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Abstract

Functional screening of live patient cancer cells holds great potential for
personalized medicine and allows to overcome the limited translatability of results
from existing in-vitro and ex-vivo screening models. Here we present a plug-based
microfluidics approach enabling the testing of drug combinations directly on
cancer cells from patient biopsies. The entire procedure takes less than 48 hours
after surgery and does not require ex vivo cultivation. We screened more than
1100 samples for different primary human tumors (each with 56 conditions and at
least 20 replicates), and obtained highly specific sensitivity profiles. This approach
allowed us to derive optimal treatment options which we further validated in two
different pancreatic cancer cell lines. This workflow should pave the way for rapid
determination of optimal personalized cancer therapies at assay costs of less than

US$ 150 per patient.
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Introduction

Increasing interest has been devoted to personalized (precision) medicine, which
aims to match the best treatment to each patient. This is especially important for
cancer, where there is often a high variability in the response of patients to
treatments. A critical example is pancreatic cancer, which has a 5-year survival
rate of only 6% and is projected to become the second leading cause of cancer
death by 2030 L. One of the reasons for the low efficacy of current treatments is
that pancreatic cancer is genetically highly heterogeneous with most mutations
occurring at a prevalence of less than 10% 23. Therefore, pancreatic cancer
patients would benefit immensely from the possibility of a personalized or

stratified therapeutic approach.

Most efforts in personalized medicine have been focusing on tailoring the
treatment to the specific patient based on genomic data, which are increasingly
available due to advances in sequencing technologies. While there have been some
impressively successful examples 45, cancer genomics is generally very complex
and, despite the increasing knowledge on occurring mutations, there is still limited
understanding on how they affect drug response °. Multiple efforts have been
devoted to the large-scale in vitro screening of drugs across cell lines 7-° that have
proven useful to identify some genomic markers associated with drug response.
However, molecular data alone has not proven sufficient to predict the efficacy 10
or toxicity 1! of a drug on an individual cell line in a reliable way. This
predictability is likely to be even lower in patients, given the additional

complexities when compared to cell lines.

Due to these limitations, genomics data has to be supplemented with other
information in order to optimally guide the treatment for each patient, and
systems for phenotypic stratification are urgently needed ¢12. The need for new
approaches is even more acute for the application of drug combinations.
Combinatorial targeted therapy has been shown to be a powerful tool to overcome
drug resistance mechanisms, which can be due to tumor heterogeneity, clonal

selection or adaptive feedback loops 13, and seems to be a particularly promising
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approach for treatment of pancreatic cancer 6. However, strategies to identify

effective combinations are still in their infancy 4.

A powerful means to overcome these difficulties would be the ability to test the
drug compound directly on patient samples. Despite recent progress towards
functional testing of live patient tumor cells 1215, the application of standard drug
screening technologies is currently limited by the need of large numbers of cells 15.
Therefore, large scale drug screening of patient tumors has been so far limited to
blood tumors 1 (where a much larger amount of malignant cells is easily
accessible) or requires some ex vivo culturing steps © (e.g. patient derived cell lines,
PDX models and organoids 17.18) that require long times to grow the cells and can
cause changes in the phenotype of the cells. Hence, there is, hence, no technology
to perform drug screenings with the number of cells that can be obtained with

biopsies from a solid tumor.

Microfluidic technology can in principle overcome screening restrictions based on
limited starting material. Making use of tiny assay volumes, microfluidic systems
have recently been applied successfully to the testing of a few individual drugs on
primary tumour cells, tumour spheroids and tissue slices 1°-21. However, these
studies were based on single aqueous phase microfluidic systems which can
process only small sample numbers (max ~96 including replicates, typically much
less). A possible solution for further scale-up is the use of droplet microfluidics 22.
In these systems aqueous droplets surrounded by oil serve as independent
reaction vessels. Such systems have already been used for genetic assays of cancer
cells 2324 but they have not yet been applied to personalized phenotypic drug
screens. This is probably due to the fact that encapsulation of different soluble
drugs (rather than just different cells) into droplets or plugs (sequential aqueous
segments in a microfluidic channel, capillary or piece of tubing; spaced out by oil
or air) is technically still very challenging. Switching between multiple fluid
sources requires robotic systems (e.g. sequentially aspirating samples from
microtiter plates), which are rather slow, or complex microvalve technology (e.g.
to switch between fluids injected in parallel) 22. While a combination of both

approaches has been described 25; to date none of these plug-based systems has
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been used for phenotypic assays with human cells. This may be owing to
incompatibilities, e.g. due to the fact that mammalian cells sediment and secrete
proteins and metabolites causing the plugs to stick and break at the channel walls
(so-called “wetting”; also promoted by growth factors in the media). In addition, a
robust method for sample tracking is required. In previous studies 25-27 plugs were
simply stored in a sequential fashion (within a microfluidic channel or a piece of
tubing), wherein the common fusion or splitting of plugs causes “frameshifts”

resulting in loss of information on sample composition.

Here, we present a platform that can overcome these limitations, enabling the
screening of drug combinations on mammalian cells and patient biopsies in a plug
format. Our approach requires significantly less cells compared to conventional,
non-microfluidic formats and provides one to two orders of magnitude higher
throughput (in terms of samples per experiment) than existing systems. Our
platform, based on microfluidic Braille valves 282° and an external autosampler,
can rapidly generate plugs containing cells, reagents of an apoptosis assay and
systematic combinatorial drug cocktails. All workflows have been optimized to
guarantee compatibility with live cells, and we furthermore implemented a fully
scalable sample barcoding system. We demonstrate application of this platform for
screening cell lines and, more importantly, patient samples ex vivo. Furthermore,
pathway modeling of this data allows us to define apoptotic pathways in a patient-
specific way. This should open the way for further translational efforts and clinical

applications in the near future.
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Results

Microfluidic platform for drug screening

We developed a plug-based microfluidic platform allowing us to rapidly screen a
large number of combinations of chemical compounds on a very limited number of
cells. Specifically, with a starting material of less than 1 million viable cells more
than 1100 samples could be screened (10 chemical compounds in all the pairwise
combinations, with about 20 plugs (i.e. replicates) per condition), each containing

about 100 cells (Fig. 1a).

Our platform is based on Braille valves 2829 controlling individual fluid inlets of the
microfluidic chip (Fig. 1b-c). All reagents (including the cell suspension, drugs and
assay components) are permanently injected into the device and, depending on the
valve configuration, sent either to the waste or to a droplet maker with a T-
junction geometry. This approach allows rapid switching (~300 ms) between 16
liquid streams and, upon injection of fluorinated oil at the T-junction, the
generation of combinatorial plugs at high throughput. If necessary, the chemical
diversity can be increased further by connecting an autosampler to one of the
inlets (sequentially loading compounds from microtiter plates; Supplementary

Fig. 4), but this procedure also requires a higher number of cells.

To avoid wetting issues we integrated an additional mineral oil inlet into our chip
design, enabling the insertion of mineral oil droplets in between all (aqueous)
sample plugs (Supplementary Movie 3). Such three-phase systems are
particularly efficient in keeping samples separated 39, even under conditions that
normally cause wetting. A further crucial factor for reducing wetting was the use of
special, protein-free media. However, while a combination of these measures
significantly improved reliability, plug integrity could still not be ensured for all
samples. Hence a sample identification system that would still work if individual
plugs break or fuse had to be implemented. Therefore, we introduced sequential
barcodes to separate and identify samples of different composition, based on
sequences of plugs with binary (high/low) concentrations of the blue fluorescent

dye cascade blue. This way sample numbers can be encoded (e.g. high-low =
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binary number “10” = decimal number “2”). To demonstrate the power of this
barcoding approach we converted a simplified EMBL logo (Supplementary Fig. 3)
into a binary black and white image and translated all 2808 pixels into a sequence
of plugs with two different fluorescence intensities. These barcodes were then
detected using our laser spectroscopy setup (Supplementary Fig. 1) and
converted back into the initial image, which did not show a single mistake. This

clearly demonstrates the scalability and reliability of our strategy.

In each sample plug, cells are encapsulated together with one or two compounds
and a rhodamine 110 (green-fluorescent dye) conjugated substrate of Caspase-3,
which is an early marker of apoptosis 31. Furthermore Alexa fluor 594 (orange-
fluorescent dye) was added to the cell suspension for verifying dilution by all
assays reagents and monitoring correct operation of all valves. For each drug
treatment multiple replicates were generated (see screening specific details
below), followed by a fluorescent barcode, and stored sequentially in gas
permeable tubing with a total length of 5m (having a capacity for about 3500 plugs
in total). After overnight incubation, the readout was performed by flushing the
samples through the detection module. In our case, we used an optical setup
(Supplementary Fig. 1) with three different excitation lasers (375nm, 488nm and
561nm) and performed a multiplexed readout at three different wavelengths
(450nm, fluorescence barcodes; 521nm, Caspase-3 activity; >580nm, orange

marker dye to monitor mixing of reagents) using photomultiplier tubes (PMTs).

Data extraction and quality assessment

In the fluorescence data, each plug corresponds to a peak in one or more channels
(i.e. green, orange, blue), as shown in Fig. 1d. When processing the data, we first
identified the peaks in the blue channel, representing the barcode, and we used
them to separate and identify the peaks corresponding to each sample (Online
Methods). Each sample is composed of multiple peaks (typically 12 replicates per
run) with signals both in the green and in the orange channel. For each peak we
considered two measures: height and width. The height of the peak is proportional
to the measured fluorescence intensity: the intensity in the green channel

represents the activation of Caspase-3 (thus apoptosis) while the intensity in the
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orange channel represents the concentration of the orange-fluorescent dye, which
was added to the cell suspension. Since each plug was produced by mixing four
components (cells, Caspase-3 substrate and two compounds/medium), the
intensity in the orange channel allowed assessing the quality of this mixture and
was used to discard samples/peaks with extreme values (i.e. outliers, see Online
Methods). The width of the peak represents the length of the plug. Thin or wide
peaks were discarded as they correspond to split or fused plugs respectively.
Additionally, the first peak for each sample was typically discarded to avoid the

effect of cross-contamination between samples.

Combinatorial screening of pancreatic cancer cell lines

To optimize and validate our microfluidics platform we performed combinatorial
screening of compounds on two pancreatic cancer cell lines with different
genotype and phenotype 32: AsPC1 and BxPC3. Ten compounds were screened
alone and in pairwise combinations (Table 1). We included in the screening: two
drugs that are currently used in clinical chemotherapy as first line treatment for
pancreatic cancer (Gemcitabine and Oxaliplatin), seven drugs that have specific
kinase targets which play key roles in different pathways (i.e. IKK, MEK, JAK, PI3K,
EGFR, AKT and PDPK1 inhibitors) and one cytokine (TNFa) which activates the
extrinsic apoptosis pathway. The sequence of the samples is shown in Fig. 2a (data
refer to BxPC3 cells, but sample sequence was the same for both cell lines): we
screened 56 different samples, repeating the untreated control sample (i.e. only
cells, Caspase-3 substrate and medium, without compounds) after every 10
samples and as first and last sample (total of 62 samples). For each sample we
produced 12 replicates and considered the median value. The whole experiment
was repeated six times (six runs) to verify the reproducibility of the
measurements, resulting in about 6600 plugs in total including the barcode. In
order to compare the different runs we computed the z-score for each (i.e.
standardization by subtracting the mean and dividing by the standard deviation).
Data (Fig. 2a for BxPC3 and Supplementary Fig. 6 for AsPC1) show that control
samples remained constant over time, proving that storing the cell suspension

during plug production in the syringe on ice (protocol described in Online
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Methods) did not affect the viability of the cells. For further analysis the median

values across the six runs were considered (Fig. 2b,c).

Efficacious drug combinations and validation for screened cell lines

Combinatorial screening using the microfluidics platform suggested potentially
interesting drug combinations (Fig. 2b,c). Some combinations showed strong
effects in both cell lines (e.g. GDC0941 and Cyt387, z-score = 0.46 for BxPC3 and
0.67 for AsPC1), while, more interestingly, some stronger effects were shown to be
specific for each cell line. In particular, PHT-427 induced apoptosis in BxPC3 cells
in combination with multiple drugs (z-score range = [0.86, 2.36]), while it showed
little or no effect on AsPC1 cells (z-score range = [-0.95,0.16]). The strongest effect
for BxPC3 was measured in response to combinatorial treatment with PHT-427
(AKT and PDPK1 inhibitor acting on the PH domain) and MK-2206 (allosteric
inhibitor of AKT). We compared the combinatorial effect on BxPC3 with the
corresponding single drug treatment (Fig. 3a); either single treatment showed an
effect that was not significantly higher than zero (p-value 0.21 and 1 for PHT-427
and MK-2206 respectively, one-tailed t-test), while the combinatorial treatment
showed a strong and significant effect (effect size = 2.24, Cohen’s d; p-value =
0.001, one-tailed t-test). On the contrary, no significant effect was shown for AsPC1
for PHT-427, MK-2206, or their combination (p-value = 1, 0.68 and 0.28
respectively, one-tailed t-test), suggesting that the efficacy of the drug combination
on BxPC3 is not caused by a general toxicity of the drugs when administered in
combination, but rather by a cell line specific effect. Similarly, a promising
treatment specific for AsPC1 cells is the combinations of Gefitinib (EGFR inhibitor)
with ACHP (IKK inhibitor), which showed a strong efficacy for AsPC1 (effect size =
1.34, Cohen’s d; p-value = 0.01, one-tailed t-test) but not for BxPC3 (p-value = 0.83,
one-tailed t-test). For both examples, results were validated in subsequent tissue
culture experiments (Fig. 3b,d), confirming the behavior observed in the

microfluidic system.

Combinatorial screening of resected patient pancreatic tumors
The same set of ten compounds used on cell lines was then applied to screen

tumor samples resected from 4 pancreatic cancer patients. For each patient
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sample, the solid tumor was dissociated to create a single cell suspension that was
then used for the screening (protocol in Online Methods). Similar to the pipeline
used to screen the cell lines, a total of 62 samples were produced, with 12
replicates each (each plug with about 100 live cells). The whole sample sequence
was repeated two or three times (different runs) depending on the amount of
viable cells that were obtained from the patient biopsy. As in the case of the cell
lines, unreliable peaks/samples were discarded based on the intensity in the
orange channel and on the length of the peaks. Only samples passing the quality
assessment in at least two runs and with consistent values across runs were
considered for further analysis (boxplot with data for each run shown in

Supplementary Fig. 7, more details in Online Methods).

As shown in Fig. 4a-d, some drug combinations showed promising results in more
than one patient, but no combination was effective for all patients. In particular,
the combination of PHT-427 and ACHP was very effective in three patients
(patients #1, #2, #4 with z-score equal to 1.03, 1.39 and 1.64 respectively), while
showing no apoptosis induction in one patient (patient #3, z-score equal -0.44).
Other combinations, i.e. Cyt387 and PHT-427, PHT-427 and AZD6244, PHT-427
and GDC0941, showed strong response (i.e. z-score higher than 0.9) for two
patients while showing low or no apoptosis induction in the remaining patients.
Interestingly the best combination (highest z-score) was different for each patient:
PHT-427 and AZD6244 for patient #1, PHT-425 and ACHP for patient #2, MK-2206
and GDC0941 for patient #3, MK-2206 and ACHP for patient #4. This clearly

illustrates the need for personalized approaches.

Gemcitabine and Oxaliplatin, the current first-line treatments for pancreatic cancer
showed increased apoptosis induction when administered in combination with
each other (in patient #3, z-score equal 1.31) or with other drugs. In particular,
Gemcitabine strongly induced apoptosis in combination with Gefitinib for patient
#1 (z-score equal 1.58) and with MK-2206 for patient #4 (z-score equal 1.06),
while Oxaliplatin is effective in combination with AZD6244 or GDC0941 for patient
#3 (z-score equal 2.12 and 1.02 respectively) and with Cyt387 for patient #4 (z-

score equal 1.05).
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Comparison between patient samples and cell lines

Clustering the screening data by individuals (patient/cell line) and by samples (Fig
4e) showed how most of the single compounds and some combinations, e.g.
AZD6244 and TNFa, failed to show strong efficacy on any individuals. Other
treatments displayed high efficacy both on patient samples and on cell lines (e.g.
combination of PHT-427 and ACHP). Importantly, none of the treatments is
effective across all individuals, suggesting that they are not widely toxic, but rather

patient specific. This further demonstrates the need for individualized treatments.

Network-based interpretation

In order to better understand the mechanism of action of the screened compounds,
we derived a logic model of pathways involved in apoptosis (Fig. 5a) from
literature 33-37, describing both intrinsic (mediated by the mitochondria, named
Mito in the model) and extrinsic (mediated by Tumor Necrosis Factor Receptors
TNFR) apoptotic signals, including nodes encoding for both anti- and pro-
apoptotic effects. We incorporated in the model all nodes perturbed by specific
compounds in our screening such as targeted drugs (kinase specific inhibitors) and
cytokine TNFa. The effect of chemotherapeutic (DNA damaging) drugs could not
be included in the model since they inhibit DNA replication rather than acting on
specific signaling nodes. To encode for the different mechanisms of action of MK-
2206 and PHT-427 on AKT (allosteric and PH domain inhibitors respectively), they
were modeled as acting on two different nodes (AktM and AktP respectively), both
needed for the activation of AKT.

Cell line and patient specific models were built using a logic ordinary differential
equations formalism 3% as implemented in CellNOpt 3°. The starting general model
structure was fitted to the experimental data for each cell line and patient (see
Online Methods). Estimated parameters are one life-time parameter for each
species (e.g tecrr for node representing EGFR) and a regulation parameter for each
interaction (e.g. EGFR — JAK). For each cell line/patient a bootstrap distribution
was obtained for each parameter (resampling experimental data with replacement

300 times).
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In order to identify the pathway differences that might underlie the differential
response to the drugs in our two tested cell lines, we compared the distributions of
the parameters using Wilcoxon rank sum test for assessing the significance (p-
values Bonferroni corrected for multiple hypothesis testing > 0.05) and r effect size
(medium-high effect size > 0.3, see Online Methods); results are shown in (Fig.

5b). Similarly, distributions across all cell lines/patients were compared using
Kruskal-Wallis rank sum test (one-way analysis of variance, p-values Bonferroni
corrected > 0.05, see Online Methods; Fig. 5c¢). The main differences between
AsPC1 and BxPC3 pathway models involve the extrinsic pathway and the Akt
pathway: AsPC1 cells have higher positive regulator parameter values (which
correspond to a slower response) for parameters involved in the regulation of Akt
initiated by PI3K (i.e. PI3K — PDPK1), while BxPC3 cells have higher values for the
negative feedback to Akt, mediated by PTEN (i.e. p53->PDPK1). Other significantly
different parameters involve nodes used to model the different mechanism of
action of our two Akt inhibitors (i.e. AktM and AktP) and are strongly influenced by
the differences that the two cell lines show especially in response to PHT-427.
Interestingly, it has been previously shown that alterations in the activity of the
AKT pathway are quite common in pancreatic adenocarcinoma due to mutation

and epigenetic alterations 4041,

11
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Discussion

We describe here a microfluidic platform enabling the fast screening of many drug
combinations in a personalized approach. The very small assay volumes (~100
cells per 0.5 pL plug) allowed us to perform comprehensive screens directly on
patient biopsies. Importantly, these can be done without the need for any
intermediate cultivation steps, which might introduce significant cellular changes
and/or the selection of individual clones. Hence our approach opens the way for
comprehensive screens that have so far been restricted to blood tumours, for
which patient-derived cancer cells are available in large quantities 1°
Furthermore, the low volume and the high level of automation allow such screens
to be rapidly performed at low cost: Within 48h after tumour resection or biopsy,
and with consumable costs of about US$ 150, which is considerably lower than
routine procedures such as MRT scans or surgical interventions. Therefore, we

envision rapid translation of this technology into clinical application.

Functional combinatorial screening has great potential in predicting personalized
therapy as revealed by the data presented in this paper. Our cell line screening
recapitulates the lower sensitivity of KRAS mutants (AsPC1, vs wild type BxPC1) to
PHT-427 42, (Fig. 1 b-c, for the single drug treatment as well as across
combinatorial treatments involving PHT-427). In addition, we could suggest and
validate a novel and particularly strong and specific drug combination for BxPC3
when treated with PHT-427 and MK-2206. These two compounds are both AKT
inhibitors, although they act through different sites, and PHT-427 additionally
inhibits PDKP1 42. Subsequently, similar efficacious specific combinations were
suggested for each patient sample. Interestingly, no combination showed strong
efficacy across all cell lines/patients suggesting that the tested treatment options
are not just generally toxic but rather cell line/patient specific. This inter-patient
heterogeneity in response to treatment highlights the importance of our approach
to personalised medicine and is in agreement with previous findings ¢, where
sensitivity profiles were shown to be particularly patient specific for pancreatic

cancer.

12
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A network-based perspective can be informative when investigating the best
combinatorial therapies 43. For example, mapping the effect of the kinase specific
inhibitors on the signaling pathways can help to prevent the mechanisms of drug
resistance by suggesting combinatorial therapies that act on parallel pathways. An
interesting example is the combination of PHT-427 (AKT inhibitor) and AZD6244
(MEK inhibitor), which was effective (z-score > 0.4) in three out of the four tested
patient samples. These drugs in fact block two important parallel pathways which
are the MEK-ERK and the PI3K-AKT pathways. Although, as far as we know,
synergistic combinations targeting these pathways have been previously studied
for pancreatic cancer, especially in the context of KRAS mutants (>90% of
pancreatic cancer patients are KRAS mutants)#4, this is the first evidence of
potential synergistic effect between PHT-427 and AZD6244. The efficacy of this
treatment also in BxPC3 cells (KRAS wild type) might suggest a more general
applicability.

Perturbation experiments with targeted drugs (e.g. kinase-specific inhibitors) can
also be used to infer the cell line or patient specific pathways 4°. Signal
transduction models can also be linked to cell viability/apoptosis ¢ in order to
predict drug sensitivity. We used data from our perturbation experiments and
prior knowledge on the signaling pathways impinging on apoptosis to build cell
line and patient specific models which were then used to unveil potential
biological reason for the differential response. Models could, in principle, be in the

future also used to predict new potentially interesting targets.

Compared to other personalized approaches our approach has specific advantages:
While organoids and xenografts are particularly well-suited for mimicking three-
dimensional tumour architecture and the in vivo microenvironment, the use of
individualized tumour cells as shown here facilitates rapid, massively parallelized
assays at low cost. This could be exploited further by implementing single-cell
droplet assays 224748 which require fewer cells and also allow to take intratumoral
heterogeneity into account. In addition to deriving an averaged readout over 50

single-cell replicates per treatment option, one could quantitatively determine the
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number of non-responding cells for each drug cocktail. Such data would probably

be very valuable to overcome therapy resistances.

Apart from using it for personalized cancer therapies, our microfluidic platform
should be of interest for further applications, such as the screening of cocktails for
targeted stem cell differentiation 4950 or combinatorial chemistry 51. We have
shown for the first time how an affordable and robust Braille display (< US$ 1000)
can be used to combine microfluidic valve and droplet technology. This way
droplets of different chemical composition can be rapidly generated on demand,
without the need for multi-layer channel networks and/or the use of expensive
multi-channel pressure controllers. Also of note is the fact that we used only 32 of
the 64 available Braille pins, which leaves further room for scaling-up, especially
as there are even bigger Braille displays with more than 300 pins. In addition, the
possibility of stopping the flow in individual channels of a network should facilitate

the construction of cheap and versatile multi-way cell- and droplet-sorters.
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Online Methods

Microfluidic setup

Microfluidic chips were fabricated using standard soft-lithography methods. In
brief, molds were fabricated on 4-inch silicon wafers (Siltronix) using AZ-40XT
positive photoresist (Microchemicals) according to the manufacturer's
instructions. Patterning was achieved by projecting 25400 dpi photomasks (Selba)
onto the photoresist using light with a wavelength of 375 nm (Suess MicroTec
MJ]B3 Mask Aligner). All channels had a height of ~50pum and widths ranging from
50 pm - 400 pm (400 pum for all valve sections). PDMS chips were manufactured
using elastomer and curing agent in a ratio of 1:10 (Sylgard 186 elastomer kit, Dow
Corning Inc) cured overnight at 65°C. To allow for valve actuation (compression of
the valve sections by the Braille pins) the PDMS chips were not bonded to glass,
but rather to a thin elastic PDMS membrane. This membrane was prepared using
elastomer and curing agent in a 1:20 ratio, poured on a transparency sheet and
spin coated at 700 rpm (Laurell WS 650) before overnight curing. Bonding was
performed in a Diener Femto Plasma Oven. Connections to inlets and outlets were
punched using 0.75mm Harris Unicore Biopsy punches. Before use, chips were
flushed with Aquapel (PPG industries) from the outlet up to the T-junction to

render the channel surface hydrophobic.

For screening, the Braille valve chip (Fig. 1B) was mounted onto an SC-9 Braille
display (KGS Corporation, Japan) using an in-house holder as shown in Fig. 1C.
This holder includes a Plexiglas bar with built-in screws to push the PDMS chip
onto the Braille pins. The design of the chip ensures that all fluid connections
(inlets and outlets) are outside the area covered by the Plexiglas bar. Movement of
the Braille pins was controlled by an in-house LabVIEW programme, enabling to
actuate all individual pins according to a pre-defined sequence (corresponding to
systematic sample combinations and barcodes). Barcodes were generated using
binary concentrations of Cascade Blue (16 pM and 48 pM for low and high

respectively).
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For all experiments the aqueous fluids were injected at a flow rate of 500 pl/h
using Harvard Apparatus Syringe pumps. FC-40 containing 0.5% perfluoro-
octonoal (PFO, ABCR) and mineral oil were injected at rates of 200 pl/h and 175
ul/h. Resulting aqueous plugs were 1.5 mm to 2 mm in length and 424 nL to 560

nL in volume.

Subsequent to incubation, the fluorescence of all samples was determined inside
PTFE tubing (Adtech) with an inner diameter of 600 um using the optical setup
shown in Supplementary Fig. 1. The resulting sample data was analyzed using

custom R-scripts (see paragraph “data processing” for details).

Setup of the fluidic system, choice of additives and oils

We used fluorinated oil without stabilizing surfactant as a carrier phase (only 0.5%
of the anti-wetting agent PFO was added), which turned out to have two major
advantages: upon reaching the outlet, small droplets generated at the T-junction
fused and formed larger plugs that completely filled the collection tubing, thus
allowing to incubate all samples in a sequential order. Furthermore the lack of
surfactant prevented the formation of micelles, which can cause the exchange of
reagents between droplets 52. To increase stability of the arrays, plugs were

furthermore spaced out using mineral oil (Sigma).

Integration of an autosampler

To allow for upscaling of the screens, we integrated an autosampler into our
microfluidic platform 27. One of the inlets of the microfluidics chip was connected
to a Dionex 3000SL Autosampler, aspirating samples from 96-well plates and
injecting them sequentially into a target tubing connected to an external Harvard
Apparatus Syringe pump. While the resulting throughput for loading compounds
from different wells is rather low (~90 sec per reagent), each of them can be mixed
with all of the drugs injected directly into the Braille valve chip. Therefore, the
maximal throughput in terms of pairwise combinations is much higher (e.g. 9 sec
per combination when mixing with 10 further reagents directly connected to the

Braille display chip). However, one effect had to be taken into account: the
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concentration of compounds coming from the autosampler varied due to
dispersion of the samples in the miscible carrier phase (the buffer used in the
robotic system) 3. To overcome this effect, we implemented a feedback loop
between the autosampler and the Braille valves: The relay signal of the
autosampler was used to send the beginning and end of each sample from the
microtiter plates to the waste, using the two Braille valves controlling the relevant
inlet on the microfluidic chip. This process allowed to overcome sample dispersion
and is illustrated in Supplementary Fig. 4. This way only the centre part of each
sample segment, showing constant concentration, was mixed with the drugs
injected directly into the Braille display chip. To verify this procedure we mixed
fluorophores stored in a 96-well plate with fluorophores injected directly into the
autosampler and measured the resulting fluorescence signal of the droplets
(Supplementary Fig. 5). All combinations showed the expected signal intensities,
confirming the feasibility of the approach if a sufficient amount of cells is available

for screening.

Single cell suspension from pancreatic primary tumors

Primary pancreatic tumors were obtained from routine resections from patients
who signed an informed consent approved by the Research Ethics Committee of
the Medical Faculty of the RWTH Aachen University (EK 206/09). The project was
also approved by the EMBL Bioethics Internal Advisory Committee. A viable single
cell suspension was prepared from the fresh tumors and directly used in an
experiment within the next few hours. Tumors were first mechanically dissociated
(~2-3 mm pieces) and digested for 1.5 hour at 37° C in 5ml of prewarmed
digestion media consisting of 1 mg/ml collagenase (Sigma) solution in DMEM/F12
(Gibco, Life Technologies). Solution was pipetted every 30 min to facilitate
dissociation, diluted in 25 ml of buffer (PSB) to stop the reaction, and centrifuged
at 250 g for 5 min. Supernatant was then removed and 2 ml of 0.05% trypsin-EDTA
(Gibco, Life Technologies) were added and the solution was incubated for 5 more
minutes at 37° C. Subsequently 15 ml of DMEM supplemented with 10% fetal
bovine serum were added and the solution was centrifuged again for 5 min at 250
g. After removing the supernatant, the pellet was resuspended in FreeStyle

medium (ThermoFisher).
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Preparation of cells for microfluidic experiments

Cultures were trypsinized to detach cells, harvested and washed with PBS. The
same procedure was used to prepare the single cell suspension from either
primary tumor or cell lines for the microfluidic experiment. Cells were suspended
in FreeStyle medium with the addition of 1 mg/ml Xanthan Gum (Sigma), for
density matching, and 2 pl/ml of 10% Pluronic (Sigma), to reduce cell attachment
and formation of clumps. Cells were filtered using a 40 pm cell strainer and diluted
to a final concentration of 8x10> viable cells/ml (counted with trypan blue
exclusion method using a BioRad cell counter). 15 pg/ml of the orange fluorescent
dye Alexa fluor 594 (ThermoFisher, #A33082) were added to the cell suspension
in order to verify the proper mixture of the components in the plug. Cell
suspension was then pipetted in a 5 ml syringe with the tubing directly connected
to the syringe (no needle to avoid clogging) using PDMS and UV glue, and with a
magnetic stir bar inside the syringe. For the duration of the experiment cells were

maintained at low temperature using ice and constantly stirred.

Preparation of drugs and Caspase-3 substrate

Cyt387 (#S2219), PHT-427 (#S1556), MK-2206 (#S1078), GDC0941 (#S1065),
Gefitinib (#S1025), Oxaliplatin (#S1224), AZD6244 (#S1008) and Gemcitabine
(#5S1149) were purchased from Selleckchem. ACHP (#4547) was purchased from
Tocris. All compounds were diluted in DMSO to a 20 mM stock solution. When
preparing the syringes for the microfluidic experiment, compounds were further
diluted in FreeStyle medium to a final concentration of 5 pM in the plugs. Tumor
Necrosis Factor-a (TNF) (#PHC3015) was purchased from Life Technologies and
diluted according to the manufacturer's instruction to a 10 ug/ml stock solution. It
was further diluted in FreeStyle medium for microfluidic experiments to a final
concentration of 5 ng/ml. For validation experiments in 96 well plates, compounds
were instead prepared in 5 consecutive 5-fold dilutions (25 puM, 5 uM, 1 uM, 0.2
uM, 0.004 uM).

The caspase-3 substrate (Z-DEVD)2-R110 was purchased from Biomol (#ABD-
13430). 3 ml of substrate working solution were prepared by adding: 2400 pl 5X
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Reaction buffer (20 mL of 50 mM PIPES, pH 7.4, 10 mM EDTA, 0.5% CHAPS), 60 ul
DTT (1M), 540 pl dH20 and 44 pl Z-DEVD-R110 substrate (5mM).

Data processing

Data were acquired using an in-house LabVIEW program allowing the detection of
three channels (i.e. blue = fluorescence barcodes, green = Caspase-3 activity and
orange marker dye to monitor mixing of reagents) as exemplified in Fig 1d. Peaks
in each of the three channels were identified by defining an empirical threshold
both on the intensity and the duration of the measured signal in order to
distinguish real peaks from background noise. Peaks in the blue channel
(corresponding to the barcode plugs) were detected and used to separate the
different samples consisting of sequences of peaks (replicates) in the green
channel. Samples with multiple peaks having either very low or very high orange
signals were manually discarded (can be due to temporary cells clogging).
Additionally, we also discarded peaks showing very high and very low width
(based on empirical thresholds) in order to remove peaks corresponding to fused
or split plugs respectively. After these steps, we considered the distribution of the
intensity of the orange peaks across all samples and discarded the extreme values
(i.e. the outliers). Where Q1 is the 25t percentile, Q3 is the 75t percentile and IQR
is the interquantile range (Q3-Q1), outliers were defined as values lower than Q1 -
1.5*IQR, or higher than Q3+1.5*IQR. These strict rules were applied to guarantee
higher quality of the data used for the analysis described in the paper. Code used to
process the data is available as an R package in GitHub

(https://github.com/eduati/BraDiPluS).

Apoptosis pathways model

The logic model shown in Fig. 5 was derived by manual literature curation starting
from the model described by Mai and colleagues 33 and integrating additional
information in order to include all nodes perturbed in our experiments and to well
describe pathway cross-talks. We modeled both the intrinsic (mediated by the
mitochondria) and the extrinsic (mediated by death receptor TNFR) apoptosis
signal including nodes encoding both anti- and pro- apoptotic effects. Binding of

TNFa to TNFR activates the extrinsic pathway mediated by Caspase-8 (Cas8 in Fig.
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5) activation of Caspase-3 (Cas3 in Fig. 5). The two distinct Caspase-8 activation
pathways >4 are represented by the cascade involving complex I (composed of
RIPK1, TRADD, TRAF2), which induces the formation of two different Caspase-8
activation complexes: complex IIA (TRADD, RIPK1, FADD, Pro-caspase 8) and
complex [IB (RIPK1, TRADD, FADD, Pro-Caspase 8, cFLIP) that can be inhibited by
cFLIP and cIAPs respectively. For simplicity, Caspase-8 is modeled as a separate
node (Cas8) regulated by the two complexes. TNFa can also regulate the intrinsic
pathway through the activation of NFkB (anti-apoptotic node) by removal of its
inhibitor IkB. The activation of the intrinsic pathway is executed by the
mitochondria through the release of SMACs (second mitochondria-derived
activator of caspases) and Cytochrome c. The former deactivates IAPs, which are
anti-apoptotic proteins, the latter binds to Apafl (Apoptotic protease activating
factor-1) and pro-caspase9 which is converted to its active form of Caspase-9
(Cas9 in Fig. 5) and in turn activates Caspase-3 (Cas3 in Fig. 5). Both Akt and ERK
have an anti-apoptotic effect by phosphorylating BAD 3¢ and thus unbinding it
from BclX and this can be modelled as an OR gate 55. We also included the pro-
apoptotic effect of ERK as regulator of p53 37. Additional cross-talks between the
pathways (i.e. RAS - MEKK1 and RAS — PI3K) were included as described in 3>,

The resulting logic model described in Fig. 5 was considered as a Prior Knowledge
Network (PKN) and was then optimised based on the experimental data for each
patient/cell line in order to generate patient/cell line specific models. We used a
formalism based on logic ordinary differential equations 3% where ordinary
differential equations are derived from logic models using a continuous update

function Bi for each species i, which can assume continuous values {0, 1},

= (5 (S S ) - )

Where i1, Ti2, - - -, Tin are the N regulators of Zi and each regulation is defined by

Hill functions Jij with parameters "'ij and Kij:
fz) =

Optimization was performed using CNRode add-on of the CellNOptR package 3°:

I’I’L

Zn k"

parameters 7 and k were estimated, while parameters n were fixed to 3. The
notation used in the paper and in Fig. 5 is ta for the life-time parameter 7 for

species A and A — B for the regulation parameter kap. The PKN was first
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compressed to reduce the complexity of the model by removing nodes that do not
affect the logic consistency of the model 6. Compressed nodes are shown with
dashed borders in Fig. 5.

Optimization for each patient/cell line was repeated 300 times with bootstrap
(sampling training data with replacement) to obtain a distribution for each
parameter. To compare the distributions of the parameters between the two cell

lines we used Wilcoxon Rank sum test (as implemented in the R package ‘coin’),

using 7 = Z/ VN as effect size, where Z is the statistics from the test and N is the
number of observations. Effect size > 0.3 is considered as medium-large effect. To
compare the distributions of all patients/cell lines we used Kruskal-Wallis rank
sum test (which is a one-way analysis of variance on ranks) to test if observations
derive from the same distribution for all groups, i.e. patient/cell line (null

hypothesis rejected if different for at least one group). Effect size w is computed as

VX*/N where x2 is the statistics from the test and N is the number of observations.
Effect size >0.3 is considered as medium-large effect. Rank type test were
preferred over parametric tests because they are highly robust against non-

normality.
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Figure 1. Microfluidics platform.

(a) Workflow for patient samples. Functional drug screening on tumors resected
from human patients: each resected tumor is dissociated to a single cell
suspension, which is perturbed with different compounds using the microfluidics
platform. (b) Chip design. 16 syringes with aqueous samples are connected to the
inlets in the microfluidics chip via tubing (10 with compounds, 2 with medium to
generate single drug and control samples, 2 for barcoding, 1 for the cell
suspension, 1 with Caspase-3 substrate to detect apoptosis). Other 2 inlets in the
microfluidics chip are used for carrier oil (FC-40) and mineral oil. The braille
display unit is used to control the valves and regulate the flow coming from the
aqueous phase syringes, resulting in different combinations. Plugs are collected in
a tube connected to the outlet. (c) Experimental setup. The microfluidic chip is
mounted on a Braille display and aligned with the pins. Single compounds and
pairwise combinations are automatically generated. (d) Example of a plug
sequence and corresponding readout. Multiple replicates (aqueous plugs) are

produced for each sample. Each aqueous plug is generated by mixing the following
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components: cells (with orange fluorescent dye to verify the proper mixing of all
components), caspase-3 substrate and one or two compounds. Sample plugs are
followed by binary barcode plugs to encode the corresponding sample number
(high concentration of blue fluorescent dye = 1, low concentration = 0, followed by

an end of barcode signal).
Figure 2
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Figure 2. Microfluidic combinatorial drug screening in cell lines.

(a) Boxplot of the sequence of samples across multiple replicates for BxPC3 cells
(z-scores of Caspase-3 activity). (b) Heatmap representation of the same sample as
in (a) (BxPC1 cell line) using median value across 6 replicates. Coloured red scale
starting from z-score equal to 0 (i.e. median activation across all samples). (c)

Heatmap representation for AsPC1 cells.
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Figure 3. Validation of cell line specific drug combinations in tissue culture
experiments.

(a) BxPC3 show a strong activation in the microfluidic system when treated with
the combination of MK-2206 and PHT-427, which is not seen when treated with
the single drugs. No strong activation is shown for AsPC1 treated with the same
drugs. (b) Same behaviour is confirmed in 96-well plates where the drug
combination shows a much higher signal than the two single drug samples for
BxPC3 cells, while it stays at the basal level for AsPC1 cells. (c,d) Similarly, the
combination of ACHP and Gefitinib is potent in AsPC1 cells but not in BxPC3 cells,

both in microfluidic plugs (c) and in a 96-well plate format (d).
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Figure 4. Patient samples and comparison with cell lines.
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(a-d) The heatmaps show the median z-score of Caspase-3 activity for each patient

sample for which data could be obtained successfully. No value is reported for

samples that were not measured (two of the 10 drugs were not screened for

patient 1) or had technical issues (e.g. samples showing unexpected dilutions of

the orange marker dye added to the cell suspension) or that had inconsistent

values between runs. Coloured red scale starts from z-score equal to 0 (i.e. median

activation across all samples). (e) Data clustered by samples and by patient/cell

line.
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Figure 5. Cell line /patient specific models of apoptosis pathway.

(a) General structure of the logic model of intrinsic and extrinsic apoptosis
pathways. Nodes perturbed in the combinatorial drug screening are shown in
green if stimulated (cytokine TNFa) and in red if inhibited; measured node
(Caspase-3, shortened to Cas3 in the figure) is in blue; dots represent AND gates.
Dotted nodes are compressed before estimating cell line/patient specific
parameters. Edges are shown in black for activation and in red for inhibition. (b)
Volcano plot representing the results of the comparison of the bootstrap
distribution of the parameters for AsPC1 and BxPC3 cells. (c) Volcano plot
representing the results of comparing the bootstrap distribution of the parameters

across all cell lines/patients.
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Table 1. List of screened compounds

Compound name Compound type Putative target (effect)
ACHP targeted IKK (inhibition)
AZD6244 targeted MEK (inhibition)
Cyt387 targeted JAK (inhibition)
GDC0941 targeted PI3K (inhibition)
Gefitinib targeted EGFR (inhibition)
MK-2206 targeted AKT (inhibition)
PHT-427 targeted AKT, PDPK1 (inhibition)
Gemcitabine cytotoxic DNA replication (inhibition)
Oxaliplatin cytotoxic DNA replication (inhibition)
TNFa cytokine TNFR (activation)
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