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The treatment of epilepsy using antiepileptogenic drugs is complicated by drug re-
sistance, resulting in treatment failure in more than one-third of cases. Human P-

glycoprotein (hPGP; MDR1 ) is a known epileptogenic mediator. Given that experimen-
tal investigations have suggested a role for pharmacogenetics in this treatment failure, it

would be of interest to study hPGP polymorphisms that might contribute to the emer-

gence of drug resistance. Changes in protein functional activity could result from point
mutations as well as altered abundance. Bioinformatics approaches were used to assess

and rank the functional impact of 20 missense MDR1 polymorphisms and the top five

were selected. The structures of the wildtype and mutant hPGP were modelled based on
the mouse PGP structure. Docking studies of the wildtype and mutant hPGP with four

standard anti-epileptic drugs were carried out. Our results revealed that the drug bind-

ing site with respect to the wildtype protein was uniform. However the mutant hPGP
proteins displayed a repertoire of binding sites with stronger binding affinities towards

the drug. Our studies indicated that specific polymorphisms in MDR1 could drive con-

formational changes of PGP structure, facilitating altered contacts with drug-substrates
and resulting in drug extrusion. This suggests that MDR1 polymorphisms could play

an active role in modifying drug bioavailability, leading to pharmacoresistance in anti-
epileptic chemotherapy.
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1. Introduction

P-gp (HGNC nomenclature: ABCB1) is a key transmembrane protein from bac-

teria to man, and it functions to protect the organism from toxic xenobiotics. P-

gp has turned out to be a critical player in multiple drug resistance phenomena.

Here, we are interested in its role in antiepileptic drug resistance. Epilepsy is a
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chronic neurological condition affecting more than 50 million people worldwide and

1-2 % of the population.1 The recurring limitation in the treatment protocol of

epilepsy is the failure of drug-response in more than one-third of cases. This is

the case with the > 30 FDA-approved drugs for epilepsy. PGP is an ATP-coupled

efflux pump documented as an epileptogenic mediator.2 It is known to be highly

expressed in the blood-brain barrier, which is pharmacologically crucial for the

bioavailability of drugs acting on the central nervous system.3 The experimental

evidence so far for the role of PGP polymorphisms in antiepileptic drug resistance

has been inconclusive,4,5,6,7,8 but there is evidence for its cognate role in antide-

pressant therapy.9 There are at least two mechanisms by which PGP could mediate

refractory epilepsy. First, elevated levels of PGP expression might be linked with

the low intracellular drug concentration in cortical cells observed in epilepsy treat-

ment. PGP is well-known for its broad substrate specificity, and would extrude

drug-substrates. Alternatively, a gain-of-function mutation might enhance its func-

tional activity, resulting in the same phenotype, i.e., hyperactive PGP leading to

pharmacoresistant epilepsy.10,11

PGP consists of two homologous halves, each consisting of a transmembrane

(TM) domain with six alpha helices and a nucleotide-binding domain (NBD).12

A large, hydrophobic and polyspecific drug-binding pocket resides in the inverted

V-shaped internal cavity formed by the transmembrane domains.13 It is clear that

the key to epilepsy treatment would involve control of the epileptogenic mediator

proteins, including hPGP. Structural studies of hPGP might enhance our current

understanding of the role of PGP in drug resistance mechanisms, and provide any

evidence of the relationship between specific MDR1 haplotypes and altered drug

pharmacokinetics. Given that little information is available on the pharmacology

of missense polymorphisms of MDR1, analysis of the role of gain-of-function mu-

tations in PGP would be valuable. Here, we have attempted an in silico study of

PGP polymorphisms and their structure-activity relationships to explore drug sen-

sitivity. PGP-mediated processes are also the major contributors to emergence of

drug resistance in cancer therapy and other conditions. Our results could extend

to examining the role of P-glycoprotein in generalized drug-resistance in multiple

conditions.14

2. Materials and Methods

2.1. Polymorphism analysis

The hPGP sequence was retrieved from UniProt (acc. no. P08183). A PSI-BLAST

search was performed using hPGP as query and target database as Vertebrates,

with a E-value of 0.001 until convergence.15 We selected top 5000 sequences from

this result, and clustered for redundancy at 40% sequence identity16. Multiple align-

ment of all the hits was performed using ClustalX17 and manually edited (available

in Supporting Information). The dbSNP was to used to identify hPGP SNPs with

the search term: “human [orgn] AND missense AND PGP”. The hits were assessed
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Computational Studies of P-glycoprotein mediated resistance 3

for the functional impact of polymorphisms using the curated multiple alignment

obtained above. Three different tools were used: SIFT,18, PolyPhen2,19 and PhD-

SNP20. Consensus of these predictions was used to evaluate the functionally impor-

tant SNPs.

2.2. Homology modeling

The template structures were retrieved using a Blast search of hPGP against the

PDB database.21 ClustalX was used to align the template and hPGP (i.e, target).

Modellerv9 was used for modelling and energy-minimisation.22 For each target,

five separate models were generated and the model with the least DOPE (discrete

optimized potential energy) score was chosen as the best model. The structure of

a mutant protein could be obtained by modeling in the mutation on the wild-type

structure, however this would not model any global effects due to the mutation.

In order to fully account for the effects of the mutation, we modelled the mutant

proteins independently of the wildtype protein. Molprobity was used to validate the

models obtained.23

Search the polymorphisms of MDR1
using dbSNP

?

Prioritise the SNPs based on
predicted functional impact

?

Structural modelling of wild-type
and variant hPGP

?

Docking simulation of wildtype and variant
hPGP with each anti-epileptic drug

?

Identify interacting residues

?

Determination of differential ligand
affinities

?

Analysis of mechanism of drug resistance

1

Fig. 1. Methodology for in silico study of MDR1 polymorphisms in pharmacoresistant epilepsy
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2.3. Protein and ligand preparation

Autodock4.2 suite of tools was used for carrying out the docking simulations of

hPGP variants and anti-epileptic drugs.24,25 Hydrogen atoms missing in the protein

were added. This was followed by the addition of partial charges to the atoms. The

protein was then converted to PDBQT format. The SMILES notation of the drugs

of interest were retrieved from Pubchem.26 The PDB co-ordinates of the drugs of

interest were generated from their SMILES representation using OpenBabel.27 To

generate the conformers of each drug, we used MGLtools by calculating the number

of bond torsions in the 3D structure. The ligand was then converted to the PDBQT

format as well using AutoDock Tools. Target affinity maps for each atom type in

the ligand were generated by autogrid by defining a uniform grid box centered in

the hPGP internal cavity. This procedure was repeated for each target-ligand pair,

for a total of 6 × 4 = 24 times.

2.4. Docking

We employed the Lamarckian genetic algorithm with default parameters for docking

search, with 2,500,000 cycles per run, and 10 runs per receptor-ligand pair. The

binding mode with the least binding energy was defined as the best pose. The ten

poses obtained for each receptor-ligand pair were clustered at 2.0Å r.m.s. to validate

the convergence to the best pose. The docked complex was then loaded in PDBQT

format, converted to PDB coordinates using OpenBabel, and finally visualized using

Rasmol2.7.28 The differential affinity of the mutant for a given ligand relative to the

wildtype was estimated as the difference in the binding energies, i.e. ∆∆Gmut =

∆Gbind,mut − ∆Gbind,wt .

3. Results and Discussion

Nearly 500 hPGP SNPs were retrieved, however most of these were unannotated,

and we obtained a set of 20 hPGP SNPs for further study, none of whose functional

effects were known in the literature (Table 1). The results of our assessment of

functional impact by various approaches are summarised in Table 2. Most of the

SNPs were determined to be neutral, not disease-causing or deleterious. Five SNPs

were predicted to be functionally important by at least one of the tools, as shown

in Table 2.

Table 3 provides the representative structures of P-glycoprotein in the PDB. Of

these homologous hits, the mouse structures cover the full length of the hPGP. Some

mouse structures co-crystallised with a ligand might not be representative of the

native PGP conformation. When 4Q9H was superimposed with the 3G5U structure,

it was observed that the register of the C-terminal half of the ’inverted-V’ of 4Q9H

was displaced relative to that of 3G5U (Fig. 3), which rendered 4Q9H unsuitable for

modeling the full hPGP structure. The alignment between the hPGP and 3G5U is

very good, showing > 87.5 % sequence identity and good sequence coverage (Fig. 2).
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Computational Studies of P-glycoprotein mediated resistance 5

Table 1. Missense SNPs of human PGP and their location. SNPs are represented in the usual

convention: wildtype aminoacid followed by position followed by replacement aminoacid.

no rsid SNP Location

1 rs28381804 F17L N-terminal domain

2 rs9282564 N21D N-terminal domain

3 rs1202183 N44S TM1

4 rs9282565 A80E Linker between TM1 and TM2

5 rs1128501 G185V TM3

6 rs36008564 I261V Linker between TM4 and TM5

7 rs2229109 S400N NBD1

8 rs28381902 E566K NBD1

9 rs28381914 R593C NBD1

10 rs2235036 A599T NBD1

11 rs35023033 R669C NBD1

12 rs2235039 V801M Linker between TM8 and TM9

13 rs2032581 I829V TM9

14 rs28381967 I836V TM9

15 rs2032582 S893A Linker between TM11 and TM12

16 rs72552784 A999T NBD2

17 rs28401798 P1051A NBD2

18 rs55852620 Q1107P NBD2

19 rs2229107 S1141T NBD2

20 rs28364274 V1251I NBD2

Table 2. Topranked polymorphisms based on consensus prediction of functional impact

no SNP PolyPhen2 PolyPhen2 SIFT SIFT phdsnp phdsnp

prediction Probability prediction score prediction reliability

1 G185V prob. damaging 1 Damaging 1 Disease 8

2 R593C benign 0.392 Damaging 1 Disease 6

3 E566K prob. damaging 1 Damaging 0.88 Disease 6

4 Q1107P prob. damaging 0.962 tolerated 0.19 Disease 6

5 A999T poss. damaging 0.465 tolerated 1 Neutral 7

3G5U was used as the template for homology modeling. The target structures of

the hPGP wildtype and the five variants were independently modeled and energy-
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minimised five times each, and the best model was used for further studies. All the

modelled structures are available in the Supporting Information and their mutual

rms deviations are shown in Table 4.

Table 3. Crystal Structures of PGP homologues.

pdbid Organism Chains Length Res. Å #TM helices

3G5U Mus musculus A,B 1284 3.80 12

4Q9H Mus musculus A 1284 3.40 12

4KSB Mus musculus A 1284 3.80 12

3G61 Mus musculus A,B 1284 4.35 12

3G60 Mus musculus A,B 1284 4.40 12

4KSC Mus musculus A 1284 4.00 12

4LSG Mus musculus A,B 1284 3.80 12

4M1M Mus musculus A,B 1282 3.80 12

2HYD Staphylococcus aureus A,B 578 3.00 6

3B5Z Salmonella enterica A,B,C,D 582 4.20 5

3WME Cyanidioschyzon merolae A 612 2.75 3

3G5U MELEEDLKGRADK.NFSKMGKKSKKEKKEKKPAVSVLTMFRYAGWLDRLYMLVGTLAAIIHGVALPLMMLIFGDMTDSFASVGNVS...KNSTNMSEADKRAMFAKLEEEMTTYAYYYTGIGAGV 121
hPGP MDLEGDRNGGAKKKNFFKLNNKSEKDKKEKKPTVSVFSMFRYSNWLDKLYMVVGTLAAIIHGAGLPLMMLVFGEMTDIFANAGNLEDLMSNITNRSDINDTGFFMNLEEDMTRYAYYYSGIGAGV 125

3G5U LIVAYIQVSFWCLAAGRQIHKIRQKFFHAIMNQEIGWFDVHDVGELNTRLTDDVSKINEGIGDKIGMFFQAMATFFGGFIIGFTRGWKLTLVILAISPVLGLSAGIWAKILSSFTDKELHAYAKA 246
hPGP LVAAYIQVSFWCLAAGRQIHKIRKQFFHAIMRQEIGWFDVHDVGELNTRLTDDVSKINEGIGDKIGMFFQSMATFFTGFIVGFTRGWKLTLVILAISPVLGLSAAVWAKILSSFTDKELLAYAKA 250

3G5U GAVAEEVLAAIRTVIAFGGQKKELERYNNNLEEAKRLGIKKAITANISMGAAFLLIYASYALAFWYGTSLVISKEYSIGQVLTVFFSVLIGAFSVGQASPNIEAFANARGAAYEVFKIIDNKPSI 371
hPGP GAVAEEVLAAIRTVIAFGGQKKELERYNKNLEEAKRIGIKKAITANISIGAAFLLIYASYALAFWYGTTLVLSGEYSIGQVLTVFFSVLIGAFSVGQASPSIEAFANARGAAYEIFKIIDNKPSI 375

3G5U DSFSKSGHKPDNIQGNLEFKNIHFSYPSRKEVQILKGLNLKVKSGQTVALVGNSGCGKSTTVQLMQRLYDPLDGMVSIDGQDIRTINVRYLREIIGVVSQEPVLFATTIAENIRYGREDVTMDEI 496
hPGP DSYSKSGHKPDNIKGNLEFRNVHFSYPSRKEVKILKGLNLKVQSGQTVALVGNSGCGKSTTVQLMQRLYDPTEGMVSVDGQDIRTINVRFLREIIGVVSQEPVLFATTIAENIRYGRENVTMDEI 500

3G5U EKAVKEANAYDFIMKLPHQFDTLVGERGAQLSGGQKQRIAIARALVRNPKILLLDEATSALDTESEAVVQAALDKAREGRTTIVIAHRLSTVRNADVIAGFDGGVIVEQGNHDELMREKGIYFKL 621
hPGP EKAVKEANAYDFIMKLPHKFDTLVGERGAQLSGGQKQRIAIARALVRNPKILLLDEATSALDTESEAVVQVALDKARKGRTTIVIAHRLSTVRNADVIAGFDDGVIVEKGNHDELMKEKGIYFKL 625

3G5U VMTQTAGNEIELGNEACKSKDEIDNLDMSSKDSGSSLIRRRSTRKSICGPHDQDRKLSTKEALDEDVPPASFWRILKLNSTEWPYFVVGIFCAIINGGLQPAFSVIFSKVVGVFTNGGPPETQRQ 746
hPGP VTMQTAGNEVELENAADESKSEIDALEMSSNDSRSSLIRKRSTRRSVRGSQAQDRKLSTKEALDESIPPVSFWRIMKLNLTEWPYFVVGVFCAIINGGLQPAFAIIFSKIIGVFTRIDDPETKRQ 750

3G5U NSNLFSLLFLILGIISFITFFLQGFTFGKAGEILTKRLRYMVFKSMLRQDVSWFDDPKNTTGALTTRLANDAAQVKGATGSRLAVIFQNIANLGTGIIISLIYGWQLTLLLLAIVPIIAIAGVVE 871
hPGP NSNLFSLLFLALGIISFITFFLQGFTFGKAGEILTKRLRYMVFRSMLRQDVSWFDDPKNTTGALTTRLANDAAQVKGAIGSRLAVITQNIANLGTGIIISFIYGWQLTLLLLAIVPIIAIAGVVE 875

3G5U MKMLSGQALKDKKELEGSGKIATEAIENFRTVVSLTREQKFETMYAQSLQIPYRNAMKKAHVFGITFSFTQAMMYFSYAAAFRFGAYLVTQQLMTFENVLLVFSAIVFGAMAVGQVSSFAPDYAK 996
hPGP MKMLSGQALKDKKELEGSGKIATEAIENFRTVVSLTQEQKFEHMYAQSLQVPYRNSLRKAHIFGITFSFTQAMMYFSYAGCFRFGAYLVAHKLMSFEDVLLVFSAVVFGAMAVGQVSSFAPDYAK 1000

3G5U ATVSASHIIRIIEKTPEIDSYSTQGLKPNMLEGNVQFSGVVFNYPTRPSIPVLQGLSLEVKKGQTLALVGSSGCGKSTVVQLLERFYDPMAGSVFLDGKEIKQLNVQWLRAQLGIVSQEPILFDC 1121
hPGP AKISAAHIIMIIEKTPLIDSYSTEGLMPNTLEGNVTFGEVVFNYPTRPDIPVLQGLSLEVKKGQTLALVGSSGCGKSTVVQLLERFYDPLAGKVLLDGKEIKRLNVQWLRAHLGIVSQEPILFDC 1125

3G5U SIAENIAYGDNSRVVSYEEIVRAAKEANIHQFIDSLPDKYNTRVGDKGTQLSGGQKQRIAIARALVRQPHILLLDEATSALDTESEKVVQEALDKAREGRTCIVIAHRLSTIQNADLIVVIQNGK 1246
hPGP SIAENIAYGDNSRVVSQEEIVRAAKEANIHAFIESLPNKYSTKVGDKGTQLSGGQKQRIAIARALVRQPHILLLDEATSALDTESEKVVQEALDKAREGRTCIVIAHRLSTIQNADLIVVFQNGR 1250

3G5U VKEHGTHQQLLAQKGIYFSMVSVQAGAKRSYVHHHHHH 1284
hPGP VKEHGTHQQLLAQKGIYFSMVSVQAGTKRQ........ 1280

Fig. 2. Alignment of human PGP (target) and mouse 3G5U (template). Identical residues are

highlighted and gaps are indicated by . .
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Computational Studies of P-glycoprotein mediated resistance 7

Fig. 3. Structural superposition of 3G5U (red) and 4Q9H (blue). Note the displacement of the
C-terminal region of 4Q9H.

Table 4. Mutual rms deviation of the template and modelled structures (in Å ). Mutant numbering
corresponds to the order in Table 2.

3g5u wt Mut1 Mut2 Mut3 Mut4

wt 4.51

Mut1 4.24 0.53

Mut2 4.43 0.62 1.31

Mut3 4.32 0.71 1.19 1.33

Mut4 4.33 0.43 0.97 0.81 0.59

Mut5 4.63 0.49 0.71 1.04 0.48 0.44

Phenobarbital was first used as an antiseizure drug in 1912, followed by pheny-

toin. Today more than 30 drugs are FDA-approved in the treatment of epilepsy,

yet all of them face pharmacoresistance and more than one-third of epilepsy cases

remain untreatable. In addition to phenobarbital and phenytoin, two other common

antiepileptic medications, namely valproate and carbamazepine, were included in

the set of ligands studied (Table 5).

Docking between each hPGP protein (wildtype + 5 mutants) and ligand was

carried out. Ten docking runs were performed per receptor-ligand pair. Each run

provides one low-energy docked conformation of the respective receptor-ligand pair.
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Table 5. Anti-epileptic drugs.

no Drug pubchemid smiles notation

1 Valproate 3121 CCCC(CCC)C(=O)O

2 Phenytoin 1775 C1=CC=C(C=C1)C2(C(=O)NC(=O)N2)C3=CC=CC=C3

3 Carbamazepine 2554 C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N

4 Phenobarbital 4763 CCC1(C(=O)NC(=O)NC1=O)C2=CC=CC=C2

The site corresponding to the lesat-energy binding mode was taken as the binding

site of the ligand with the receptor. To ascertain convergence to the lowest-energy

binding mode, the ten runs of each receptor-ligand binding conformations were clus-

tered at 2.0Å r.m.s. The lowest-energy binding modes showed good convergence. Of

the 24 receptor-ligand pairs, 21 had energy-histograms showing the least binding

energy (±0.2kcal/mol) as the most probable conformation and the least binding

energies of the rest were within 1 kcal/mol of the binding energies of the most prob-

able conformation. This provided confidence that the docking procedure resulted

in convergence to the optimum receptor-ligand conformation. The structures of the

receptor-drug complexes as well as the best poses (defined as within 4.5Å of the

ligand) are available in the Supporting Information. A comparison of the best poses

between the wildtype and one of the mutants is illustrated in Fig. 4.

(a) Best pose of the wildtype hPGP
with phenytoin

(b) Best pose of mutant R593C with
carbamazepine

Fig. 4. Illustration of best pose comparisons.

The hPGP residues binding the ligand in each hPGP-drug pair represent the

drug-specific binding pocket. These residues were defined at a contact distance of

< 4.5Å from the drug in the bound conformation. These residues contributed to

stabilizing the docked complex by forming hydrogen bonds and Van der Waals in-

teractions with the substrates. The groups of contacting residues specific to each
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docked complex are shown in Table 6. The conservation of these residues calculated

using the constructed multiple alignment is given in the Supporting information. It

is observed that the binding site of wildtype hPGP is identical for phenytoin and

carbamazepine. This is a 14-residue binding pocket in the internal cavity lined by

four hydrophobic residues (Ile144, Val179, Leu890, Leu924), three charged residues

(Arg148, Asp886, Lys934) and four polar residues (Ser180, Asn183, Tyr928, Ser931).

In contrast, the mutant proteins bound the drugs in alernative variable regions, no-

tably a binding pocket involving Gln99, Val100, Trp103, Ile157, Glu785, Leu789,

Phe848, Thr851, and Phe852 that bound all drugs except valproate. It was remark-

able that for a given mutant hPGP, the binding pocket interactions differed for each

drug. The R593C hPGP mutant bound phenytoin very close to the mutation site,

suggesting evidence for local conformational change in binding the drug.

Further clarity on these observations could be obtained on an examination of the

estimated binding free energies of the wildtype and variant hPGPs with the different

drugs of interest. Table 7 shows these binding energies along with the predicted

differential ligand affinity which is estimated by ∆∆Gmut = ∆Gbind,mut−∆Gbind,wt.

It was observed that all but three of the differential ligand affinities were negative.

This implied that the variant hPGP bound each drug with a stronger affinity than

the wildtype hPGP. The maximum range of differential response was observed with

mutant E566K (−1.25kcal/mol < ∆∆Gmut < 0.80kcal/mol).

Two features indicated the neutrality of wildtype hPGP with respect to binding

anti-epileptic drugs. First, the binding pocket appeared constant for both phenytoin

and carbamazepine. Second, the binding energy with the drug was higher relative

to the variants and hence less tight. On the other hand, there were two features that

indicated that mutant hPGPs would assist in the development of drug resistance.

First, mutant hPGPs bound each drug in a different location in the internal cavity.

Variability in location affords a better search of the optimal binding modes of the

drug. Second, consistently lower binding energies were observed, implying stable

drug-PGP complexes for possible energetic extrusion of the drug. The in silico

analysis showed that polymorphisms could have played a role in relocating the

optimal drug-binding cavity for a higher affinity, relative to the wild-type hPGP.

An elevated affinity between a mutant hPGP and the drug could suggest a po-

tential differential adverse response to therapy. From Table 7, it is seen that this

is the case for 17 out of the 20 drug-protein combinations studied. Experimental

studies are necessary to validate these results and determine whether the magni-

tude of any differential adverse responses could translate to the threshold for the

development of pharmacoresistance.

4. Conclusions

Though hPGP is well-documented as a modifier of drug bioavailability in many

conditions, its role in antiepiletic drug resistance has been controversial. At least two

alternative mechanisms could explain the hPGP-mediated epileptogenic phenotype.
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Table 6. Contacting residues of the receptor within 4.5Å of the ligand in the best pose of each
docked ligand-receptor pair. Residue numbering follows the UniProt human P-gp entry P08183.

Receptor Ligand Interacting residues

Wildtype Drug1 Leu244,Tyr247,Arg286,Ile289,Lys290,Ile293,Ala823,Lys826

Wildtype Drug2 Gly141,Ile144,His145,Arg148,Val179,Ser180,Asn183,Asp886,Leu890,Leu924,Pro927,Tyr928,Ser931,Lys934

Wildtype Drug3 Gly141,Ile144,His145,Arg148,Val179,Ser180,Asn183,Asp886,Leu890,Leu924,Pro927,Tyr928,Ser931,Lys934

Wildtype Drug4 Met701,Asn704,Leu705,Trp708,Ile829,Arg832,Leu833

G185V Drug1 Thr422,Leu554,Gln556,Ala557,Thr558,Gln570,Leu573,Asp574,Arg577,Val584,Thr591,Val592,Asn594,Ala595

G185V Drug2 Ile199,Phe303,Tyr307,Asn721,Leu724,Gln725,Ser766,Gln838,Met986,Ala987,Gln990,Val991,Phe994

G185V Drug3 Ile199,Phe303,Tyr307,Asn721,Leu724,Gln725,Ser766,Gln838,Ala987,Gln990,Val991,Phe994

G185V Drug4 Lys291,Ala292,Asn296,Gln773,Phe777,Gly778,Glu782,Lys826,Ser831,Phe994,Ala995,Pro996

R593C Drug1 Leu244,Tyr247,Lys285,Arg286,Ile289,Lys290,Ile293,Thr785,Lys826

R593C Drug2 Thr627,Met628,Gln629,Thr630,Leu688,Phe804,Pro807,Lys808,Asn809,Thr810,Thr811

R593C Drug3 Gln132,Val133,Trp136,Ile190,Glu875,Leu879,Phe938,Thr941,Phe942

R593C Drug4 Gln132,Val133,Trp136,Ile190,Glu875,Leu879,Phe938,Gly939,Thr941,Phe942

E566K Drug1 Leu244,Tyr247,Lys285,Arg286,Ile289,Lys290,Ile293,Thr785,Lys826

E566K Drug2 Gln132,Val133,Trp136,Cys137,Gly187,Ile190,Glu875,Leu879,Phe938,Thr941,Phe942

E566K Drug3 Ile293,Phe777,Gly778,Gly781,Ala823,Gln824,Lys826,Gly827,Ile829,Gly830,Phe994,Ala995,Pro996

E566K Drug4 Ser831,Ala834,Val835,Gln838,Gln990,Val991,Ser992,Ser993,Phe994,Ala995,Pro996,Asp997,Tyr998

Q1107P Drug1 Tyr247,Glu282,Arg286,Lys290,Gly781,Glu782,Thr785,Arg789,Ala823,Gln824,Lys826

Q1107P Drug2 Asp689,Glu690,Ser691,Ile692,Lys808,Asn809,Ala813,Leu814,Thr816,Arg817,His1007,Met1010,Ile1011

Q1107P Drug3 Val133,Trp136,Cys137,Glu875,Leu879,Lys934,Phe938,Thr941,Phe942

Q1107P Drug4 Ser831,Ala834,Val835,Gln838,Gln990,Val991,Ser992,Ser993,Phe994,Ala995,Pro996,Asp997,Tyr998

A999T Drug1 Leu244,Tyr247,Glu282,Arg286,Ile289,Lys290,Ile293,Thr785,Arg789,Ala823,Lys826

A999T Drug2 Ala259,Ala260,Ile261,Arg262,Thr630,Leu688,Phe804,Pro807,Lys808,Asn809,Thr810,Thr811,Leu814

A999T Drug3 Ser831,Ala834,Val835,Gln838,Gln990,Val991,Ser993,Phe994,Ala995,Pro996,Asp997,Tyr998

A999T Drug4 Ser831,Ala834,Val835,Gln838,Gln990,Val991,Ser992,Ser993,Phe994,Ala995,Pro996,Asp997,Tyr998

Our work suggests that polymorphisms are a viable mechanism of PGP action

that could lead to drug resistance acquisition independent of other mechanisms.

It is interesting that all the polymorphisms appeared to result in gain-of-function.

Coupled with the observation that somatic mutations could have a similar effect

to identical inherited polymorphisms, this would suggest that PGP is a potential

oncogene in the context of cancer drug resistance.

Developing a drug resistance strategy to combat drug resistance is a top prior-

ity. Our work has highlighted that MDR1 polymorphisms could potentially lower

the threshold for development of pharmacoresistance. This gain-of-function process

in hPGP offers a novel candidate target in the fight against antiepileptic drug re-
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Table 7. Free energies of binding (∆Gbind) of each docked receptor-drug pair. The predicted

differential ligand affinity is given by ∆∆Gmut = ∆Gbind,mut−∆Gbind,wt. All values in kcal/mol.

Receptor valproate phenytoin carbamazepine phenobarbital

wildtype -4.28 -5.48 -6.35 -5.24

G185V -3.90 -6.38 -6.27 -5.62

R593C -5.21 -5.52 -6.37 -5.74

E566K -5.53 -6.17 -5.55 -6.15

Q1107P -5.50 -5.47 -6.66 -5.52

A999T -5.15 -5.65 -6.67 -6.48

∆∆GG185V 0.38 -0.90 0.08 -0.38

∆∆GR593C -0.93 -0.04 -0.02 -0.5

∆∆GE566K -1.25 -0.69 0.80 -0.91

∆∆GQ1107P -1.22 0.01 -0.31 -0.28

∆∆GA999T -0.87 -0.17 -0.32 -1.24

sistance. Experimental validation of our work is necessary to apply our findings

towards achieving pharmacosensitive response in epilepsy treatment. Our method-

ology is extendable to studies investigating the effect of genetic polymorphisms on

phenotypes in other diseases and conditions.

5. Supporting Information

Supporting information is available at 10.6084/m9.figshare.5937388.
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