

neural activity (King et al., 2014; Salti et al., 2015; Schurger et al., 2015). The hypothesis of 

an intimate coupling between conscious perception and working memory is thus grounded in 

theory and supported by numerous empirical findings. 

Recent behavioral and neuroimaging evidence, however, has questioned this 

prevailing view by suggesting that working memory may also operate non-consciously. 

Unseen stimuli may influence behavior for several seconds (Bergström and Eriksson, 2015; 

Soto and Silvanto, 2014). Soto and colleagues (Soto et al., 2011), for instance, showed that 

participants recalled the orientation of a subjectively unseen Gabor cue above chance-level 

after a 5s-delay. Functional magnetic resonance imaging suggests that prefrontal activity may 

underlie such non-conscious working memory (Bergström and Eriksson, 2014; Dutta et al., 

2014). 

 The verdict for non-conscious working memory is far from definitive, however. 

Delayed performance with subjectively unseen stimuli was barely above chance (Soto et al., 
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2011) and could have arisen from a small percentage of errors in visibility reports, with 

subjects miscategorizing a seen target as unseen (miscategorization hypothesis). Alternatively, 

participants could have ventured a guess about the target as soon as it appeared and 

consciously maintained this early guess (conscious maintenance hypothesis). Many priming 

studies have shown that fast guessing results in above-chance objective performance with 

subjectively unseen stimuli (Merikle, 2001). The observed blindsight effect would  then 

reflect a normal form of conscious working memory (Stein et al., 2016). Lastly, even if non-

conscious working memory had been convincingly demonstrated, no mechanistic account has 

been offered for it. Here, we set out to address these issues by testing the reality of non-

conscious working memory, interrogating the link between conscious perception and working 

memory, and identifying the brain mechanisms associated with conscious and non-conscious 

working memory maintenance. 

Results 

We combined magnetoencephalography (MEG) with a spatial masking paradigm to 

assess working memory performance under varying levels of subjective visibility (Figure 1A 

and Methods). On 80% of the trials, a target square was flashed in 1 of 20 locations and then 

masked. Subjects were asked to localize the target after a variable delay (2.5 – 4.0s) and to 

rate its visibility on a scale from 1 (not seen) to 4 (clearly seen). On the remaining 20% of 

trials, the target was omitted, allowing us to contrast brain activity between target-present and 

-absent trials. A visible distractor square was presented 1.5s into the delay period on half the 

trials, challenging participants’ resistance to distraction. In addition to this working memory 

task, subjects also completed a perception-only control condition without the delay and target-

localization periods (perception task), enabling us to isolate brain activity specific to  

conscious perception and to investigate its link with working memory. 
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Behavioral maintenance and shielding against distraction 

As subjective visibility of the target increased from glimpsed (visibility = 2) to clearly 

seen (visibility = 4), participants became more accurate in identifying the exact target 

position (Figure 1B, all pair-wise comparisons: p < .05). Overall, subjects reported the 

original target location with high accuracy on seen trials (collapsed across visibility ratings > 

1; M = 69.1%, SD = 17.4%; chance = 5%; t(16) = 15.2, p < .001) and above chance on 

unseen trials (rating = 1; M = 22.4%, SD = 13.8%; t(16) = 5.2, p < .001). This blindsight 

remained substantial even after a 4s-delay (M = 21.1%, SD = 14.7%; t(16) = 4.5, p < .001). 

 Spatial distributions of participants’ responses formed a bump around the target 

(Figure 2A). To correct for small errors in localization, we computed the rate of correct 

responding (CR) with a tolerance of two positions (+/- 36°) surrounding the target location. 

In subjects displaying above-chance blindsight (chance = 25%; p < .05 in a χ
2
-test; n = 13), 

we estimated the precision of working memory as the standard deviation of the distribution 

within this tolerance interval (Methods). Performance was better on seen than on unseen 

trials, both in terms of CR (F(1, 16) = 198.5, p < .001) and precision (F(1, 12) = 36.7, p < 

.001). There was neither an effect of the distractor on these measures (all ps > .079), nor any 

significant interactions between distractor and visibility (all ps > .251), indicating that 

distractor presence did not affect retention for seen or unseen targets. Restricting the analysis 

to trials within one position of the actual target location (+/- 18°) or to the subgroup of 13 

subjects included in the MEG analyses did not change these findings qualitatively. These 

results confirm the observations of previous studies (Soto et al., 2011) with much higher non-

conscious performance: Non-conscious information may be maintained for up to 4 seconds 

and successfully shielded against distraction from a salient visual stimulus. 
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Resistance to conscious working memory load and delay duration 

To probe the similarity between conscious and non-conscious working memory, in a 

second behavioral experiment with 21 subjects, we examined whether imposing a load on 

conscious working memory (remembering digits) affected non-conscious performance. On 

each trial, 1 (low load) or 5 (high load) digits were simultaneously shown for 1.5s, followed 

by a 1s-fixation period and the same sequence of events (target and mask) as in experiment 1. 

After a variable delay (0 or 4s), participants had to (1) localize the target, (2) recall the digits 

in the correct order, and (3) rate target visibility.  

 Subjects again chose the exact target position with high accuracy on seen trials (M = 

77.8%, SD = 13.9%) and remained above chance on unseen trials (M = 25.6%, SD = 11.7%; 

chance = 5%; t(18) = 7.6, p < .001). As expected, they were better at recalling 1 rather than 5 

digits in the correct order (M = 93.3% vs. 89.5%, F(1, 17) = 4.7, p = .045), irrespective of 

target visibility or delay duration (all ps > .135).  

Analyzing only the trials with correctly recalled digits, we observed an impact of load 

on the precision with which target location was retained (F(1, 13) = 7.3, p = .018). Crucially, 

load modulated the relationship between precision and visibility (interaction F(1, 13) = 8.7, p 

= .011), with no effect on seen (t(13) = 0.6, p = .561) and a strong reduction of precision on 

unseen trials (t(13) = -3.6, p = .004). There was no effect of working memory load on CR (all 

ps > .229; Figure 2B). 

Delay duration (0 or 4s) did not influence CR (all ps > .082; Figure 2C). It did, 

however, affect overall precision (F(1, 15) = 9.3, p = .008; partial η
2
 = .383) and the 

relationship between precision and visibility (interaction F(1, 15) = 5.2, p = .037). This 

interaction was driven by higher precision on no-delay than on 4s-delay trials, exclusively 

when subjects had seen the target (t(15) = -5.7, p < .001; unseen trials:  

t(15) = -0.6, p = .559). 
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Overall, these results highlight the replicability and robustness of non-conscious 

working memory: Even in the presence of a concurrent conscious working memory load, 

unseen stimuli could be maintained, with no detectable decay as a function of delay. 

However, the systems involved in the short-term maintenance of conscious and non-

conscious stimuli interacted, because a conscious verbal working memory load diminished 

the precision with which non-conscious spatial information was maintained. 

Similarity of conscious perception and conscious working memory 

 To probe the mechanisms underlying conscious perception, we turned to the MEG 

data. The subtraction of the event-related fields (ERFs) evoked by unseen trials from those 

evoked by seen trials revealed similar topographies for the perception and working memory 

task (Figure 3A): Starting at ~300ms and extending until ~500ms after target onset, a 

response emerged over right parieto-temporal magnetometers. This divergence resulted 

primarily from a sudden increase in activity on seen trials (“ignition”) in the perception (pFDR 

< .05 from 384 – 416ms and from 504 – 516ms) and working memory task (pFDR < .05 from 

328 – 364ms and from 396 – 404ms; Figure 3B). The observed topographies and time courses 

fall within the time window of typical neural markers of conscious perception, including the 

P3b (e.g., Del Cul et al., 2007; Salti et al., 2015; Sergent et al., 2005). Consciously perceiving 

the target stimulus therefore involved comparable neural mechanisms, irrespective of task. 

We next probed the relationship between conscious perception and information 

maintenance in working memory. Does the latter reflect a prolonged conscious episode, or 

does it involve a distinct set of processes recruited only during the retention phase? 

Multivariate pattern classifiers were trained to predict visibility (seen or unseen) from MEG 

signals separately for each task. Classification performance was assessed during an early time 

period (100 – 300ms), the critical P3b time window (300 – 600ms), and the delay period 

before (0.6 – 1.75s) and after (1.75 – 2.5s) the distractor.  
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Decoding was comparable in the two tasks (Figure 3C and Table 1): Classification 

rose sharply between 100 and 300ms and peaked during the P3b time window (all ps < .007, 

except 100 – 300ms in the working memory task, where p = .066). It then decayed slowly 

from ~1s onward in both tasks, yet remained above chance during the 0.6 – 1.75s interval (all 

ps < .004). Similar time courses were also observed when training in one task and testing for 

generalization to the other. Though rapidly dropping to chance-level after ~1s, classifiers 

trained in the perception task performed above chance during the first three time windows on 

working memory trials (and vice versa; all ps < .020), indicating that, early on, both tasks 

recruited similar brain mechanisms.  

Temporal generalization matrices (King and Dehaene, 2014)  were used to evaluate 

the onset and duration of patterns of brain activity. If working memory were just a prolonged 

conscious episode, classifiers trained at time points relevant to conscious perception (e.g., 

P3b) should generalize extensively, potentially spanning the entire delay. Our findings 

supported this hypothesis only in part. The temporal generalization matrix for the working 

memory task presented as a thick diagonal, suggesting that brain activity was mainly 

characterized by changing, but long-lasting patterns. Though failing to achieve statistical 

significance over the entire 0.6 – 1.75s interval (all ps > .116), at a more lenient, uncorrected 

threshold, classifiers trained during the P3b time window (300 – 600ms) in the working 

memory task remained weakly efficient until ~704ms (AUC = 0.53 +/- 0.02, puncorrected = 

.046). Similarly, classifiers trained during the same time period in the perception task and 

tested on the working memory task persisted up to ~988ms (AUC = 0.52 +/- 0.01, puncorrected  = 

.039). Brain processes deployed for the conscious representation of the target were thus 

partially sustained during the working memory delay. The reverse analysis, in which we 

trained classifiers during the retention period in the working memory task (0.8 – 2.5s), did not 

reveal any generalization to the P3b time window in the perception task (p > .101).  
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These results confirm that seeing the target entailed a similar unfolding of neural 

events in two task contexts: Conscious perception primarily consisted of a dynamic series of 

partially overlapping information-processing stages, each characterized by temporary, 

metastable patterns of neural activity. The same neural codes appear to be recruited at the 

beginning of the maintenance period (up to ~1s). As such, these findings corroborate previous 

accounts linking conscious perception to an “ignition” of brain activity (Del Cul et al., 2007; 

Gaillard et al., 2009; Salti et al., 2015; Sergent et al., 2005) and suggest that, in part, working 

memory implies the prolongation of a conscious episode, and, in part, a succession of 

additional processing steps. 

A sustained decrease in alpha/beta power distinguishes conscious working memory 

 Our focus so far has been on evoked brain activity. However, other reliable neural 

signatures of conscious perception have been identified in the frequency domain (Gaillard et 

al., 2009; Gross et al., 2007; Wyart and Tallon-Baudry, 2009). We thus turned to time-

frequency analyses and first contrasted seen and unseen trials in both tasks (Figure 4A). 

Cluster-based permutation analyses singled out a desynchronization in the alpha band (8 – 

12Hz) as the principal correlate of conscious perception in the perception task (pclust = .009), 

with seen trials displaying a strong decrease in power compared to the baseline period. 

Initially left-lateralized in centro-temporal sensors, this effect moved to fronto-central 

channels and extended between ~300 and 1700ms. A similar, albeit later (900 – 1700ms) and 

more bilateral fronto-central, desynchronization was also observed in the beta band (13 – 

30Hz; pclust = .01).   

Most importantly, when comparing seen and unseen trials in the working memory 

task, we again observed a similar, but now temporally sustained, pattern of alpha/beta band 

desynchronization (Figure 4B). Starting at ~300 to 500ms, seen targets evoked a power 

decrease in central, temporal/parietal, and frontal regions in the alpha (pclust = .003) and beta 
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(pclust < .001) bands. Crucially, the beta-band desynchronization spanned the delay period and 

was specific to seen trials (Figure 4A), with only a couple of interspersed periods of residual 

desynchronization persisting in the target-absent control trials. No task- or visibility-related 

modulations in power spectra were found in occipital areas, and the desynchronization 

originated primarily from a parietal network of brain sources (Figures 4A and B). In 

conjunction with the afore-mentioned results, these findings confirm the major role of 

alpha/beta desynchronization as a correlate of conscious perception (Gaillard et al., 2009) and 

highlight a neural state common to conscious perception and working memory.  

A distinct neurophysiological mechanism for non-conscious working memory 

Having identified a robust marker of conscious working memory, we can now 

evaluate the alternative hypotheses. If non-conscious working memory resulted from a small 

set of seen trials erroneously labeled as unseen (miscategorization hypothesis) or from the 

conscious maintenance of an early guess (conscious maintenance hypothesis), we would 

expect the same signatures as on conscious trials, including a sustained desynchronization. 

Conversely, the absence of such a power decrease would establish that blindsight resulted 

from a distinct type of non-conscious information maintenance.  

There was no indication of a desynchronization when averaging over all unseen trials 

in the working memory task (Figure 4A). This null-effect could have reflected the mixture of 

trials subsumed in the unseen category, with subjects responding correctly only half of the 

time (RC: M = 49.8%, SD = 14.7%). Even when analyzing the unseen correct trials, however, 

there was no trace of any alpha/beta desynchronization (Figure 4C). Only one effect, reversed 

relative to conscious trials, was observed in the alpha band (pclust = .040) in a set of posterior 

central sensors, corresponding to primarily occipital sources: Starting at ~1.5s and extending 

until ~1.9s, unseen correct trials exhibited a stronger increase in alpha power than their 
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incorrect counterparts. These findings indicate that non-conscious working memory is a 

genuine phenomenon, distinct from conscious working memory. 

Contents of conscious and non-conscious working memory can be tracked transiently 

We next determined where and how the specific contents of working memory were 

stored. Circular-linear correlations between the amplitude of the ERFs and target location 

(combined across all working memory trials) revealed a strong and focal association (relative 

to baseline) over posterior channels, starting at ~116ms and lasting until 788ms (all ps < .001; 

Figure 5A and Table 2). Similarly, distractor position could be tracked between ~170 and 

534ms after its presentation (all ps < .040). The spatial position of our stimuli could thus be 

faithfully “decoded” in visual areas, thereby ruling out contributions from eye movements. 

In a subsequent step, we investigated how such information would be maintained in 

the context of conscious and non-conscious working memory (Figure 5B). Target position 

was weakly and transiently encoded in occipital cortex from ~168 to 492ms on seen trials (all 

ps < .040) and, with comparable levels (all ps > .05), from ~160 to 536ms on unseen trials (all 

ps < .024). In the case of seen trials, more anterior areas in left temporo-occipital cortex also 

coded for target location between ~144 and 720ms and then maintained this representation in 

a slowly decaying, yet intermittently resurfacing manner at least up to the time of the 

distractor (significance was not attained in the 1.75 – 2.5s time window; all other ps < .003). 

The corresponding right-hemispheric regions encoded target position only transiently between 

~316 and 752ms (p < .001). Importantly, for unseen targets, neither encoding nor maintenance 

of location was observed in these temporo-occipital regions (all ps > .096). Correlation scores 

were always significantly higher for seen than for unseen trials (all ps < .05) and this absence 

of decodability during the maintenance period persisted, even when considering unseen 

correct and unseen incorrect trials separately (Supplementary Figure 1A). There was only a 

trace of residual decoding of target location on unseen correct trials in left temporo-occipital 
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areas during the delay period, but this did not reach significance. Note that in the perception 

task, seen targets could be retrieved similarly to their counterparts in the working memory 

task between ~276 and 724ms in occipital and right temporo-occipital regions (all ps > .244; 

Supplementary Figure 2). In line with previous research (Harrison and Tong, 2009; King et 

al., 2016), these results suggest that, in the case of conscious working memory, posterior 

sensory regions may encode and slightly more anterior areas maintain to-be-remembered 

information through a slowly decaying, intermittently reactivated, neural code (Fuentemilla et 

al., 2010). In contrast, no such retention mechanism appears to underlie non-conscious 

working memory. 

Further evidence against the conscious maintenance hypothesis 

The correlation between target location and brain activity affords another way to 

invalidate the conscious maintenance hypothesis. If subjects quickly guessed the location of 

an unseen target and then held it in conscious working memory, we should be able to decode 

their response long before it occurs. Circular-linear correlations refuted this prediction (Figure 

5C). Response position could be tracked almost identically to target location on seen (all ps < 

.020), but not on unseen trials (all ps > .064, with the exception of right temporo-occipital 

channels between 0.6 and 1.75s: p = .047). When we further distinguished unseen correct 

from unseen incorrect trials, the results remained similar, though much noisier (all ps > .110; 

Supplementary Figure 1B). There was only a hint that response position could be decoded 

slightly better on unseen correct than on unseen incorrect trials between 100 – 300ms and 

1.75 – 2.5s in left temporo-occipital channels (ps < .05). Taken together, these results reject 

alternative explanations for the blindsight effects observed here and in previous experiments 

(Bergström and Eriksson, 2014; Bergström and Eriksson, 2015; Soto et al., 2011). Above-

chance performance on unseen trials can neither be attributed to erroneous visibility reports, 

nor to the conscious maintenance of an early guess.  
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Short-term synaptic change as a neurophysiological mechanism for non-conscious 

working memory 

What mechanism might permit above-chance recall without any sustained brain 

activity on unseen trials? Recent modelling suggests that sustained neural firing may not be 

required to maintain a representation in working memory. Mongillo, Barak, and Tsodyks 

(2008) proposed a theoretical framework for working memory, in which information is stored 

in calcium-mediated short-term changes in synaptic weights, thus linking the active cells 

coding for the memorized item. Once these changes have occurred, the cell assembly may go 

dormant during the delay, while the synaptic weights are slowly decaying. At the end of the 

delay period, a non-specific read-out signal may then suffice to reactive the assembly. 

Furthermore, reactivation of the assembly may also occur spontaneously during the retention 

phase, similar to the rehearsal process postulated by Baddeley (2003), thus refreshing the 

weights and permitting the bridging of longer delays. Could this ‘activity-silent’ mechanism 

also constitute a plausible neural mechanism for non-conscious working memory? 

 To test this hypothesis, we simulated our experiments using a one-dimensional 

recurrent continuous attractor neural network (CANN) based on Mongillo et al. (2008). The 

CANN encoded the angular position of the target and was composed of neurons aligned 

according to their preferred stimulus value (Figure 6A). Transient short-term plasticity 

between the recurrent connections, with a 4s-decay constant, was implemented as described 

by Mongillo et al. (2008). Timing of the simulated events was comparable to the experimental 

paradigm: A target signal was briefly presented at a random location, followed by a mask 

signal to all neurons and a non-specific recall signal after a 3s-delay. 

 If the activity-silent mechanism constituted a plausible neurophysiological correlate of 

non-conscious working memory, these simulations should capture our principal findings. A 

stimulus presented at threshold should entail one of two different maintenance regimes: a first 
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distinguished by near-perfect recall with spontaneous reactivations of the memorized 

representation throughout the retention period, and a second characterized by above-chance 

objective performance in the absence of delay activity.  

In a noiseless model, there indeed existed a critical value of mask amplitude, Acritical, 

which separated two distinct regimes: Just as was the case for our seen trials, when Amask < 

Acritical, the neural assembly coding for the target spontaneously reactivated during the delay 

(Figure 6C). However, when Amask > Acritical, the system evolved into a state without 

spontaneous activation of target-specific neurons, yet with a reactivation in response to a non-

specific recall signal, mimicking our unseen trials (Figure 6D). When fixing mask amplitude 

near Acritical and adding noise continuously or just to the inputs, the network exhibited both 

types of regimes in nearly equal proportions: 50.8% of trials were characterized by 

spontaneous reactivations during the delay and 49.2% by an activity-silent delay period. 

Reminiscent of our behavioral results, sorting the trials according to the existence or absence 

of these reactivations and computing the histograms of recalled target position relative to true 

location produced two distributions of objective working memory performance: one, in which 

target position was nearly accurately stored (Figure 6E), and one, in which performance 

remained above chance despite a higher base rate of errors (Figure 6F). These simulations 

replicate our experimental findings and confirm that the activity-silent mechanism may 

underlie non-conscious working memory.   

Discussion 

 Conscious perception and working memory are thought to be intimately related, yet 

recent evidence challenged this assumption by suggesting the existence of non-conscious 

working memory (Soto et al., 2011). The present results reconcile these views. Both 

conscious perception and working memory shared similar mechanisms, including a beta 

power decrease, spanning the entire delay on working-memory trials. However, participants 
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remained able to localize a subjectively invisible target after a 4s-delay. This non-conscious 

working memory could neither be explained by erroneous visibility reports nor by the 

conscious maintenance of an early guess. Relying on insights from a simulated neural 

network, we invoked an activity-silent mechanism as a potential neural correlate of non-

conscious working memory. We now discuss these points in turn. 

Shared brain mechanisms underlie conscious perception and conscious working 

memory 

 Consistent with introspective reports and research on visual awareness and working 

memory (Baddeley, 2003; Dehaene et al., 2014), we confirmed a close relationship between 

conscious perception and working memory. In both tasks, classifiers trained to separate seen 

and unseen trials resulted in thick diagonals up to ~1s after target onset, even when 

generalizing from one task to the other. Such long diagonals have repeatedly been observed in 

recent studies and are thought to reflect sequential processing (King and Dehaene, 2014; 

Marti et al., 2015; Salti et al., 2015; Stokes et al., 2015; Wolff et al., 2015). These results 

highlight that, irrespective of context, conscious perception involves a series of partially 

overlapping processing stages.  

 Time-frequency decompositions confirmed this conclusion. Seen trials in the 

perception task differed from unseen trials by a prominent decrease in alpha/beta power over 

fronto-central sensors, corresponding to a distributed network centered on parietal cortex. A 

similar desynchronization, sustained throughout the retention period, was also observed for 

conscious working memory. Alpha/beta band desynchronizations such as these have 

previously been linked with conscious perception (Gaillard et al., 2009; Wyart and Tallon-

Baudry, 2009) and working memory (Lundqvist et al., 2016). Modelling suggests that the 

memorized item is encoded by intermittent gamma bursts, which interrupt an ongoing 

desynchronized beta default state (Lundqvist et al., 2011). Such a decreased rate of beta 
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bursts, once averaged over many trials, would have resulted in the apparently sustained power 

decrease we observed. Increases in gamma power have also been shown in some studies on 

conscious perception (e.g., Gaillard et al., 2009), but we failed to detect it here (Figure 4), 

perhaps because our targets were brief, peripheral, and low in intensity. 

 Circular-linear correlations further highlighted the similarity between conscious 

perception and working memory. Location information could be tracked for ~500ms on 

perception-only trials and for at least 1.5 seconds of the working memory retention period 

(Supplementary Figure 2). The mental representation formed during conscious perception was 

therefore either maintained or repeatedly replayed during conscious working memory.  

Long-lasting blindsight effect reflects genuine non-conscious working memory  

 Even when subjects indicated not having seen the target, they still identified its 

position much better than chance up to 4 seconds after its presentation. This long-lasting 

blindsight effect was replicated in two independent experiments and withstood salient visible 

distractors and a concurrent demand on conscious working memory. Those results corroborate 

previous research showing that information can be maintained non-consciously (e.g., 

Bergström and Eriksson, 2014; Bergström and Eriksson, 2015; Dutta et al., 2014; Soto et al., 

2011). However, these prior findings could have arisen due to errors in visibility reports. If, 

for example, a participant had been left with a weak impression of the target (and, 

consequently, its location), he or she might not have had adequate internal evidence to refer to 

this perceptual state as seen, thus incorrectly applying the label unseen. A small number of 

such errors would have produced above-chance responding. Another explanation could have 

been the conscious maintenance of an early guess, whereby subjects would have ventured a 

prediction as to the correct target position immediately after its presentation and then 

consciously maintained this hunch.  
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The MEG results clearly refute these possibilities. First, whereas seen trials were 

characterized by a sustained desynchronization in the alpha/beta band in parietal brain areas, 

no such desynchronization was observed on unseen trials, even when subjects correctly 

identified the target location. On the contrary, the only difference between unseen correct and 

unseen incorrect trials emerged around the time of the distractor and was reversed in 

direction: Unseen correct trials were accompanied by an increase in power in the alpha band 

with respect to their incorrect counterpart, an effect that might relate to a successful attempt to 

reduce interference from the distractor (Cooper et al., 2003; Jensen and Mazaheri, 2010). 

Otherwise, unseen correct and incorrect trials were indistinguishable in their power spectra 

and similar to target-absent trials. Secondly, while target location was maintained via a slowly 

decaying, yet intermittently resurfacing, neural code on seen trials in posterior brain regions, 

there was no evidence for such maintenance-related activity on unseen trials. Circular-linear 

correlations between the amplitude of the MEG signal and the position of unseen targets were 

nevertheless initially at par with that of seen targets, but quickly dropped to baseline level. As 

such, the absence of delay-period activity on unseen trials does not appear to be an artifact 

attributable to a loss of statistical power or increase in noise. Instead, in conjunction with prior 

evidence (King et al., 2016; Salti et al., 2015), our findings suggest that there may be two 

successive mechanisms for the short-term maintenance of non-conscious stimuli: an initial, 

transient period of ~1 second, during which the non-conscious representation is encoded by 

active firing with a slowly decaying amplitude, and a subsequent phase, during which neural 

activity is undetectable, yet behavior remains above chance for several seconds, thus 

suggesting an ‘activity-silent’ maintenance by short-term changes in synaptic weights.  

A theoretical framework for ‘activity-silent’ working memory 

We presented a theoretical framework, based on Mongillo et al. (2008) and the 

concept of ‘activity-silent’ working memory (Stokes, 2015), that may provide a plausible 
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explanation for the present findings. According to this model, short-term memories are 

maintained by slowly decaying patterns of synaptic weights. A retrieval cue presented at the 

end of the delay serves as a non-specific read-out signal capable of reactivating these dormant 

representations above chance-level. Support for this model comes from experiments in which 

non-specific task-irrelevant stimuli (Wolff et al., 2015) or neutral post-cues (Sprague et al., 

2016) presented during a delay restore the decodability of representations. Direct 

physiological evidence for the postulated short-term changes in synaptic efficacies also exists 

(Fujisawa et al., 2008). The present non-conscious condition provides further strong support 

for such an activity-silent mechanism, as it was accompanied by a disappearance of delay 

activity (Figures 4 and 5). 

In this framework, a stimulus that fails to cross the threshold for sustained activity and 

subjective visibility may still induce enough activity in high-level cortical circuits to trigger 

short-term synaptic changes. Such transient non-conscious propagation of activity has indeed 

been simulated in neural networks (Dehaene and Naccache, 2001) and measured 

experimentally in temporo-occipital, parietal, and even prefrontal cortices (Salti et al., 2015; 

van Gaal and Lamme, 2012). In the present work, we indeed observed some residual, 

transiently decodable activity over left occipito-temporal sensors on unseen correct trials 

(Supplementary 1). The memory of target location could therefore have arisen from posterior 

visual maps (Roelfsema, 2015). Note that activity-silent mechanisms need not apply solely to 

prefrontal cortex as originally proposed by Mongillo et al. (2008), but constitute a generic 

mechanism that may be replicated in different areas, possibly with increasingly longer time 

constants across the cortical hierarchy (Chaudhuri et al., 2014). Only some of these 

areas/spatial maps may be storing the information on unseen trials. 

A key feature of Mongillo et al.’s (2008) model and the present simulations is that, 

even for above-threshold (‘seen’) stimuli, delay activity is not continuously sustained. 
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Occasional bouts of spontaneous reactivation instead refresh the synaptic weights and 

maintain the memory for an indefinite time. This account fits with Baddeley’s (2003) central 

hypothesis that working memory requires frequent rehearsal, and suggests that even 

consciously perceived items may not be “in mind” constantly. The time course of circular-

linear correlations we observed on seen trials matches this description: While target location 

was encoded and maintained in temporo-occipital areas, target decodability was not sustained 

continuously, but waxed and waned throughout the delay, potentially reflecting conscious 

rehearsal. Fuentemilla et al. (2010) also observed that, during a delay period, decodable 

representations of memorized images recurred at a theta rhythm. More recently, single-trial 

analyses of monkey electrophysiological recordings in a working-memory task have 

confirmed the absence of any continuous activity and instead identified the presence of 

discrete gamma bursts, paired with a decrease in beta-burst probability (Lundqvist et al., 

2016). Although we simulated only the simplest model of activity-silent working memory 

(Mongillo et al., 2008), a biologically more elaborate version (Lundqvist et al., 2011) also 

captures such decreases in alpha/beta power.  

Conclusion 

In contrast to a widely-held belief, our findings support the existence of genuine 

working memory in the absence of either conscious perception or sustained activity. 

Following a transient encoding phase supported by active firing, non-conscious stimuli may 

then be maintained by ‘activity-silent’ short-term changes in synaptic weights without any 

detectable neural activity, allowing above-chance retrieval for several seconds. These results 

highlight the need to re-conceptualize our understanding of working memory, and to 

continuously challenge the limits of non-conscious processing. 
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Methods 

Subjects 

38 healthy volunteers participated in the present study (experiment 1: N = 17, Mage = 

23.3 years, SDage = 2.8 years, 10 men; experiment 2: N = 21, Mage = 24.3 years, SDage = 3.8 

years, 9 men). They gave written informed consent and received 80 or 15€ as compensation 

for the imaging and behavioral paradigms. Due to noisy recordings, only 13 of the 17 subjects 

in experiment 1 were retained for the MEG analyses.  

Experimental protocol 

 Participants performed variations of a spatial delayed-response task, designed to assess 

retention of a target location under varying levels of subjective visibility (Figure 1A). Each 

trial began with the presentation of a central fixation cross (500ms), displayed in white ink on 

an otherwise black screen. In experiment 1, a faint gray target square (RGB: 89.25 89.25 

89.25) was flashed for 17ms in 1 out of 20 equally spaced, invisible positions along a circle 

centered on fixation (radius = 200 pixels; 8 repetitions/location). Another fixation cross 

(17ms) preceded the display of the mask (233ms). Mask elements were composed of four 

individual squares (two right above and below, and two to the left and right of the target 

stimulus), arranged to tightly surround the target square without overlapping it. They 

appeared simultaneously at all possible target locations. Mask contrast was adjusted on an 

individual basis in a separate calibration procedure (see below). A variable delay period with 

constant fixation followed the mask (experiment 1: 2.5, 3.0, 3.5, or 4.0s). On 50% of the trials 

in experiment 1, an unmasked distractor square, randomly placed and with the same duration 

as the target, was presented 1.5s into the delay period. 

After the delay, 20 letters – drawn from a subset of lower-case letters of the alphabet 

(excluded: e, j, n, p, t, v) – were randomly presented in the 20 positions (2.5s). Participants 

were asked to identify the target location by speaking the name of the letter presented at the 
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location. They were instructed to always provide a response, guessing if necessary. A trial 

ended with the presentation of the word Vu? (French for seen) in the center of the screen 

(2.5s), cueing participants to rate the visibility of the target on the 4-point Perceptual 

Awareness Scale (PAS; 1: no experience of the target, 2: brief glimpse, 3: almost clear 

experience, 4: clear experience; Ramsøy and Overgaard, 2004) using the index, middle, ring, 

or little finger of their right hand (five-button non-magnetic response box, Cambridge 

Research Systems Ltd., Fiber Optic Response Pad). We instructed subjects to reserve a 

visibility rating of 1 for those trials, for which they had absolutely no perception of the target. 

The target square was also replaced by a blank screen on 20% of the trials, in order to obtain 

an objective measure of participants’ sensitivity to the presence of the target. The inter-trial 

interval (ITI) lasted 1s. Subjects completed a total of 200 trials of this working memory task, 

divided into four separate experimental blocks. They also undertook two blocks of 100 trials 

of a perception-only control paradigm, identical to the working memory task in all respects 

except that the delay period and target localization screen were omitted, such that the 

presentation of the mask immediately preceded subjects’ visibility ratings. Task order 

(perception vs. working memory) was counterbalanced across participants.  

Experiment 2 was designed to investigate the impact of a conscious working memory 

load on non-conscious working memory. Apart from the following exceptions, it was 

identical to experiment 1: A screen with either 1 (low load) or 5 (high load) centrally 

presented digits (1.5s) – randomly drawn (without replacement) from the numbers 1 through 9 

– as well as a 1s-fixation period were shown prior to the presentation of the target square. 

Following either a 0s- or a 4s-delay period, subjects first identified the target location by 

typing their responses on a standard AZERTY keyboard (4s). The French word for numbers 

(Numéros?) then probed participants to recall the sequence of digits in the correct order. 

Responses were again logged on the keyboard during a period of 4.5s. Subjects last rated 
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target visibility as in experiment 1 (3s). The ITI varied between 1 and 2s. Participants 

completed two experimental blocks of 100 trials each. 

Calibration task 

Prior to the experimental tasks, each participant’s perceptual threshold was estimated 

in order to ensure roughly equal proportions of seen and unseen trials. Subjects completed 150 

(experiment 1: 3 blocks) or 125 (experiment 2: 5 blocks) trials of a modified version of the 

working memory task (no distractor, delay duration: 2s in experiment 1 and 0s in experiment 

2), during which mask contrast was either increased (following a visibility rating of 2, 3, or 4) 

or decreased (following a visibility rating of 1) on each target-present trial according to a 

double-staircase procedure. Individual perceptual thresholds to be used in the main tasks were 

derived by averaging the mask contrasts from the last four switches from seen to unseen (or 

vice versa) in each staircase. 

Behavioral analyses 

 We analyzed our behavioral data in Matlab R2014a (MathWorks Inc., Natick, MA) 

and SPSS Statistics Version 20.0 (IBM, Armonk, NY). Only meaningful trials without 

missing responses were included in any analysis. Distributions of localization responses were 

computed for visibility categories with at least five trials per subject. Objective working 

memory performance was quantified via two complementary measures. The rate of correct 

responding (CR) was defined as the proportion of trials within two positions (i.e.,+/- 36°) of 

the actual target location and served as an index of the amount of information that could be 

retained. Because 5 out of 20 locations were counted as correct, chance on this measure was 

25%. The precision of working memory was estimated as the dispersion (standard deviation) 

of spatial responses. In particular, we modeled the observed distribution of responses D(n) as 

a mixture of a uniform distribution (random guessing) and an unknown probability 

distribution d (“true working memory”):  
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(1) 𝐷(𝑛) =  
𝑝

𝑁
+ (1 − 𝑝)𝑑(𝑛) 

 

where p refers to the probability that a given trial is responded to using random guessing; N 

to the number of target locations (N = 20); and n is the deviation from the true target location. 

We assumed that d(n) = 0 for deviations beyond a fixed limit a (with a = 2). This hypothesis 

allowed us to estimate p from the mean of that part of the distribution D for which one may 

safely assume no contribution of working memory: 

 

(2) p̂ =  
∑ D(n)| n outside [−a,a]

(N−2a−1)
∗ N 

 

where the model is designed in such a way as to ensure that �̂� = 1 if D is a uniform 

distribution (i.e., 100% of random guessing) and �̂� = 0 if D vanishes outside the region of 

correct responding (i.e., 0% of random guessing). There needs to be at least chance 

performance inside the region of correct responding, so 

 

(3) ∑ D(n) | n ∈ [−a, a] ≥
2a−1

N
 

 

which ensures 0 ≤ �̂� ≤ 1. This is the reason why, when computing precision, we included 

only subjects whose CR for unseen trials, collapsed across all experimental conditions, 

significantly exceeded chance performance (i.e., 25%) in a χ
2
-test (p < .05). An estimate of d, 

�̂�, can then be derived in two steps from Equation 1 as 

 

(4) δ(n) =  
D(n)− 

p̂

N

1− p̂
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(5) d̂(n) =  
δ(n)|n∈[−a,a]

∑ δ(n)|n∈[−a,a]
. 

 

We note that the distribution δ has residual, yet negligible, positive and negative mass (due to 

noise) outside the region of correct responding. In order to obtain �̂�, we therefore restricted 

the distribution δ to [-a, a], set all negative values to 0, and renormalized its mass to 1. The 

precision of the representation of the target location in working memory was then defined as 

the standard deviation of that distribution. 

MEG recordings and preprocessing 

 In experiment 1, we recorded MEG with a 306-channel (102 sensor triplets: 1 

magnetometer and 2 orthogonal planar gradiometers), whole-head setup by 

ElektaNeuromag® (Helsinki, Finland) at 1000Hz with a hardware bandpass filter between 0.1 

and 330 Hz. Eye movements as well as heart rate were monitored with vertical and horizontal 

EOG and ECG channels. Prior to installation of the subject in the MEG chamber, we digitized 

three head landmarks (nasion and pre-auricular points), four head position indicator (HPI) 

coils placed over frontal and mastoïdian skull areas, and 60 additional locations outlining the 

participant’s head with a 3-dimensional Fastrak system (Polhemus, USA). Head position was 

measured at the beginning of each run.  

 Our preprocessing pipeline followed Marti et al. (2015). Using MaxFilter Software 

(ElektaNeuromag®, Helsinki, Finland), raw MEG signals were first cleaned of head 

movements, bad channels, and magnetic interference originating from outside the MEG 

helmet (Taulu et al., 2004), and then downsampled to 250Hz. We conducted all further 

preprocessing steps with the Fieldtrip toolbox (http://www.fieldtriptoolbox.org/; Oostenveld 

et al., 2011) run in a Matlab R2014a (MathWorks Inc., Natick, MA) environment. Initially, 

MEG data were epoched between -0.5 and +2.5s with respect to target onset. Trials 

contaminated by muscle or other movement artifacts were then identified and rejected in a 
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semi-automated procedure, for which the variance of the MEG signals across sensors served 

as an index of contamination. To remove any residual eye-movement and cardiac artifacts, we 

performed independent component analysis separately for each channel type, visually 

inspected the topographies and time courses of the first 30 components, and subtracted any 

contaminated component from the MEG data. Epochs retained for all investigations based on 

evoked responses were then low-pass filtered at 30Hz. Following King et al. (2016), to track 

the neural representations of target, response, and distractor location, these filtered epochs 

were transformed into circular-linear correlation coefficients by combining the two linear 

correlation coefficients between the MEG signal and the sine and cosine of the angle defining 

the target location. A sliding, frequency-independent Hann taper (window size: 500ms, step 

size: 20ms) was convolved with the unfiltered epochs in order to extract an estimate of power 

between 1 and 99Hz (in 2Hz steps) to identify the neural correlates of conscious and non-

conscious perception and working memory in the frequency domain. Prior to univariate or 

multivariate statistical analysis, data (ERFs, circular-linear correlation coefficients, time-

frequency power estimates) were baseline corrected using a period between -200 and -50ms. 

Sources 

 Individual anatomical magnetic resonance images (MRI), obtained with a 3D T1-

weighted spoiled gradient recalled pulse sequence (voxel size: 1 * 1 * 1.1mm; repetition time 

[TR]: 2,300ms; echo time [TE]: 2.98ms; field of view [FOV]: 256 * 240 * 176mm; 160 

slices) in a 3T Tim Trio Siemens scanner, were first segmented into gray/white matter as well 

as subcortical structures with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). We then 

reconstructed the cortical, scalp, and head surfaces in Brainstorm 

(http://neuroimage.usc.edu/brainstorm; Tadel et al., 2011) and co-registered these anatomical 

images with the MEG signals, using the HPI coils and the digitized head shape as a reference. 

Current density distributions on the cortical surface were subsequently estimated separately 
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for each condition and subject. Specifically, we employed an analytical model with 

overlapping spheres to compute the leadfield matrix and modeled neuronal current sources 

with an unconstrained (dipole orientation loosening factor: 0.2) weighted minimum-norm 

current estimate (wMNE; depth-weighting factor: 0.5) and a noise covariance obtained from 

the baseline period of all trials. Average time-frequency power in the alpha (8 – 12Hz) and 

beta (13 – 30 Hz) bands was then estimated with complex Morlet wavelets using the 

Brainstorm default parameters, the resulting transformations projected onto the ICBM 152 

anatomical template (Fonov et al., 2011, 2009), and the contrasts between the conditions of 

interest computed. Group averages for spatial clusters of at least 150 vertices are shown in dB 

relative to baseline and were thresholded at 60% of the maximum amplitude (cortex smoothed 

at 60%). 

Multivariate pattern analyses 

 We employed the Scikit-Learn package (Pedregosa et al., 2011) as implemented in 

MNE 0.13 (Gramfort, 2013; Gramfort et al., 2014) in order to conduct our multivariate 

pattern analyses (MVPA). Following Marti et al. (2015), we trained a linear support vector 

machine (Chang and Lin, 2011) at each time sample within each participant to isolate the 

topographical patterns best differentiating seen and unseen trials separately for each task. 

Using a 5-fold, stratified cross-validation procedure, the MEG data were first randomly split 

into five sets of trials with the same proportion of samples for each class. 50% of the most 

informative features (i.e., channels) for each fold were then selected by means of a simple, 

univariate analysis of variance (Charles et al., 2014; Haynes and Rees, 2006) to reduce the 

dimensionality of the data, the remaining channel-time features z-score normalized, and a 

weighting procedure applied in order to counteract the effects of any class imbalances. The 

classifier was then trained on four of these sets and tested on the left-out trials in order to 

identify the hyperplane (i.e., topography) best suited to separate the two classes while 
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avoiding overfitting. This sequence of events (univariate feature selection, normalization, 

training and testing) was repeated five times, ensuring that each trial would be included in the 

test set once.  

Within the same cross-validation loop, we also evaluated the ability of each classifier 

to discriminate visibility ratings at all other time samples (i.e., generalization across time). 

This kind of MVPA results in a temporal generalization matrix, in which each entry 

represents the decoding performance of each classifier trained at time point t and tested at 

time point t’, and in which the diagonal corresponds to classifiers trained and tested on the 

same time points (King and Dehaene, 2014). Importantly, when assessing the similarity of the 

neural processes involved in conscious perception and working memory and thus when 

interrogating the capacity of our classifiers to generalize across tasks (i.e., from the perception 

to the working memory task and vice versa), we modified the aforementioned cross-validation 

procedure to capitalize on the independence of our training and testing data (see 

http://martinos.org/mne/dev/auto_examples/decoding/plot_decoding_time_generalization_con

ditions.html#example-decoding-plot-decoding-time-generalization-conditions-py as an 

example). As such, classifiers from each training set were directly applied to the entire testing 

set and the respective predictions averaged.  

Classifiers generated a continuous output in the form of the distance between the 

respective sample and the separating hyperplane for each test trial. In order to be able to 

compare classification performance across subjects, we then applied a receiver operating 

characteristic analysis across trials within each participant and summarized overall effect sizes 

with the non-parametric area under the curve (AUC). Unlike average decoding accuracy, the 

AUC serves as an unbiased measure of decoding performance as it represents the true-positive 

rate (e.g., a trial was correctly categorized as seen) as a function of the false-positive rate 

(e.g., a trial was incorrectly categorized as seen). Chance performance, corresponding to equal 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 14, 2016. ; https://doi.org/10.1101/093815doi: bioRxiv preprint 

http://martinos.org/mne/dev/auto_examples/decoding/plot_decoding_time_generalization_conditions.html#example-decoding-plot-decoding-time-generalization-conditions-py
http://martinos.org/mne/dev/auto_examples/decoding/plot_decoding_time_generalization_conditions.html#example-decoding-plot-decoding-time-generalization-conditions-py
https://doi.org/10.1101/093815


28 

 

proportions of true and false positives, therefore leads to an AUC of 0.5. Any value greater 

than this critical level implies better-than-chance performance, with an AUC of 1 indicating a 

perfect prediction for any given class. 

Statistical analyses 

 We performed statistical analyses across subjects. For the ERF and time-frequency 

data, cluster-based, non-parametric t-tests with Monte Carlo permutations were used to 

identify significant differences between experimental conditions (Maris and Oostenveld, 

2007). Further planned comparisons of ERF time courses (seen vs. unseen) in a-priori defined 

spatio-temporal regions of interest (i.e., P3b time window: 300 – 600ms) were conducted with 

non-parametric signed-rank tests (puncorrected < .05). A correction for multiple comparisons was 

then applied with a false discovery rate (pFDR < .05). 

 Non-parametric signed-rank tests (puncorrected < .05) were also employed to evaluate 

decoding performance and the strength of circular-linear correlations. Specifically, we 

assessed whether classifiers could predict the trials’ classes better than chance (AUC > 0.5) 

and whether circular-linear correlation coefficients deviated from baseline values (Δ rho > 0). 

We report temporal averages over four a-priori time bins, corresponding to an early 

perceptual period (0.1 – 0.3s), the P3b time window (0.3 – 0.6s), and the delay before (0.6 – 

1.75s) and after (1.75 – 2.53s) the distractor. To capitalize on the increased spatial selectivity 

of gradiometers, averaged time courses of these two channels are shown for circular-linear 

correlations. 

Simulations 

 A one-dimensional, recurrent continuous attractor neural network (CANN) model 

(Mongillo et al., 2008) was adapted  in order to simulate the experimental findings (Figure 

6A). Individual neurons were aligned according to their preferred stimulus value, enabling the 

network to encode angular position of a target stimulus (range: -π to π; periodic boundary 
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condition). The dynamics of this system were determined by the synaptic currents of each 

neuron given by 

 

(6) τ
∂hE(θ,t)

∂t
=  −hθ + ρ ∫ J(θ, θ′)u(θ′, t)x(θ′, t)RE(θ′, t)dθ′ − JEIRI + Ib + δ1ξ1(θ, t) +

π

−π

Ie + δ2ξ2(θ, t), 

(7) 
∂u(θ,t)

∂t
=

U−u(θ,t)

τf
+ U[1 − u(θ, t)]RE(θ, t), 

(8)  
∂x(θ,t)

∂t
=

1−x(θ,t)

τd
− u(θ, t)x(θ, t)RE(θ, t), and 

(9) τ
∂hI

∂t
= −hI + JIE ∫ RE(θ, t)

π

−π
, 

 

where τ describes the time constant of firing rate dynamics (in the order of milliseconds); ρ 

refers to neuronal density; hE (θ,t) and RE (θ,t) capture the synaptic current to and firing rate 

of neurons with preference θ at time t respectively; and R(h) = α ln(1 + exp(h/α)) is the neural 

gain chosen in the form of a smoothed threshold-linear function. JIE and JEI represent the 

connection strength between excitatory and inhibitory neurons. All excitatory neurons 

received a constant background input, Ie, reflecting the arousal signal when the neural system 

was engaged in a working memory task. δ1ξ1 is background noise; Ie, any external stimulus 

(e.g., target, mask, and recall signal); and  δ1ξ1 (t) the noise related to those external stimuli. u 

(θ, t) and x (θ, t) denote the short term synaptic facilitation (STF) and depression (STD) 

effects at time t of neurons with preference θ, respectively. The short term plasticity 

dynamics are characterized by the following parameters: J1 (absolute efficacy), U (increment 

of the release probability when a spike arrives), τf  and τd (facilitation and depression time 

constants). The STF value u (θ, t) is facilitated whenever a spike arrives, and decays to the 

baseline U within the time τf. The neurotransmitter value x (θ, t) is utilized by each spike in 

proportion to u (θ, t) and then recovers to its baseline, 1, within the time τd. 
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J (θ, θ’) is the interaction strength from neurons at θ to neurons at  θ’ and is chosen to be 

 

(10) 𝐽(𝜃, 𝜃′) = {
𝐽1cos[𝐵 ∗ (𝜃 − 𝜃′)] − 𝐽0

−𝐽0
, 𝐵 ∗ (𝜃 − 𝜃′) ∈

[−𝑎𝑟𝑐𝑜𝑠(−𝐽0 𝐽1⁄ ), 𝑎𝑟𝑐𝑜𝑠(−𝐽0 𝐽1⁄ )], 

 

where J0, J1, and B are constants which determine the connection strength between the 

neurons. Note that J (θ, θ’) is a function of θ – θ’, i.e., the neuronal interactions are 

translation-invariant in the space of neural preferred stimuli. The other parameters of the 

system were as follows: τ = 0.008s, τ f = 4s, τ d = 0.3s, J1 = 12, J0 = 1, JEI = 1.9, JIE = 1.8, Ib = 

- 0.1 Hz, δ1 = 0.3, δ2 = 9, N = 100, α = 1.5, B = 2.2. 

During our simulations, we first presented a target signal with an amplitude of Atarget = 

390Hz at a random location (50ms), waited for 17ms, and then applied a mask signal to all the 

neurons in the system (200ms). The amplitude of the mask signal was initially varied in order 

to determine a critical value which would produce two distinct maintenance patterns, but was 

then fixed at a threshold of Amask = 62Hz. At the end of a 3s-delay period, a non-specific recall 

signal was given for 50ms with Arecall = 10Hz. Remembered target position was calculated as 

the population vector angle during this time period. 
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Figures and Legends 

 

Figure 1. General experimental design and behavioral performance in the working memory task 

(A) Experimental design. A subsequently masked target square was flashed in 1 out of 20 positions. Subjects 

were asked to report this location after a delay of up to 4s and to rate the visibility of the target on a 4-point 

scale. A visible distractor square with features otherwise identical to the target was shown on 50% of the trials 

during the retention period (at 1.75s). In a perception-only control condition, the maintenance phase and location 

response were omitted, and subjects assessed the visibility of the target immediately after the mask.  

(B) Spatial distributions of forced-choice localization performance in the working memory task (experiment 1;  

0 = correct target location; positive = clockwise offset). Error bars indicate standard error of the mean (SEM) 

across subjects. The horizontal, dotted line illustrates chance-level at 5%. Percentages show proportion of target-

present trials from a given visibility category. Due to low number of trials in individual visibility ratings 2, 3, 

and 4, all seen categories were collapsed for analyses.  
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Figure 2. Behavioral evidence for non-conscious working memory 

Spatial distributions of responses (0 = correct target location; positive = clockwise offset) as a function of 

visibility and distractor presence (A), conscious working memory load (B) and delay duration (C). Insets show 

rate of correct responding (within +/- 2 positions of actual location) and precision of working memory 

representation separately for seen and unseen trials. Error bars represent standard error of the mean (SEM) across 

subjects and horizontal, dotted line indicates chance-level (5%). *p < .05, **p < .01, and ***p < .001 in a paired 

sample t-test. Dis = distractor, L = load, Del = delay. 
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Figure 3. Neural signatures for conscious perception and maintenance in working memory 

(A) Sequence of brain activations (0 – 800ms) evoked by consciously perceiving the target in the perception 

(top) and working memory (bottom) task. Each topography depicts the difference in amplitude between seen and 

unseen trials over a 100ms time window centered on the time points shown (magnetometers only). 

(B) Average time courses of seen and unseen trials (0 – 800ms) after subtraction of target-absent trials in a group 

of parietal magnetometers in the perception (left) and working memory (right) task. Shaded area illustrates 

standard error of the mean (SEM) across subjects. Significant differences between conditions are depicted with a 

horizontal, black line (one-tailed Wilcoxon signed-rank test across subjects, uncorrected). For display purposes, 

data were lowpass-filtered at 8Hz. T = target onset.  
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(C) Temporal generalization matrices for decoding of visibility category as a function of training and testing 

task. In each panel, a classifier was trained at every time sample (y-axis) and tested on all other time points (x-

axis). The diagonal gray line demarks classifiers trained and tested on the same time sample. Time courses of 

diagonal decoding and of classifiers averaged over the working memory maintenance period (0.8 – 2.5s) and 

over the P3b time window (0.3 – 0.6s) are shown as black, blue, and red insets. Thick lines indicate significant, 

above-chance decoding of visibility (Wilcoxon signed-rank test across subjects, uncorrected, two-tailed except 

for diagonal). For display purposes, data were smoothed using a moving average with a window of eight 

samples. AUC = area under the curve.   
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Figure 4. A sustained decrease in alpha/beta power as a marker of conscious working memory 

(A) Average time-frequency power relative to baseline (dB) as a function of task and visibility category in a 

group of occipital (left) and fronto-central (right) magnetometers. 

(B) Beta band activity (13 – 30Hz; 0 – 2.5s) related to conscious working memory (seen – unseen trials) as 

shown in magnetometers (top) and source space (bottom; in dB relative to baseline). Black asterisks indicate 

sensors showing a significant difference as assessed by a Monte-Carlo permutation test.  

(C) Same as in (A) and (B) but for unseen correct and unseen incorrect trials in the alpha band (8 – 12Hz). 
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Figure 5. Tracking the contents of conscious and non-conscious working memory 

(A) Topographies (top) and time courses (bottom; -0.2 – 2.5s) of average circular-linear correlations between the 

amplitude of the MEG signal (gradiometers) and target/distractor location. Shaded area demarks standard error 

of the mean (SEM) across subjects. Thick line represents significant increase in correlation coefficient as 

compared to baseline (one-tailed Wilcoxon signed-rank test across subjects, uncorrected).  

(B) Average time courses (-0.2 – 2.5s) of circular-linear correlation coefficients between amplitude of the ERFs 

and target location on seen trials as a function of visibility in the working memory task in a group of left 

temporo-occipital (left), occipital (middle), and right temporo-occipital (right) gradiometers. Shaded area 

demarks standard error of the mean (SEM) across subjects. Thick line represents significant increase in 

correlation coefficient as compared to baseline (one-tailed Wilcoxon signed-rank test across subjects, 
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uncorrected). Insets show average correlation coefficients (relative to baseline) over four time windows: 0.1 – 

0.3s (early), 0.3 – 0.6s (P3b), 0.6 – 1.75s (bDis), and 1.75 – 2.528s (aDis). White asterisks denote significant 

differences to baseline (one-tailed Wilcoxon signed-rank test across subjects), black asterisks significant 

differences between conditions (two-tailed Wilcoxon signed-rank test across subjects). For display purposes, 

data were lowpass-filtered at 8Hz. *p < .05, **p < .01, and ***p < .001. bDis = before distractor, aDis = after 

distractor, T = target onset.  

 (C) Same as in (B), but with response location.  
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Figure 6. Activity-silent neural mechanisms underlying conscious and non-conscious working memory 

(A) Structure of a one-dimensional continuous attractor neural network (CANN). Neuronal connections J (θ, θ’) 

are translation-invariant in the space of the neurons’ preferred stimulus values (-π, π), allowing the network to 

hold a continuous family of stationary states (bumps). An external input Ie (θ, t) containing the stimulus 

information triggers a bump state (red curve) at the corresponding location in the network. 

(B) Model of a synaptic connection with short-term potentiation. In response to a presynaptic spike train 

(bottom), the neurotransmitter release probability u increases and the fraction of available neurotransmitter x 

decreases (middle), representing synaptic facilitation and depression. Effective synaptic efficacy is proportional 

to ux (top). 

(C) Firing rate of neurons (top) and sequence of events (bottom; target and mask signal) when simulating 

conscious working memory with Amask = 50Hz < Acritical. 

(D) Same as in (C) for non-conscious working memory when  Amask = 65Hz > Acritical.  
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(E, F) Performance of the network (distribution of responses) when mask amplitude was near the critical level, 

Amask = 62Hz ~Acritical, and noise had been added to the system. Out of 4000 trials, 2035 resulted in the conscious 

(E) and the remainder in the non-conscious regime (F). In both cases, performance remained above chance with 

the responses concentrated around the initial target location. 
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Tables 

Training  Testing  0.1 – 0.3s 0.3 – 0.6s 0.6 – 1.75s 1.75 – 2.5s 

  AUC (SEM) p AUC (SEM) p AUC (SEM) p AUC (SEM) p 

P  P Diagonal 0.53 (0.01) .004a 0.58 (0.01) .001a 0.56 (0.01) .001a 0.51 (0.01) .076a 

 P3b 0.51 (0.01) .152b 0.55 (0.01) .003b 0.52 (0.01) .046b 0.51 (0.005) .196b 

 Maintenance 0.50 (0.004) .507b 0.50 (0.005) .382 0.52 (0.01) .055b 0.51 (0.01) .463b 

P  WM Diagonal 0.52 (0.005) .003a 0.55 (0.01) < .001a 0.53 (0.005) < .001a 0.50 (0.01) .431a 

 P3b 0.50 (0.004) .279b 0.53 (0.01) .011b 0.51 (0.01) .116 b 0.49 (0.01) .046b 

 Maintenance 0.49 (0.005) .039b 0.49 (0.01) .311b 0.51 (0.006) .311 b 0.50 (0.01) .972b 

WM  WM Diagonal 0.52 (0.01) .066a 0.57 (0.02) .007a 0.54 (0.01) .004a 0.52 (0.01) .098a 

 P3b 0.50 (0.01) .807b 0.54 (0.01) .020b 0.50 (0.01) .861b 0.49 (0.01) .507b 

 Maintenance 0.50 (0.01) .507b 0.49 (0.01) .552 b 0.51 (0.01) .650b 0.51 (0.01) .507b 

WM  P Diagonal 0.52 (0.005) .010a 0.55 (0.01) < .001a 0.52 (0.01) .020a 0.51 (0.01) .098b 

 P3b 0.50 (0.006) .753b 0.53 (0.01) .012b 0.50 (0.01) .753b 0.49 (0.01) .382b 

 Maintenance 0.49 (0.01) .279b 0.49 (0.01) .101 b 0.51 (0.01) .507b 0.50 (0.01) .917b 

 

Table 1. Statistics for decoding analyses 

 

Statistics are shown for decoding of visibility category (seen vs. unseen) as a function of task and testing time 

bin. The first column identifies the respective training and testing sets (P = perception task; WM = working 

memory task), the second column the training classifiers (Diagonal = diagonal, P3b = 300 – 600ms, Maintenance 

= 0.8 – 2.5s), that were averaged. Bold numbers indicate above-chance decoding performance (
a
one-tailed, 

b
two-

tailed Wilcoxon signed-rank test across subjects). AUC = area under the curve; SEM = standard error of the 

mean (across participants). 
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  0.1 – 0.3s 0.3 – 0.6s 0.6 – 1.75s 1.75 – 2.5s 

  Δrho (SEM) p Δrho (SEM) p Δrho (SEM) p Δrho (SEM) p 

Distractor          

     All  Occ 0.020 (0.007) .020 0.014 (0.007) .040 n/a  n/a  

          

Target          

     All  Occ 0.019 (0.004) 6.104*10-4 0.028 (0.006) 2.441*10-4 0.002 (0.003) .271 7.24*10-5 (0.003) .420 

     P Seen L Temp 0.006 (0.006) .227 0.009 (0.007) .108 4.67*10-7 (0.004) .420 -0.008 (0.004) .960 

      Occ 0.003 (0.005) .318 0.017 (0.002) .002 4.13*10-4 (0.005) .420 -0.003 (0.006) .751 

 R Temp 0.011 (0.007) .100 0.030 (0.007) 1.221*10-4 0.006 (0.005) .170 -0.004 (0.005) .751 

     Seen L Temp 0.025 (0.005) 1.221*10-4 0.028 (0.004) 2.441*10-4 0.013 (0.004) .003 0.005 (0.004) .153 

 Occ 0.015 (0.008) .040 0.021 (0.010) .029 -4.22*10-4 (0.005) .580 -0.010 (0.008) .793 

 R Temp 0.009 (0.008) .188 0.024 (0.006) 2.441*10-4 -0.002 (0.004) .500 -0.006 (0.005) .863 

     Unseen L Temp 0.008 (0.006) .096 0.006 (0.005) .170 -0.004 (0.004) .793 -7.10*10-4 (0.004) .632 

 Occ 0.019 (0.006) .013 0.015 (0.007) .024 0.003 (0.006) .249 0.008 (0.006) .096 

 R Temp -0.005 (0.005) .793 -0.002 (0.004) .682 -0.005 (0.004) .863 -9.74*10-4 (0.005) .580 

     Unseen+ L Temp 0.018 (0.007) .020 0.001 (0.008) .473 0.006 ((0.007) .271 0.001 (0.006) .554 

 Occ 0.012 (0.010) .101 0.011 (0.014) .271 0.003 (0.011) .318 0.005 (0.011) .249 

 R Temp -0.011 (0.011) .751 -0.009 (0.011) .706 -0.004 (0.011) .580 -0.003 (0.011) .527 

     Unseen- L Temp 0.004 (0.008) .342 -9.96*10-4 (0.011) .658 -0.008 (0.008) .682 1.51*10-4 (0.009) .446 

 Occ 0.016 (0.006) .013 0.003 (0.008) .393 0.005 (0.008) .137 0.008 (0.009) .170 

 R Temp -0.016 (0.009) .960 -0.007 (0.009) .863 -0.008 (0.010) .847 -0.004 (0.010) .632 

          

Response          

     Seen L Temp 0.024 (0.005) 2.441*10-4 0.029 (0.005) 3.662*10-4 0.015 (0.005) .003 0.007 (0.003) .020 

 Occ 0.012 (0.008) .064 0.023 (0.008) .005 0.002 (0.004) .368 -0.005 (0.006) .729 

 R Temp 0.009 (0.009) .170 0.025 (0.006) 2.441*10-4 -0.001 (0.004) .473 -0.005 (0.005) .773 

     Unseen L Temp 0.006 (0.005) .170 -0.001 (0.007) .249 0.004 (0.005) .153 0.003 (0.005) .342 

 Occ 0.006 (0.006) .207 0.003 (0.006) .342 0.007 (0.004) .096 0.007 (0.006) .153 

 R Temp 0.007 (0.006) .137 0.008 (0.006) .122 0.010 (0.006) .047 0.012 (0.006) .064 

     Unseen+ L Temp 0.019 (0.009) .024 0.012 (0.010) .108 0.016 (0.008) .055 0.013 (0.006) .024 

 Occ 0.006 (0.011) .189 0.013 (0.012) .207 0.011 (0.009) .108 0.010 (0.011) .137 

 R Temp -0.005 (0.010) .632 0.002 (0.010) .420 0.003 (0.010) .446 0.004 (0.011) .527 

     Unseen- L Temp 9.77*10-4  (0.007) .500 -0.006 (0.009) .682 -0.002 (0.009) .658 -0.003 (0.006) .706 

 Occ 0.017 (0.009) .055 0.013 (0.011) .137 0.007 (0.009) .271 0.006 (0.009) .271 

 R Temp 4.69*10-4 (0.011) .420 -0.004 (0.010) .393 -6.78*10-6 (0.010) .342 0.005 (0.010) .393 

 

Table 2. Statistics for circular-linear correlation analyses 

 

Statistics for circular-linear correlation analyses between the average amplitude of the MEG signal in the 

gradiometers and distractor, target, and response position are listed as a function of visibility, accuracy, channel 

group and time window. Bold numbers indicate significant differences in correlation values relative to baseline 

(one-tailed Wilcoxon signed-rank test). P = perception task; Unseen+ = unseen correct trials (within +/- 2 

positions of actual target location); Unseen- = unseen incorrect trials; Occ = occipital gradiometers; L Temp = 

left temporo-occipital gradiometers; R Temp = right temporo-occipital gradiometers; SEM = standard error of 

the mean (across subjects). 

 

 

 

 

 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 14, 2016. ; https://doi.org/10.1101/093815doi: bioRxiv preprint 

https://doi.org/10.1101/093815


45 

 

Supplementary Figures 

 

Supplementary Figure 1. Tracking the contents of non-conscious working memory 

(A) Average time courses of circular-linear correlation coefficients with target location in the working memory 

task (-0.2 – 2.5s) on unseen trials as a function of accuracy (correct = within +/- 2 positions of actual target 

location) in a group of left temporo-occipital (left), occipital (middle), and right temporo-occipital (right) 

gradiometers. Thick lines indicate significant increases in correlation coefficients as compared to baseline (one-

tailed Wilcoxon signed-rank test across participants, uncorrected). Shaded area illustrates standard error of the 

mean (SEM) across subjects. Insets show average correlation coefficients (relative to baseline) over four time 

windows: 0.1 – 0.3s (early), 0.3 – 0.6s (P3b), 0.6 – 1.75s (bDis), and 1.75 – 2.528s (aDis). White asterisks 

denote significant differences to baseline (one-tailed Wilcoxon signed-rank test across participants), black 

asterisks significant differences between conditions (two-tailed Wilcoxon signed-rank test across subjects). For 

display purposes, data were lowpass-filtered at 8Hz. *p < .05, **p < .01, and ***p < .001. T = target onset, bDis 

= before distractor, aDis = after distractor.  

(B) Same as in (A), but with response location. 
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Supplementary Figure 2. Representation of seen target locations during conscious perception and working 

memory 

(A) Average time courses of circular-linear correlation coefficients between amplitude of the ERFs and target 

location on seen trials as a function of task (perception and working memory) in a group of left temporo-

occipital (left), occipital (middle), and right temporo-occipital (right) gradiometers. Shaded area demarks 

standard error of the mean (SEM) across subjects. Thick line represents significant increase in correlation 

coefficient as compared to baseline (one-tailed Wilcoxon signed-rank test across subjects, uncorrected). Insets 

show average correlation coefficients (relative to baseline) over four time windows: 0.1 – 0.3s (early), 0.3 – 0.6s 

(P3b), 0.6 – 1.75s (bDis), and 1.75 – 2.528s (aDis). White asterisks denote significant differences to baseline 

(one-tailed Wilcoxon signed-rank test across subjects), black asterisks significant differences between conditions 

(two-tailed Wilcoxon signed-rank test across subjects). For display purposes, data were lowpass-filtered at 8Hz. 

*p < .05, **p < .01, and ***p < .001. T = target onset, bDis = before distractor, aDis = after distractor. 
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