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SUMMARY (150 words)  20 

Naïve mouse embryonic stem (ES) cells can readily acquire specific fates, but the 21 

cellular and molecular processes that enable lineage specification are poorly 22 

characterised. Here we investigated progression from the ES cell ground state in 23 

adherent culture. We utilised down-regulation of Rex1::GFPd2 to track loss of ES cell 24 

identity. We found that cells that have newly down-regulated this reporter have acquired 25 

competence for germline induction. They can also be efficiently specified for different 26 

somatic lineages, responding more rapidly than naïve cells to inductive cues. Nodal is a 27 

candidate autocrine regulator of pluripotency. Abrogation of Nodal signalling did not 28 

substantially alter kinetics of exit from the ES cell state, but accelerated subsequent 29 

adoption of neural fate at the expense of other lineages. This effect was evident if Nodal 30 

was inhibited prior to extinction of ES cell identity. We suggest that Nodal is pivotal for 31 

non-neural competence in cells departing naïve pluripotency.  32 
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INTRODUCTION 33 

Pluripotency denotes a flexible cellular potential to differentiate into all lineages of the 34 

developing embryo. This property emerges in the epiblast of the pre-implantation 35 

blastocyst (Boroviak et al., 2014; Gardner, 1975; Rossant, 1975). After implantation, 36 

epiblast cells remain pluripotent while undergoing profound cellular and molecular 37 

changes in preparation for gastrulation (Smith, in press). In mice the post-implantation 38 

epiblast develops into a cup-shaped epithelium, the egg cylinder. Signalling cues from 39 

extra-embryonic tissues then pattern the egg cylinder to establish anterior-posterior and 40 

proximal-distal axes prior to lineage specification (Arnold and Robertson, 2009; 41 

Beddington and Robertson, 1998; Peng et al., 2016; Rossant and Tam, 2009; Thomas 42 

and Beddington, 1996).  43 

In mouse the naive phase of pluripotency can be captured in culture in the form of 44 

embryonic stem (ES) cells (reviewed by Nichols and Smith, 2012). Dual inhibition (2i) of 45 

Mek1/2 and GSK3, in optional combination with the cytokine Leukemia Inhibitory Factor 46 

(LIF), allows mouse ES cells to maintain the transcription profile, DNA methylation 47 

status and developmental potential characteristic of the pre-implantation epiblast from 48 

which they are derived (Boroviak et al., 2014; 2015; Habibi et al., 2013; Leitch et al., 49 

2013; Ying et al., 2008). ES cells in 2i are stable and relatively homogeneous, a 50 

condition referred to as “ground state” (Marks et al., 2012; Wray et al., 2010). Such 51 

uniformity in defined conditions provides an experimental system to characterise cellular 52 

and molecular events that generate multiple lineage-committed states from a 53 

developmental blank canvas.  54 

ES cell progression from the ground state is initiated simply by removal of the 55 

inhibitors. In adherent culture this results predominantly in neural specification (Ying et 56 
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al., 2003) or in a mixture of neural and mesoendodermal fates, depending on cell 57 

density (Kalkan et al., 2016). Previous studies have identified expression of Rex1 (gene 58 

name Zfp42) as a marker of undifferentiated ES cells (Betschinger et al., 2013; Kalkan 59 

and Smith, 2014; Leeb et al., 2014; Toyooka et al., 2008; Wray et al., 2010; 2011; Yang 60 

et al., 2012). In this study, we exploit a Rex1::GFPd2 (RGd2) reporter cell line (Kalkan 61 

et al., 2016) to isolate cells at initial stages of progression from naïve pluripotency 62 

following release from 2i in adherent serum-free culture. We examine whether cells 63 

exiting the ES cell state guided by autocrine cues commit preferentially to a neural fate 64 

or exhibit competence for multilineage differentiation. 65 

 66 

 67 

RESULTS 68 

 69 

Multi-lineage differentiation capacity is retained after loss of naïve ES cell 70 

identity 71 

In Rex1::GFPd2 (RGd2) reporter ES cells, a short half-life GFP is expressed from the 72 

endogenous Rex1 (Zfp42) locus (Marks et al., 2012; Wray et al., 2011). Loss of the 73 

reporter coincides with downregulation of naïve pluripotency factors and functionally 74 

with extinction of clonal self-renewal capacity (Kalkan et al., 2016) (Figure S1A-D). GFP 75 

downregulation is asynchronous across the population.  For at least 16 hours cell 76 

remain uniformly GFP positive (Kalkan et al., 2016). By 24hrs, however, GFP is 77 

expressed at variable levels and in a minority of cells the reporter is no longer 78 

detectable. These Rex1-negative cells have lost the capacity to resume self-renewal in 79 

2i/LIF, whereas cells with high GFP retain comparable colony forming efficiency to cells 80 
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taken directly from 2i  (Figure S1C). We focussed attention on the character of cells 81 

24hrs after 2i withdrawal, the first time point at which it is practical to isolate a 82 

substantial population of Rex1-negative cells by flow cytometry (Kalkan et al, 2016).  83 

We first investigated capacity to form primordial germ cell-like cells (PGCLC). 84 

Previous studies have shown that undifferentiated ES cells are not directly competent 85 

for germline specification but must first transition to a transient epiblast-like (EpiLC) 86 

population which can then be induced to form PGCLC (Hayashi et al., 2011; Nakaki et 87 

al., 2013). The EpiLC population is obtained by transfer from 2i/LIF to N2B27 medium 88 

supplemented with ActivinA, bFGF and the serum substitute KSR for 48hrs (Hayashi et 89 

al., 2011). We assessed whether the first cells that exit the ground state in N2B27 alone 90 

exhibit competence to form PGCLC. For this purpose we used RGd2 ES cells 91 

transfected with a doxycycline (Dox)-regulatable expression construct containing the 92 

three germ line determination factors Prdm1 (Blimp1), Prdm14 and Tfap2c 93 

(Magnúsdóttir et al., 2012; Nakaki et al., 2013). Stable transfectants were withdrawn 94 

from 2i for 24hrs and the high and low GFP fractions isolated by fluorescence-activated 95 

cell sorting (FACS) (Figure 1A). For each fraction, 3000 cells were aggregated in non-96 

adherent 96 well plates in medium containing 15% KSR with or without Dox (Nakaki et 97 

al., 2013). After 4 days, few cells co-expressing Blimp1 with Oct4 were present in 98 

aggregates from either population without Dox. Dox treatment did not increase the 99 

frequency of co-expression from Rex1-positive cells, but induced many double positive 100 

cells from the Rex1-negative fraction (Figure 1B and C). Dual expression of Blimp1 and 101 

Oct4 is a combination unique to PGCs and PGCLCs (Hayashi et al., 2011; Kurimoto et 102 

al., 2008; Nakaki et al., 2013). Furthermore, undifferentiated ES cells do not tolerate 103 

appreciable levels of Blimp1 protein (Magnúsdóttir et al., 2013). Quantitative image 104 
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analysis confirmed more intense Blimp1 staining in cultures derived from Rex1-negative 105 

cells (Figure 1D). By RT-qPCR analysis we detected upregulated expression of 106 

endogenous Prdm1 (Blimp1), along with Prdm14, Tfap2c, Nanos3 and Stella, as well as 107 

maintenance of Pou5f1 (Oct4) (Figure 1E). T (Bra) was induced transiently on day 2 as 108 

previously described for PGCLC induction (Figure 1E) (Nakaki et al., 2013). Thus ES 109 

cells that have newly exited the ground state under autocrine stimulation in defined 110 

conditions acquire competence for germline specification. 111 

We then examined somatic lineage potential of Rex1-negative cells. Sorted fractions 112 

were plated in media that favour mesoderm, definitive endoderm or neural lineages 113 

respectively and the timing and efficiency of differentiation quantified. 114 

ActivinA combined with GSK3 inhibition (GSK3(i)), elicits the upregulation of 115 

primitive-streak markers such as T (Tbra) in differentiating ES cells  (Gadue et al., 2006; 116 

Tsakiridis et al., 2014; Turner et al., 2014)Morrison et al., 2015). We modified RGd2 117 

cells to express an mKO2 fluorescent reporter from the T(Bra) locus (Figure 2A). 118 

T::mKO2 was not expressed in undifferentiated ES cells in 2i (Figure S2A), and not 119 

detected until day 3 of treatment with Activin plus GSK3(i). In contrast, Rex1-negative 120 

cells replated in the presence of ActivinA and GSK3(i) upregulated T::mKO2 after one 121 

day and all cells were positive by day 2. Rex1-positive cells upregulated T::mKO2 at an 122 

intermediate rate and some cells remained GFP-positive even after 3 days, indicating 123 

they remained undifferentiated and unresponsive to differentiation cues (Figure 2B). To 124 

test further mesoderm differentiation, we plated the sorted fractions in conditions that 125 

promote lateral mesoderm (Nishikawa et al., 1998; Yamashita et al., 2000). All 126 

populations gave rise to Flk1 positive/E-cadherin negative cells after 4-5 days (Figure 127 

2C).  128 
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Differentiation into definitive endoderm was assessed by monitoring the percentage 129 

of Cxcr4/E-cadherin double positive cells (Morrison et al., 2008; Yasunaga et al., 2005) 130 

under inductive conditions applied after sorting (Morrison et al., 2015)(Figure 2D). 131 

Compared to 2i cells or the Rex1-positive population, a lower proportion of Rex1-132 

negative cells upregulated Cxcr4 (Figure 2E). However, we observed that the majority of 133 

Rex1-negative cells died after replating in these conditions (Figure 2F). The survivors 134 

could form Sox17/Foxa2 double positive cells, although with lower efficiency than 2i or 135 

Rex1-positive cells (Figure S2B). Every Sox17 positive cell was also positive for Foxa2, 136 

substantiating endoderm identity (Burtscher and Lickert, 2009). Acquisition of the later 137 

marker, Sox17, was specifically reduced in the Rex1-negative cells. We hypothesised 138 

that Rex1-negative cells might display impaired survival and differentiation because of a 139 

requirement for high cell density and cell-cell contact for the endoderm programme. We 140 

therefore combined sorted cells with unsorted populations to reproduce the density of 141 

non-manipulated cultures (Figure 2G). To trace the sorted cell progeny we employed 142 

RGd2 cells constitutively labelled with mKO2 under the control of a CAG promoter 143 

(Niwa et al., 1991). Two hundred sorted labelled cells were plated together with 5.8x103 144 

parental cells per 3.8cm2 dish. Cells were exposed to definitive endoderm differentiation 145 

media then fixed and stained for Sox17 at day 4. The total number of mKO2 positive 146 

clones was determined, as well as the number of Sox17 positive cells per clone and 147 

clone sizes using CellProfiler (Jones et al., 2008). Slightly fewer clones were obtained 148 

from Rex1-negative cells (Figure 2H, Student t-test p<0.05) and their distribution was 149 

skewed towards smaller colonies (Figure 2I, two-sample Kolmogorov-Smirnov test 150 

p<0.001), with more Sox17 negative cells per colony (Figure 2J, two-sample 151 

Kolmogorov-Smirnov test p<0.01). These differences were modest however. 152 
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Importantly, the majority of Rex1-negative cells were able to produce colonies 153 

containing Sox17 positive cells.  154 

Finally, we examined cell fate acquisition in N2B27 alone, which is permissive for 155 

neural differentiation (Ying et al., 2003). The great majority (≤80%) of cells from both 156 

Rex1 fractions became immunopositive for Sox1, an exclusive marker of neurectoderm 157 

(Pevny et al., 1998; Zhang et al., 2010) (Figure 2K). However, Rex1-negative cells 158 

showed earlier upregulation of Sox1, with most cells becoming Sox1 positive on day 2, 159 

a day before the Rex1-positive population (Figure 2K). Cell viability and expansion were 160 

not significantly different between the populations (Figure S2C). Rex1-negative cells 161 

subsequently also showed accelerated onset of expression of the neuronal marker type 162 

III β-tubulin (Lee et al., 1990)(Figure S2D).  163 

Overall, these data indicate that after 24hrs of monolayer differentiation guided by 164 

autocrine cues, cells in the Rex1-negative population are poised for multilineage 165 

specification and respond more rapidly to induction than either ground state ES cells or 166 

Rex1-positive cells.  167 

 168 

Nodal does not regulate kinetics of exit from the naïve state  169 

FGF4 is a known autocrine factor that drives ES cell transition upon release from 2i 170 

(Betschinger et al., 2013; Kunath et al., 2007; Leeb et al., 2014; Stavridis et al., 2007). A 171 

second potential autocrine regulator is Nodal (Fiorenzano et al., 2016; Mullen et al., 172 

2011; Ogawa et al., 2007). Detection of Smad2 phosphorylation indicates that 173 

endogenous Nodal/TGFβ signalling is active in ES cells in 2i (Figure S3A). Treatment 174 

with the Alk5/4/7 receptor inhibitor A83-01 (Alk(i)) (Tojo et al., 2005) eliminated Smad2 175 

phosphorylation after 30 minutes (Figure S3A). However, culture in Alk(i) did not affect 176 
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colony forming capacity in 2i/LIF, even after continuous culture for three passages 177 

(Figure S3B), confirming that Nodal plays little or no role in maintenance of ground state 178 

mouse ES cells.  179 

We examined the contribution of autocrine Nodal signalling in progression from the 180 

ES cell state. We analysed changes in gene expression in cells withdrawn from 2i in the 181 

continuous presence of Alk(i) and found no difference in the dynamics of 182 

downregulation of Nanog or Klf2 mRNA (Figure 3B), nor of Nanog and Klf4 protein 183 

(Figure 3C). The rate of decay in ES cell clonogenicity was also unaffected (Figure 3D). 184 

We conclude that Nodal signalling does not promote initial exit from the naïve state.  185 

We examined expression of genes associated with the early post-implantation 186 

epiblast. Initial upregulation of pan-epiblast genes Fgf5 and Otx2 was not significantly 187 

altered when Nodal signalling was inhibited (Figure 4E). However, these genes were 188 

subsequently downregulated more abruptly on day 3/4 (Figure 4E). Conversely, 189 

transcripts for neuroectodermal lineage factors Sox1, Zic1 and Pou3f3 were strongly up-190 

regulated in day 3/4 Alk(i) treated cultures, before appreciable expression in vehicle 191 

treated cells (Figure 3F). At the protein level, most cells in Alk(i) treated cultures had 192 

downregulated Oct4 and were Sox1 positive after 3 days, indicative of neural 193 

commitment, whereas control cultures displayed a mosaic pattern of co-exclusive Sox1 194 

and Oct4 immunostaining (Lowell, 2006) (Figure 3G).  195 

To validate findings with the inhibitor we deployed siRNAs against Nodal signalling 196 

pathway components. In Nodal, Smad2/3 and Tdgf1 knockdown experiments the 197 

emergence of Oct4-/Sox2+ and Sox2+/Sox1+ cells was accelerated (Figure S3C-D). 198 

We conclude that suppression of Nodal signalling does not substantially affect initial exit 199 

from the naïve state but promotes subsequent specification to the neural lineage. 200 
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 201 

Nodal signalling is required to prevent precocious neuralisation and to potentiate 202 

other lineages 203 

Examination of Nodal signalling components in RNAseq data from RGd2 sorted cells 204 

(Kalkan et al., 2016) revealed that pathway ligands, receptors, intracellular mediators 205 

and target genes are expressed in undifferentiated ES cells and in 24hr Rex1 positive 206 

cells. Rex1-negative cells, however, display reduced expression of Nodal, Nodal 207 

proprotein convertase Pcsk6 (Pace4), and Nodal signalling pathway targets Lefty1, 208 

Lefty2 and Smad7 (Figure S4A). Consistent with pathway down-regulation in Rex1-209 

negative cells, we found that when cells were exposed to Alk(i) only after sorting, the 210 

Rex1-negative fraction showed no change in kinetics of Sox1 acquisition. In contrast the 211 

Rex1-positive population responded by accelerated expression at day 2 (Figure 4A, 212 

Student t-test p<0.05).  213 

In light of these results, we postulated that Nodal signalling may function during the 214 

primary transition from naïve pluripotency. We therefore inhibited Nodal signalling for 215 

only the 24hrs immediately following 2i withdrawal and analysed the resulting Rex1-216 

negative cells (Figure S4B). In line with previous results for continuous treatment, 217 

exposure to Alk(i) for 24hrs had little effect on downregulation of Rex1 (Figure S4B) or 218 

of naïve pluripotency factor transcripts for Nanog, Esrrb, Zfp42 (Rex1) and Klf4 (Figure 219 

S4C). Upregulation of early post-implantation markers Fgf5, Dnmt3b, Otx2 and Pou3f1 220 

was also similar to vehicle-treated cells (Figure S4C). Sox1 mRNA was not detected at 221 

24hrs, irrespective of the presence of Alk(i) (Figure S4D). Sox1 protein was detectable 222 

only in a minority of untreated cells on day 1 after sorting and increased thereafter. In 223 

contrast up to half of cells generated after Alk(i)-treatment upregulated Sox1 protein on 224 
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day 1 (Figure 4B). This difference does not appear to be due to differential replating 225 

efficiency (Figure 4C). 226 

We examined whether faster neural specification as a consequence of Alk(i) pre-227 

treatment has consequences for other lineages. We analysed the response of Alk(i)-228 

treated cells to ActivinA/Gsk3(i). Rex1-negative cells showed a major reduction in the 229 

total number of T::mKO2 positive cells (Figure 4D). Interestingly, this was mainly 230 

attributable to reduced cell numbers after exposure to ActivinA/Gsk3(i) (Figure 4E, 231 

S4E). A similar reduction in cell survival/proliferation was observed in cells exposed to 232 

lateral mesoderm differentiation conditions (Figure S4F-H). To evaluate endodermal 233 

specification we employed the clonal mixing protocol described previously (Figure 4F). 234 

We observed a shift to fewer Sox17 positive cells per clone (Figure 4G), although the 235 

clone sizes (Figure 4H) or total number of clones (Figure S4I) were not reduced in the 236 

Alk(i) pre-treated population  237 

Finally, we assessed whether pre-treatment with Alk(i) for 24hrs affected the potential 238 

of Rex1-negative cells to respond to PGC-inducing transcription factors (Figure 4I). 239 

Alk(i)-treated cells produced less compact and smaller aggregates than control cultures 240 

(Figure 4I). The gene expression profile at day 2 and 4 of culture showed lower 241 

upregulation of endogenous Prdm1 (Blimp1), Prdm14, Nanos3 and Stella, indicating 242 

significantly impaired PGCLC induction. 243 

These findings indicate that suppression of Nodal signalling reduces the capacity of 244 

cells exiting the naïve phase of pluripotency to respond productively to inductive cues 245 

for mesoderm, endoderm, and germ cell specification.  246 

 247 

 248 
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DISCUSSION 249 

The defined context of ground state ES cell culture provides opportunities for 250 

experimentally dissecting the interplay between intrinsic and extrinsic factors that 251 

mediate progression through pluripotency. Here we investigated the trajectory of ES 252 

cells released from the ground state with minimal extrinsic input. We isolated cells that 253 

have lost ES cell identity within 24hrs based on down-regulation of RGd2, corroborated 254 

functionally by extinction of self-renewal capability (Kalkan et al., 2016). Newly formed 255 

Rex1-negative cells exhibited capacity for differentiation into the germline and somatic 256 

lineages (Smith, in press). The findings further indicate that endogenous Nodal 257 

signalling is crucial for the non-neural competence of cells transitioning from naïve 258 

pluripotency. 259 

Rex1-negative cells show more rapid upregulation of lineage markers in response to 260 

inductive stimuli compared with ground state ES cells or Rex1-positive cells at 24hrs. 261 

They have also gained capacity for PGCLC induction. It has previously been 262 

established that responsiveness to germ cell induction cues or factors is not manifest in 263 

naive ES cells or the pre-implantation epiblast but is a property acquired during 264 

developmental progression (Hayashi et al., 2011; Nakaki et al., 2013). We present 265 

evidence elsewhere that early Rex1-negative cells show intermediate gene expression 266 

features suggesting they are related to the peri-implantation epiblast (Kalkan et al., 267 

2016). We hypothesise that actual competence for germline and somatic lineage 268 

specification is acquired during this period (Smith, in press). The molecular nature of 269 

competence remains unclear but is likely to involve dissolution of naïve pluripotency 270 

transcription factor circuitry, reconfiguration of the enhancer landscape, and widespread 271 
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epigenome and chromatin modification (Buecker et al., 2014; Choi et al., 2016; Dunn et 272 

al., 2014; Zylicz et al., 2015). 273 

Nodal plays pleiotropic roles in the early embryo. Expression can be detected in the 274 

inner cell mass and persists throughout the epiblast until axis specification, when it 275 

becomes restricted to the proximal posterior region (Conlon et al., 1994; Mesnard et al., 276 

2006). Nodal activity relies on proprotein convertases, Furin and PACE4, produced by 277 

the extraembryonic ectoderm (ExE), which cleave and activate pro-Nodal (Beck et al., 278 

2002; Mesnard et al., 2011). Nodal deficient embryos show embryonic lethality at E7.5 279 

(Conlon et al., 1994; 1991; Zhou et al., 1993). They fail to specify the anterior visceral 280 

endoderm (AVE) (Brennan et al., 2001), a signalling centre essential for the 281 

establishment of anterior-posterior (AP) polarity. Nodal mutants also show precocious 282 

upregulation of neural markers throughout the egg cylinder and fail to form a primitive 283 

streak (Brennan et al., 2001; Camus et al., 2006; Lu and Robertson, 2004). The multiple 284 

functions of Nodal and the complex interplay between extraembryonic tissues and the 285 

epiblast have complicated precise delineation of its roles in pluripotency progression 286 

and lineage specification (Robertson, 2014).  287 

Mouse ES cells express Nodal and have phosphorylated Smad2/3 proteins (Mullen et 288 

al., 2011; Ogawa et al., 2004). Inhibition of Nodal signalling enhances Sox1 expression 289 

during differentiation (Matulka et al., 2013; Turner et al., 2014). Our results show that 290 

inhibition of endogenous Nodal signalling does not affect the downregulation of 291 

pluripotency factors when ground state ES cells are released from 2i, consistent with 292 

previous findings (Turner et al. 2014). Upregulation of early post-implantation markers is 293 

also unaffected. However, suppression of Nodal signalling results in compromised 294 

responses to inductive stimuli for mesoderm and endoderm, and in precocious 295 
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upregulation of neural markers. Cells also become less responsive to the forced 296 

expression of PGC-specific transcription factors.  297 

Importantly, a requirement for Nodal signalling is apparent prior to exit from the ES 298 

cell state, while cells are in the reversible Rex1 positive period of transition (Kalkan et 299 

al., 2016; Martello and Smith, 2014). Indeed, subsequent to exit Rex1-negative cells in 300 

vitro down-regulate Nodal and become dependent on exogenous ligand for non-neural 301 

lineage induction, typically achieved by addition of ActivinA. A similar reduction in the 302 

expression of Nodal and Nodal target genes is seen in E5.75 epiblast explants after 303 

removal of the extraembryonic ectoderm (ExE) (Guzman-Ayala et al., 2004; Mesnard et 304 

al., 2006), highlighting the paracrine role of ExE in maintaining Nodal signalling in the 305 

embryo.  306 

Our findings in the simple monolayer ES cell system are consistent with genetic 307 

evidence that Nodal signalling prevents premature neural differentiation in the embryo 308 

(Camus et al., 2006). Importantly, however, they also indicate that endogenous Nodal 309 

signalling acts during progression from naïve pluripotency to secure non-neural lineage 310 

potency. It has been reported that Smad2/3 is recruited by ‘master transcription factors’ 311 

to regulatory loci in a cell type-specific manner (Mullen et al., 2011). In addition, a recent 312 

study in human ES cells also suggested that Smad2/3 is able to recruit histone 313 

methyltransferases to gene promoters (Bertero et al., 2015). Therefore, non-neural 314 

competence could depend upon the presence of Smad2/3 at specific loci during the ES 315 

cell transition from naïve pluripotency. 316 

Overall these results are consistent with the proposition that in defined adherent 317 

culture, ES cells transit through a formative phase in which they acquire competence for 318 

multilineage differentiation, including the germline (Kalkan and Smith, 2014; Smith, in 319 
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press). In this phase, cells are expected to respond to inductive signals rapidly and 320 

efficiently, as observed for Rex1 negative cells at 24hrs. Furthermore, our findings 321 

highlight a pivotal requirement for Nodal signalling in establishing formative 322 

pluripotency. 323 

  324 
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EXPERIMENTAL PROCEDURES 325 

Mouse ES cell culture and differentiation 326 

RGd2 ES cells were derived in 2i/LIF from heterozygous embryos (Kalkan et al., 2016). 327 

The RGd2/T:mKO2 cell line was generated by targeting the endogenous T locus with 328 

T2A-mKO2. ES cells were routinely maintained on gelatine-coated plates (Sigma, cat. 329 

G1890) in N2B27 media (Stem Cells inc, SCS-SF-NB-02) supplemented with 1µM 330 

PD0325901 and 3µM Chir99021 (2i) without LIF, and passaged with Accutase 331 

(Millipore, SF006) every 2-3 days. For sorting experiments, cells were plated for 24hrs 332 

in 2i at 1.5x104 cells/cm2 before washing once with PBS and changing the media to 333 

N2B27. After 24-26hrs, cells were sorted by flow cytometry according to GFP levels into 334 

Rex1-positive (highest 15%) and Rex1-negative (lowest 15%) populations using a 335 

MoFlo sorter (Beckman Coulter, inc). For neural differentiation, cells were plated at 336 

1.0x104 cells/cm2 on laminin-coated dishes (Sigma-Aldrich, L2020) in N2B27. Medium 337 

was changed every other day. Definitive endoderm induction was as described 338 

(Morrison et al., 2015). Lateral mesoderm differentiation was performed by plating 339 

1.2x104 cells/cm2 cells in collagen coated plates (BD BioCoat, 354591) in batch tested 340 

10% Serum medium (GMEM (Sigma-Aldrich, G5154), 10% FCS (Sigma-Aldrich), 1x 341 

NEAA (Life Technologies, 11140-050), 1mM sodium pyruvate (Life Technologies, 342 

11360-070), 1mM L-Glutamine (Life Technologies, 25030-081)) (Nishikawa et al., 343 

1998). 344 

ActivinA 10ng/ml and Chir99021 3µM (Gsk3(i)) treatment of sorted fractions was 345 

carried out on fibronectin-coated plates (Millipore, FC010) at 1.5x104 cells/cm2. Nodal 346 

inhibitor experiments were carried out using A8-301 1µM (Alk(i), Tocris Bioscience, 347 

2939) or DMSO (1:10000) as a carrier control.  348 
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Colony forming assays were conducted by plating 1000 cells per well in laminin-349 

coated 6 well plates in 2i supplemented with 100U/ml LIF to maximise self-renewal 350 

potential (Wray et al., 2011). After 5 days, cells were stained using alkaline 351 

phosphatase kit (Sigma, cat. 86 R-1KT) and the number of colonies counted.  352 

For transcription factor induction of PGCLC, the tri-cistronic Ap2g-T2A-Prdm14-P2A-353 

Blimp1 fragment (APB1, kind gift from Toshihiro Kobayashi and Azim Surani) was 354 

cloned into phCMV*1-cHA-IRES-H2BBFP plasmid. pPyCAG-PBase, pPBCAG-rtTA-IN 355 

and  phCMV*1-APB-IRES-H2BBFP were co-transfected into RGd2 cells by TransIT-LT1 356 

(Kinoshita et al., 2015). G418 selection (400 µg/ml) was started 48 hours after 357 

transfection and cells were replated at clonal density at 96 hours. For PGCLC induction, 358 

cells sorted at 24 hours for Rex1-GFP expression were plated at 3,000 cells per well in 359 

a 96 round-bottomed well plate with (Nakaki et al., 2013) in the presence or absence of 360 

1µg/ml Doxycycline (Sigma-Aldrich). Cells were fed every other day. Aggregates 361 

collected on day 2 and 4 for RT-qPCR or fixed after 4 days in culture. 362 

 363 

Flow cytometry analysis of fluorescent reporters 364 

Cells were dissociated into a single cell suspension using Accutase and resuspended in 365 

PBS+5% FBS for analysis using a BD LSR Fortessa Analyser. 366 

 367 

Immunohistochemistry 368 

Samples were fixed with 4% PFA for 10min at room temperature (RT), permeabilsed 369 

and blocked for 2hrs with block buffer (PBS+0.03%TritonX+3% donkey serum). Cells 370 

were incubated overnight at 4 °C in block buffer with the following primary antibodies: 371 

Sox1 (Cell Signalling, 4194, 1:200), Oct4 (Santa Cruz, sc-5279 or sc-8628, 1:400), 372 
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Nanog (eBioscience, 14-5761-80, 1:200), Klf4 (Abcam, ab72543, 1:300), Tuj1 (R&D, 373 

MAB1195, 1:500), Foxa2 (Abcam, ab40874, 1:200), Sox17 (R&D, AF1924, 1:200), T 374 

(R&D, AF2085, 1:200), Esrrb (Perseus, PP-H6705-00, 1:300), mKO2 (Amalgaam-MBL, 375 

M168-3, 1:1000), Blimp1 (eBiosciences, 14-5963-82). After three washes with 376 

PBS+0.03%TritonX, cells were incubated with secondary antibodies (Life Technoligies, 377 

1:1000) and DAPI in blocking buffer for 3hrs in the dark. After three washes with 378 

PBS+0.03%TritonX, cells were left in PBS before imaging. Images were acquired with 379 

Laica DMI3000 B inverted microscope and the fluorescence in single cells quantified 380 

using CellProfiler (Jones et al., 2008). The number of cells was normalised to the 381 

highest value obtained for a given biological replicate. 382 

 383 

Immunostaining of surface markers for flow cytometry 384 

Cells were dissociated with enzyme-free Cell Dissociation Buffer (Life Technologies, 385 

13151-014) at 37 °C. Cells were resuspended with staining buffer (PBS+1% Rat serum) 386 

and incubated with directly conjugated antibodies for 30min at 4 °C in the dark. After 387 

three washes with staining buffer, cells were analysed on an LSR Fortessa (BD 388 

Bioscineces). Spherotech beads were used to quantify the number of cells. The 389 

following antibodies were used: Ecadherin-eFluo660 (eBioscience, 50-3249-82), Cxcr4 390 

(BD Biosciences, 552967 or 558644), Flk1 (BD Biosciences, 562941).  391 

 392 

Gene expression analysis 393 

RNA isolation from cell populations was performed with RNAeasy kit (Qiagen). 394 

SuperScriptIII (Invitrogen) and oligo-dT primers were used to synthesise cDNA.  395 

TaqMan probes were used for Pou5f1 (Oct4), Sox2, Nanog, Esrrb, Zfp42 (Rex1), Klf2, 396 
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Otx2, Fgf5, Pim2, Sox1 and Dnmt3b. UPL primers were used for Pou3f1 (fw: 397 

catttttcgtttcgttttaccc, rv:gagcgcagaccctctctg, probe:72), Smad2 398 

(fw:aggacggttagatgagcttgag, rv: gtccccaaatttcagagcaa, probe:9), Tdgf1 (fw: 399 

gtttgaatttggacccgttg, rv:ggaaggcacaaactggaaag, probe:93), Nodal (fw: 400 

ccaaccatgcctacatcca, rv:cacagcacgtggaaggaac, probe:40), Lefty2 (fw: 401 

cacaagttggtccgtttcg, rv:ggtacctcggggtcacaat, probe:78), Zic1 (fw: ggtacctcggggtcacaat, 402 

rv:cctcgaactcgcacttgaa, probe:7), Pou3f3 (fw: tctgagaccgcccacaag, rv: 403 

gagcggcagtcagcaaag, probe:22).  404 

 405 

Gene knockdown 406 

Qiagen FlexiTube siRNAs for Nodal, Tdgf1, Smad2 and Smad3 at a final concentration 407 

of 20nM were used for gene knockdown. 1.5x104 cells/cm2 were transfected in 24 well 408 

plates containing 500µl of medium 2i medium with 0.5µl Lipfectamine RNAiMAX (Life 409 

Technologies, 13778075) for. After overnight incubation, cells were washed once with 410 

PBS before transfer to N2B27.  Efficiency of transfection was quantified by flow 411 

cytometry on Rex1GFPd2 cells transfected overnight with siRNA against GFP. Gene 412 

knockdown was quantified by RT-qPCR after overnight transfection.  413 

 414 

Immunoblotting 415 

Western blotting was performed using standard techniques. The following primary 416 

antibodies were used: Smad2 (Cell Signalling 3101, 1:1000 in 1% milk), p-Smad2 (Cell 417 

Signalling, 3103, 1:1000 in 1% milk), anti-GAPDH (Sigma-Aldrich, G8795, 1:5000 in 1% 418 

milk). Peroxidase-conjugated secondary antibodies were used (Sigma-Aldrich, 1:5000). 419 
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Amersham ECL Western Blotting detection reagent (RPN2106) was used according to 420 

manufacturers instructions.  421 

 422 

Statistics 423 

ANOVA was used to compare three or more samples. Two-tailed Student’s t test was 424 

used for pairwise comparisons. Kolmogorov-Smirnov test was used to determine 425 

statistical significance of endoderm differentiation mixing experiments.  426 

 427 
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FIGURE LEGENDS 681 

Figure 1. Acquisition of PGC-LC differentiation capacity 682 

(A) Experimental set up for transcription-factor dependent PGC-like cell specification.  683 

(B) Expression of Blimp1 and Oct4 in day 4 aggregates differentiated in the presence or 684 

absence of Dox to induce transcription factor overexpression. Scale bar: 60µm 685 

(C) Zoom in of the expression of Blimp1 and Oct4 in day 4 aggregates differentiated in 686 

the presence or absence of Dox to induce transcription factor overexpression. Arrow 687 

heads show overexpression artefacts. Scale bar: 20µm 688 

(D) Quantification of the Blimp1 staining on day 4 in aggregates after addition of Dox.  689 

(E) RT-qPCR of endogenous PGC-associated transcripts.  690 

Mean and SD for 2 independent experiments shown, *p<0.01, **p<0.001 (Student t 691 

test). 692 

See also Figure S1 693 

 694 

Figure 2. Multilineage differentiation capacity is manifest in Rex1-negative cells 695 

(A) Experimental set up and sample analysis for ActivinA+GSK3(i) treatment. Histogram 696 

shows the percentages of cells expressing T:mKO2  or RGd2 (B).  697 

(C) Experimental set up and sample analysis for lateral mesoderm differentiation. 698 

Histogram showing the percentage of Flk1+/Ecadh- cells. 699 

(D) Experimental set up and sample analysis for definitive endoderm differentiation. 700 

(E) Percentage of Cxcr4+/Ecadh+ double positive cells.  701 

(F) Normalised number of cells during definitive endoderm differentiation. The number 702 

of cells was normalised to the highest value obtained in that biological replicate.  703 
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(G) Single cell analysis during definitive endoderm differentiation by seeding 704 

fluorescently labelled Rex1-High or Rex1-Low cells at clonal density amongst unlabelled 705 

cells. 706 

(H) Number of clones after 4 days of differentiation.  707 

(I) Histogram showing the distribution of the percentage of Sox17 positive cells per 708 

clone. Two independent experiments, all data shown.  709 

(J) Histogram showing the distribution of the number of cells per clone. Two 710 

independent experiments, all data shown.  711 

(K) Experimental set up and sample analysis for neural differentiation. Histogram 712 

showing the percentage of Sox1-positive cells during the differentiation time-course.  713 

Unless stated, mean and SD for 3 independent experiments shown, * p<0.05, **p<0.01. 714 

See also Figure S2. 715 

 716 

 717 

Figure 3. Inhibition of endogenous Nodal signalling does not affect exit from the 718 

naïve state  719 

(A) Experimental set up 720 

(B) Relative expression of pluripotency factors Klf2 and Nanog over time when cells are 721 

differentiated in DMSO or Alk(i).  722 

(C) Percentage of Klf4 and Nanog positive cells over time after 2i withdrawal when cells 723 

are differentiate in the presence of DMSO or Alk(i).  724 

(D) Self-renewal capacity declines at a comparable rate for cells treated with DMSO 725 

vehicle or Alk(i).  726 
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(E) Relative expression of post-implantation markers Fgf5 and Otx2 shows faster earlier 727 

downregulated for cells treated with Alk(i) over DMSO controls.  728 

(F) Relative expression of neural-associated genes Sox1, Zic1 and Pou3f3 over time 729 

when cells are differentiated in DMSO or Alk(i).  730 

(G) Inhibition of Nodal signalling results in accelerated reduction of Oct4 protein and 731 

increase in Sox1 protein at day 3 of differentiation.  732 

Mean and SD for 2 independent experiments shown. See also Figure S3. 733 

 734 

Figure 4. Nodal signalling during exit from the naïve state prevents preconscious 735 

neutralisation. 736 

(A) Inhibition of Nodal signalling with Alki(i) in Rex1-positive and Rex1-negative sorted 737 

fractions. Graphs show percentage of Sox1 positive cells after sort. 738 

(B) Percentage of Sox1 positive cells arising from Rex1-negative cells following DMSO 739 

(control) or Alk(i) treatment.  740 

(C) Number of cells over the period analysed in B.  741 

(D) ActivinA/Gsk3(i) induction of Alk(i) or control treated Rex1-negative cells. Numbers 742 

of TmKO2 positive cells, along with total cell numbers (E). 743 

To determine the normalised number of cells as a percentage for each biological 744 

replicate, the number of cells was normalised by the highest value obtained in that 745 

biological replicate.  746 

(F) Experimental set up of definitive endoderm clonal assay. 747 

(G) Histogram showing the distribution of the percentage of Sox17 positive cells per 748 

clone. Two independent experiments, all data shown. 749 
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(H) Histogram showing the distribution of the number of cells per clone. Two 750 

independent experiments, all data shown. 751 

Unless states, mean and SD  for 3 independent experiments shown, * p<0.05, **p<0.01.  752 

(I) Experimental set up of transcription-factor dependent PGC-LC differentiation. Images 753 

show day 4 cultures in the presence of Dox from Alk(i)-treated and control cells. Scale 754 

bar=1mm. 755 

(J) RT-qPCR of PGC-associated genes during induction process. Mean and SD for 2 756 

independent experiments shown, *p<0.05, p<001. See also Figure S4. 757 

 758 

SUPPLEMENTARY FIGURE LEGENDS 759 

Figure S1 760 

(A) Flow cytometry histogram of RGd2 cells after removal of 2i. 761 

(B) Experimental set up for sorting experiments. 762 

(C) Flow cytometry profile of sorted fractions  763 

(D) Replating capacity of 2i, 24hrs Rex1-positive and 24hrs Rex1-negative cells in 2i/LIF 764 

media.  765 

(E) Replating capacity of 2i, 24hrs Rex1-positive and 24hrs Rex1-negative cells in 766 

Serum/Lif media. 767 

(F) Quantification of Oct4 immunostaining in day 4 aggregates in the presence of Dox. 768 

Mean and SD for 3 independent experiments shown. 769 

 770 

Figure S2 771 

(A) Flow cytometry plots of Rex1GFPd2+TmKO2 cells in 2i, and Rex1-positive sorted 772 

cells for 3 days in control or ActivinA+GSK3(i). 773 
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(B) Percentage of cells staining positive for Sox17 and Foxa2 during definitive 774 

endoderm differentiation.  775 

(C) Normalised number of cells during neural differentiation.  776 

(D) Immunostaining for Sox1 and Tuj1 of 2i, Rex1-positive and Rex1-negative cells after 777 

6 and 8 days of differentiation. 778 

To determine the normalised number of cells as a percentage for each biological 779 

replicate, the number of cells was normalised by the highest value obtained in that 780 

biological replicate. 781 

Mean and SD for three independent experiments shown. 782 

 783 

Figure S3 784 

(A) Western blot showing p-Smad2, Smad2 and Gapdh protein in cells treated with 785 

control or Alk(i) for 30min. 786 

(B) Number of colonies of ES cells grown in 2i+DMSO or 2i+Alk(i) for three passages. 787 

Mean and SD for two independent experiments is shown. 788 

(C) RT-qPCR of Nodal, Tdgf1 and Smad2/3 siRNA treated cells after overnight 789 

transfection in 2i. siRNA knockdown did not affect the expression of pluripotency genes 790 

Pou5f1, Klf4 or Nanog but in some cases it did affect the expression of the Nodal 791 

signalling target Lefty2.  792 

(D) Quantification of the number of Oct4/Sox2 double positive cells, Oct4 negative/Sox2 793 

positive and Sox2/Sox1 double positive cells on day 3 of neural differentiation after 794 

treatment with siRNA. Mean and SD for two independent experiments is shown. * p 795 

<0.05,  ** p<0.01 796 

 797 
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Figure S4 798 

(A) Expression of Nodal pathway signalling components in 2i, Rex1-positive and Rex1-799 

negative cells (Kalkan et al.). 800 

(B) Nodal inhibition before and during downregulation of Rex1 – Flow cytometry plot of 801 

Rex1GFPd2 cells differentiated for 24hrs in Alk(i) or control (DMSO). 802 

(C) Relative expression of pluripotency and differentiation factors in Rex1-negative cells 803 

arising from control or Alk(i) conditions by RT-qPCR. 2i and Rex1-positive cells are 804 

included as controls.  805 

(D) Expression of Sox1 in the sorted fractions.  806 

(E) Percentage of TmKO2 positive cells during ActivinA/Gsk3(i) treatment of Control or 807 

Alk(i) derived Rex1-negative cells. Mean and SD for 3 independent experiments shown, 808 

*p<0.05. 809 

(F) Lateral mesoderm differentiation of 24hrs Alk(i) or control treated Rex1-negaive 810 

cells. 811 

(G) Percentage of Flk1+/Ecadh- cells. 812 

(H) Histogram showing the normalised number of cells. 813 

(I) Number of clones after 4 days of definitive endoderm differentiation. 814 

To determine the normalised number of cells as a percentage for each biological 815 

replicate, the number of cells was normalised by the highest value obtained in that 816 

biological replicate. Mean and SD for 3 independent experiments shown, *p<0.05. 817 
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