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Abstract  
Improved risk stratification and prognosis in sepsis is a critical unmet need. Clinical 

severity scores and available assays such as blood lactate reflect global illness severity with 

suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. 

Here three scientific groups were invited to independently generate prognostic models for 30-day 

mortality using 12 discovery cohorts (N=650) containing transcriptomic data collected from 

primarily community-onset sepsis patients. Predictive performance was validated in 5 cohorts of 

community-onset sepsis patients (N=189) in which the models showed summary AUROCs 

ranging from 0.765-0.89. Similar performance was observed in 4 cohorts of hospital-acquired 

sepsis (N=282). Combining the new gene-expression-based prognostic models with prior clinical 

severity scores led to significant improvement in prediction of 30-day mortality (p<0.01). These 

models provide an opportunity to develop molecular bedside tests that may improve risk 

stratification and mortality prediction in patients with sepsis, improving both resource allocation 

and prognostic enrichment in clinical trials.  

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2016. ; https://doi.org/10.1101/095489doi: bioRxiv preprint 

https://doi.org/10.1101/095489


 

 

Introduction 

Sepsis, recently defined as organ dysfunction caused by a dysregulated host response to 

infection1, contributes to half of all in-hospital deaths in the US and is the leading cost for the US 

healthcare system2,3. Although in-hospital sepsis outcomes have improved over the last decade 

with standardized sepsis care, mortality rates remain high (10-35%)4. Sepsis treatment still 

focuses on general management strategies including source control, antibiotics, and supportive 

care. Despite dozens of clinical trials, no treatment specific for sepsis has been successfully 

utilized in clinical practice5. Two consensus papers suggest that continued failure of proposed 

sepsis therapies is due to substantial patient heterogeneity in the sepsis syndrome and a lack of 

tools to accurately categorize sepsis at the molecular level5,6. Current tools for risk stratification 

include clinical severity scores such as APACHE or SOFA as well as blood lactate levels. While 

these measures assess overall illness severity, they do not adequately quantify the patient’s 

dysregulated response to the infection and therefore fail to achieve the personalization necessary 

to improve sepsis care7.  

A molecular definition of the severity of the host response in sepsis would provide 

several benefits. First, improved accuracy in sepsis prognosis would improve clinical care 

through appropriate matching of patients with resources: the very sick can be diverted to ICU for 

maximal intervention, while patients predicted to have a better outcome may be safely watched 

in the hospital ward or discharged early. Second, more-precise estimates of prognosis would 

allow for better discussions regarding patient preferences and the utility of aggressive 

interventions. Third, better molecular phenotyping of sepsis patients has the potential to improve 

clinical trials through both (1) patient selection and prognostic enrichment for drugs and 

interventions (e.g., excluding patients predicted to have good vs. bad outcomes), and (2) better 

assessments of observed-to-expected ratios for mortality5,6. Finally, as a direct quantitative 

measure of the dysregulation of the host response, molecular biomarkers could potentially help 

form a quantitative diagnosis of sepsis as distinct from non-septic acute infections8,9. Thus, 

overall, a quantitative test for sepsis could be a significant asset to clinicians if deployed as a 

rapid assay. 

 Previously, a number of studies have used whole-blood transcriptomic (genome-wide 

expression) profiling to risk-stratify sepsis patients10–13. Important insights from these studies 

suggest that more-severe sepsis is accompanied by an overexpression of neutrophil proteases, 
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adaptive immune exhaustion, and an overall profound immune dysregulation10,11,14–17. 

Quantitative evaluation of host response profiles based on these observations have been validated 

prospectively to show specific outcomes12,13, but none have yet been translated into clinical 

practice. Still, the availability of high-dimensional transcriptomic data from these accumulated 

studies has created unprecedented opportunities to address questions across heterogeneous 

representations of sepsis (different ages, pathogens, and patient types) that could not be answered 

by any individual cohort.  

Transcription-based modeling has been deployed across many diseases to improve 

prognostic accuracy. These are typically developed in a method-specific manner using data 

collected from single cohorts.  As a result, prognostic models often lack the generalizability that 

is necessary to confer utility in clinical applications18. In contrast, community modeling 

approaches (where multiple groups create models using the same training data) can provide an 

opportunity to explicitly evaluate predictive performance across a diverse collection of 

prognostic models sampled from across a broad solution space19–22,23. Here, we systematically 

identified a large collection of both public and privately-held gene expression data from clinical 

sepsis studies at the time of sepsis diagnosis. Three scientific groups were then invited to build 

models to predict 30-day mortality based on gene expression profiles. These three groups 

produced four different prognostic models, which were then validated in external validation 

cohorts composed of patients with either community-acquired sepsis or hospital-acquired 

infections (HAIs). 

  

Materials and Methods   

Systematic Search   

Two public gene expression repositories (NCBI GEO24, EMBL-EBI ArrayExpress25) 

were searched for all clinical gene expression microarray or next-generation sequencing (NGS / 

RNAseq) datasets that matched any of the following search terms: sepsis, SIRS, trauma, shock, 

surgery, infection, pneumonia, critical, ICU, inflammatory, nosocomial. Clinical studies of acute 

infection and/or sepsis using whole blood were retained. Datasets that utilized endotoxin or LPS 

infusion as a model for inflammation or sepsis were excluded. Datasets derived from sorted cells 

(e.g., monocytes, neutrophils) were also excluded.  
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Overall, 16 studies containing 17 different cohorts were included (Table 1a-b). These 16 

studies include expression profiles from both adult13,15,17,26–35 and pediatric31,36–39 cohorts. In 

these cases, the gene expression data were publicly available. When mortality and severity 

phenotypes were unavailable in the public data, the data contributors were contacted for this 

information. This included datasets E-MTAB-154811,40, GSE1047427, GSE2180233, GSE3270730, 

GSE3334134, GSE6304217, GSE6399035, GSE6609939, and GSE6689032. Furthermore, where 

longitudinal data was available for patients admitted with sepsis, we only included data derived 

from the first 48 hours after admission. The E-MTAB-4421 and E-MTAB-4451 cohorts both 

came from the GAinS study13, used the same inclusion/exclusion criteria, and were processed on 

the same microarray type. Thus, after re-normalizing from raw data, we used ComBat 

normalization41 to co-normalize these two cohorts into a single cohort, which we refer to as E-

MTAB-4421.51. For this study, data were included only for patients sampled on the day of 

hospital admission.  In addition to the above 17 datasets, we identified four additional privately-

held datasets (Table 1c) representing patients with HAI. In-depth summaries of each HAI cohort 

can be found in the supplementary text. 

 We selected cohorts as either discovery or validation based on their availability. Studies 

for which outcome data was readily available were included as discovery cohorts. Only 

GSE5451415 was initially held out for validation given its large size and representative patient 

characteristics. After we had trained the models some outcomes data became newly available, so 

so these were added as validation cohorts13,33–35. Additionally, given the known differences in 

sepsis pathophysiology and gene expression profiles as compared to patients with community-

acquired sepsis39,42, the HAI datasets were set aside as a second validation cohort. The validation 

cohorts were not matched to the discovery cohort on any particular criteria but rather provide a 

validation opportunity across a heterogeneous range of clinical scenarios.  

 

Gene Expression Normalization  

All Affymetrix datasets were downloaded as CEL files and re-normalized using the 

gcRMA method (R package affy43). Output from other array types were normal-exponential 

background corrected and then between-arrays quantile normalized (R package limma44). For all 

gene analyses, the mean of probes for common genes was set as the gene expression level. All 

probe-to-gene mappings were downloaded from GEO from the most current SOFT files.  
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Two of the cohorts, CAPSOD17 and the Duke HAI cohort, were assayed via NGS. For 

compatibility with micro-array studies, expression from NGS data sets were downloaded as 

counts per million total reads (CPM) and were normalized using a weighted linear regression 

model using the voom method45 (R package limma44). The estimated precision weights of each 

observation were then multiplied with the corresponding log2(CPM) to yield final gene 

expression values. 

 

Prediction Models 

Prediction models were built by comparing patients who died within 30 days of hospital 

admission with sepsis to patients who did not. In the CAPSOD dataset (which was used in model 

training) we excluded two patients with unclear mortality outcomes, and one patient who died in-

hospital but after 30 days. Mortality was modeled as a binary variable as since time-to-event data 

were not available. Overall, a total of four prognostic models were built by three different 

academic groups (Duke University, Sage Bionetworks, and Stanford University). All four 

models started with the same gene expression data in the discovery phase. Each model was built 

in two phases: a feature selection phase based on statistical thresholds for differential gene 

expression across all discovery cohorts, and then a model construction phase optimizing 

classification power. Full descriptions of the four models can be found in the supplementary text, 

and in Supplementary Figures 1-3.  

 

Comparison with severity scores  

We compared the prognostic accuracy of the gene scores with the prognostic accuracy of 

clinical severity scores (APACHE II, PELOD, PRISM, SAPS II, SOFA, and the Denver score) 

where such information was available. These clinical severity scores were not necessarily built to 

predict mortality in the specific populations in which they were used here, but nonetheless serve 

as important comparators for the gene expression models. To compare prognostic power, logistic 

regression was performed to predict mortality using either the clinical severity score or the given 

gene model’s output score. We then tested a combined model (mortality as a function of clinical 

severity and gene score, without interaction term) and measured the AUROC of the combined 

model. Comparisons were made between AUROCs with paired t-tests. 
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Discriminatory Power Analyses 

We examined class discriminatory power for separating survivors from non-survivors 

using receiver operating characteristic (ROC) curves of the gene scores within datasets. The area 

under the ROC curves (AUROC) was calculated using the trapezoidal method. Summary ROC 

curves were calculated via the method of Kester and Buntinx46,47. We examined the ability of the 

models to predict non-survivors using precision-recall curves generated from the gene scores in 

each examined dataset. Precision-recall curves of the gene scores were constructed within 

datasets, and the area under the precision-recall curve (AUPRC) was calculated using the 

trapezoidal method.  

 

Enrichment Analysis  

We conducted two analyses to evaluate the functional enrichment of the genes selected as 

predictors by the four models. This included a targeted enrichment analysis for cell types as 

previously described39 and an exploratory enrichment analysis that assessed a large number of 

functionally annotated gene sets.  

 In a mixed tissue such as blood, shifts in gene expression can be caused by changes in 

cell type distribution. To check for this effect, we used gene expression profiles derived from 

known sorted cell types to determine whether a given set of genes is enriched for genes 

represented in a specific cell type. In each curated cell type vector, a ‘score’ is calculated by the 

geometric mean of the upregulated genes minus the geometric mean of the downregulated genes. 

A higher ‘score’ represents a greater presence of the given cell type in the differential gene 

expression signature. 

For exploratory enrichment, we curated thousands of gene sets from two widely-used 

databases: gene ontology (GO)48 and the Reactome database of pathways and reactions in human 

biology49,50. Our 12 discovery cohorts had approximately 6,000 genes in common, which formed 

a ‘background’ set of genes. We removed all genes not in the background genes from the 

Reactome/GO sets. We then retained all Reactome/GO gene sets containing at least 10% and at 

least 3 genes overlapping with the predictor genes. The remaining Reactome/GO gene sets were 

removed to reduce the multiple testing burden. Fisher’s Exact test was used to test enrichment in 

each of the curated reference gene sets. Both nominal and Benjamini-Hochberg-corrected 

significance were tested.  
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Statistics and R  

All computation and calculations were carried out in the R language for statistical 

computing (version 3.2.0) and Matlab R 2016a (The MathWorks, Inc.). Significance levels for p-

values were set at 0.05 and analyses were two-tailed.  

  

 

Results 

Analysis Overview  

We used a community approach to build gene-expression-based models predictive of 

sepsis-induced mortality using all available gene expression datasets (21 total cohorts, Table 1). 

In this community approach, three different teams (Duke University, Sage Bionetworks, and 

Stanford University) performed separate analyses using the same input data; we thus sampled the 

possible model space to determine whether output performance is a function of analytical 

approaches (Figure 1). Two models (Duke and Stanford) used parameter-free difference-of-

means formulae for integrating gene expression, and the other two models (both from Sage 

Bionetworks) used penalized logistic regression (LR)51 and random forests (RF)52 

(Supplementary Text). 

Each of the four models was trained using 12 discovery cohorts (485 survivors and 157 

non-survivors) composed primarily of patients with community-acquired sepsis. Performance 

was evaluated across two groups of heterogeneous validation data sets (5 community-acquired 

sepsis cohorts with 161 survivors and 28 non-survivors and 4 HAI cohorts with 258 survivors 

and 24 non-survivors, Table 1). The community-acquired sepsis and HAI cohorts were 

considered separately in validation because of their known differences in host-response profiles. 

Due to the nature of public datasets, we had limited information on demographics, infection, 

severity and treatment and so these variables were not controlled for in model selection. The 

cohorts included patients from multiple age groups, countries, and hospital wards (emergency 

department, hospital ward, medical ICU, and surgical ICU). As expected in varied patient 

populations, mortality rates varied widely across cohorts (mean 23.2% ± 13.4%). 

 

Prognostic Power Assessments 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2016. ; https://doi.org/10.1101/095489doi: bioRxiv preprint 

https://doi.org/10.1101/095489


 

 

Model performance was primarily evaluated using ROC analysis separately in the 

discovery, validation, and HAI cohorts. Boxplots of the AUROCs for each model are shown in 

Figure 2; data from individual cohorts and summary ROC curves are shown in Supplementary 

Tables 1-2 and Supplementary Figure 4. Across the five community-acquired sepsis validation 

datasets, the four models showed generally preserved prognostic power, with summary AUROCs 

ranging from 0.75 (95% CI 0.63-0.84, Sage LR) to 0.89 (95% CI 0.56-0.99, Stanford).  Three of 

the four models performed well in classifying the HAI datasets (summary AUROCs 0.81-0.87 in 

the Duke, Sage LR, and Stanford models); one model performed poorly in HAI (summary 

AUROC 0.52, 95% CI 0.36-0.68, Sage RF).  Overall, most models performed equivalently in 

discovery, validation, and HAI datasets. To judge other performance metrics including accuracy, 

specificity, NPV and PPV, we set thresholds for each model at the nearest sensitivity >90% 

(Supplementary Figure 5). 

To assess whether the models contained complementary orthogonal information, we 

evaluated the prediction accuracy of an ensemble model based on the predictions of all four 

individual models (see Supplementary Methods). The prognostic power of the ensemble model 

was at an average AUROC of 0.81 across all five validation data sets (paired t-tests vs. 

individual models all p=NS, Supplementary Table 3) indicating that the present diagnostic 

accuracy may be a rough estimate of the ceiling of prognostic accuracy inherent in these data. 

Performance in predicting non-survivors was evaluated using the area under the 

precision-recall curve (AUPRC) (Figure 2b & Supplementary Table 4). The AUPRCs for non-

survivor prediction were notably lower than the AUROCs, suggesting that the models’ primary 

utility may be in ruling out mortality for individuals much less likely to die within 30 days (those 

less likely to require substantial intervention) as opposed to accurately identifying the minority 

of patients who are highly likely to die within 30 days. On the contrary the AUPRC of the 

ensemble model was averaged at 0.428 in validation cohorts (Supplementary Table 3), 

suggesting complementarity in discriminatory power between individual models.  

 

Comparison to Standard Predictors 

We next assessed whether the performance of these gene expression-based predictors of 

mortality outperformed standard clinical severity scores. Notably, clinical measures of severity 

were only available in a subset of cohorts (8 discovery, 3 validation, 3 HAI; Supplemental Table 
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5). The mean differences in the AUROCs of the gene model over clinical severity scores were: 

Duke -0.044; Sage LR 0.010; Sage RF 0.094; Stanford 0.064; only the Stanford model trended 

towards significance (paired t-test p = 0.098). However, we combined gene models and clinical 

severity scores into joint predictors, and each combination significantly outperformed clinical 

severity scores alone (all paired t-tests p ≤ 0.01). This suggests that the gene expression-based 

predictors add significant prognostic utility to standard clinical metrics.  

 

Comparison Across Models 

We next studied whether models were correctly classifying the same patients or whether 

each model was correctly classifying different groups of patients. We tested model correlations 

across all patients by comparing the relative ranks of each patient within each model instead of 

comparing raw model scores. We found the models were moderately correlated (Spearman rho = 

0.35 – 0.61, Supplemental Figure 6). We then evaluated the agreement between the four models 

by comparing model-specific patient classifications (Supplementary Table 6). For this purpose, 

we chose cutoffs for each model that yielded 90% sensitivities for non-survivors. We then 

labeled patients as being either always misclassified, correctly classified by 1 or 2 models (no 

consensus), or correctly classified in at least 3 of 4 models (consensus). As expected by the 90% 

sensitivity threshold, 10% of patients were misclassified by all models. In the remaining cases, 

63% were correctly predicted by consensus and 27% do not reach consensus. Together, the 

model correlation and consensus analyses showed that 73% of patients were classified by at least 

one model, with variance leading to discordance in the remaining 27%. 

 

Biology of the Gene Signatures of Mortality 

Gene predictors were chosen for both optimized prognostic power and sparsity in our 

data-driven approach and so do not necessarily represent key nodes in the pathophysiology of 

sepsis. Still, we examined whether interesting biology was being represented in the models. We 

first looked for overlap in the gene sets used for prediction across the four models, but found few 

genes in common (Table 2). Since each signature had too few genes for robust analysis, we 

analyzed the genes from all four models in aggregate, resulting in 58 total genes (31 up-regulated 

and 27 down-regulated, Supplementary Table 7).  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2016. ; https://doi.org/10.1101/095489doi: bioRxiv preprint 

https://doi.org/10.1101/095489


 

 

First, we studied whether the differential gene expression identified may be indicative of 

cell-type shifts in the blood. The pooled gene sets were tested in several known in vitro gene 

expression profiles of sorted cell types to assess whether gene expression changes are due to cell 

type enrichment (Supplemental Figure 7). No significant differences were found, but the trend 

showed an enrichment of M1-polarized macrophages and band cells (immature neutrophils), and 

underexpression in dendritic cells. This is consistent with a heightened pro-inflammatory 

response and a decrease in adaptive immunity in patients who ultimately progress to mortality10. 

We next tested the 58 genes for enrichment in gene ontologies and Reactome pathways, 

but after multiple hypothesis testing corrections, no pathways were significantly enriched. This 

may be either due to the relatively low number of genes in the predictor set, or it may indicate 

that there is not unified biology across the four models. In addition, the models were generated in 

a way that penalized the inclusion of genes that were redundant for classification purposes. 

However, since genes redundant for classification purposes are often from the same biological 

pathway, their exclusion from the models limits the utility of enrichment analyses. Pathways at a 

nominal enrichment (p value <= 0.05) are shown in Supplementary Table 8. A brief examination 

of pathways marginally activated in non-survivors showed cell division, apoptosis, hypoxia, and 

metabolic networks. Pathways marginally activated in survivors included pro-inflammatory and 

metabolic networks.  

  

Discussion  

Sepsis is a heterogeneous disease, including a wide possible range of patient conditions, 

pre-existing comorbidities, severity levels, infection incubation times, and underlying immune 

states. Many investigators have hypothesized that molecular profiling of the host response may 

better predict sepsis outcomes. Here, we extensively assessed the predictive performance of 

whole-blood gene expression using a community-based modeling approach.  This approach was 

designed to evaluate predictive capabilities in a manner that was independent of specific 

methodological preferences, and instead created robust prognostic models across a broad 

solution space. We developed four state-of-the-art data-driven prognostic models using a 

comprehensive survey of available data including 21 different sepsis cohorts (both community-

acquired and hospital-acquired, N=1,113 patients), with summary AUROCs around 0.85 for 

predicting 30-day mortality. We also showed that combining the gene-expression-based models 
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with clinical severity scores leads to significant improvement in the ability to predict 30-day 

mortality, indicating clinical utility. 

Prediction of outcomes up to 30 days after the time of sampling represents a difficult 

task, given that the models must account for all interventions that occur as part of the disease 

course. An accuracy of 100% is likely not only unachievable but also undesirable, as it would 

suggest that mortality is pre-determined and independent of clinical care. Given this background, 

and since similar prognostic power was observed across all individual models and the ensemble 

model, our prognostic accuracy may represent an upper bound on transcriptomic-based 

prediction of sepsis outcomes. In addition, since prognostic accuracy was retained across broad 

clinical phenotypes (children and adults, with bacterial and viral sepsis, with community-

acquired and hospital-acquired infections, from multiple institutions around the world) the 

models appear to have successfully incorporated the broad clinical heterogeneity of sepsis.  

Sepsis remains difficult to define. The most recent definition of sepsis (Sepsis-3) requires 

the presence organ dysfunction as measured by an increase in SOFA of two or more points over 

baseline1. Determining the SOFA score can help guide which organ systems are dysfunctional, 

but this fails to characterize the biological changes are driving the septic response. Molecular 

tools like the ones developed here provide an opportunity to provide a simple, informative 

prognosis for sepsis by improving patient risk stratification. Host response profiles could also 

help to classify patients with sepsis as opposed to non-septic acute infections. Identifying such 

high-risk patients may also lead to greater success in clinical trials through improved enrichment 

strategies. This identification of subgroups or ‘endotypes’ of sepsis has already been successfully 

applied to both pediatric and adult sepsis populations12,13.  

The goal of this study was to generate predictive models but not necessarily to define 

sepsis pathophysiology. However, our community approach identified a large number of genes 

associated with sepsis mortality that may point to underlying biology. The association with 

immature neutrophils and inflammation in sepsis has been previously shown53. Results of this 

study confirm this finding as we note increases in the neutrophil chemoattractant IL-8 as well as 

neutrophil-related antimicrobial proteins (DEFA4, BPI, CTSG, MPO). These azurophilic granule 

proteases may indicate the presence of very immature neutrophils (metamyelocytes) in the 

blood54. Many of these genes have also been noted in the activation of neutrophil extracellular 

traps (NETs)55,56. NET activation leads to NETosis, a form of neutrophil cell death that can harm 
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the host56. Whether these involved genes are themselves harmful or are markers of a broader 

pathway is unknown.  Along with immune-related changes, there are changes in genes related to 

hypoxia and energy metabolism (HIF1A, NDUFV2, TRIB1). Of particular interest is the increase 

in HIF1A, a hypoxia-induced transcription factor. This upregulation is corroborated by previous 

findings in patients with higher early mortality in the larger E-MTAB-4421.51 cohort13. This 

may be evidence of either a worsening cytopathic hypoxia in septic patients who progress to 

mortality, or of a shift away from oxidative metabolism (“pseudo-Warburg” effect), or both57. 

Modification of the Warburg effect due to sepsis has been implicated in immune activation58,59, 

trained immunity60, and immunoparalysis61. 

The present study has several limitations. First, as a retrospective study of primarily 

publically available data, we are not able to control for demographics, infection, patient severity, 

or individual treatment. However, our successful representation of this heterogeneity likely 

contributed to the successful validation in external community-acquired and hospital-acquired 

sepsis cohorts.  Second, despite a large amount of validation data, we do not present the results 

of any prospective clinical studies of these biomarkers. Prospective analysis will be paramount in 

translating the test to a clinically relevant assay. Third, the genes identified here were specifically 

chosen for their performance as biomarkers, not based on known relevance to the underlying 

pathophysiology of mortality in sepsis. As such, the biological insights gained from these 

biomarkers will need to be confirmed and expanded on by studies focused on the entire 

perturbation of the transcriptome during sepsis and through targeted study of individual genes 

and pathways. Fourth, the use of 30-day mortality as our endpoint is a crude measure of severity, 

and may miss important intermediate endpoints such as prolonged ICU stay or poor functional 

recovery. While such intermediate outcomes were not available in the current data, the models’ 

abilities to predict these functional outcomes will need to be tested prospectively.  

Researchers, clinicians, funding agencies, and the public are all advocating for improved 

platforms and policies that encourage sharing of clinical trial data62. Meta-analysis of multiple 

studies leads to results that are more reproducible than from similarly-powered individual 

cohorts (PMID: 27634930). The community approach used here has shown that aggregated 

transcriptomic data can be used to define novel prognostic models in sepsis. This collaboration 

of multidisciplinary teams of experts encompassed both analytical and statistical rigor along with 

deep understandings of both the transcriptomics data and clinical data. To advance beyond the 
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work presented here, more data must be made available, including demographics, treatments, and 

clinical outcomes, as well as other data types like proteomics and metabolomics. Data-driven 

collaborative modelling approaches using these data can be effective in discovering new clinical 

tools. 

 

  

Conclusions   

  We have shown comprehensively that patients with sepsis can be risk-stratified based on 

their gene expression profiles at the time of diagnosis. The overall performance of expression-

based predictors paired with clinical severity scores was significantly higher than clinical scores 

alone. These gene expression models reflect a patient’s underlying biological response state and 

could potentially serve as a valuable clinical assay for prognosis and for defining the host 

dysfunction responsible for sepsis. These results serve as a benchmark for future prognostic 

model development and as a rich source of information that can be mined for additional insights. 

Improved methods for risk stratification would allow for better resource allocation in hospitals 

and for prognostic enrichment in clinical trials of sepsis interventions. Ultimately, prospective 

clinical trials will be needed to confirm and extend the findings presented here.  
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Figure Legends: 
Figure 1: Overview of analysis: schema of our community-modelling-based approach to multi-

cohort analysis. Three phases are shown, as described in the Methods section: (i) Discovery, (ii) 

Validation, and (iii) Secondary validation (HAI cohorts). 

 

Figure 2: Model performance of the four genomic mortality predictors as measured by (a) 

AUROC and (b) AUPRC. The three panels (top, middle, bottom) show boxplots of the 

performance across all Discovery, Validation, and HAI cohorts. 
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Table 1: Datasets included in the analysis. Unk, unknown data or not available; IQR, inter-

quartile range; std. dev., standard deviation; ED, emergency department; ICU, intensive care 

unit; MICU, medical ICU; ARDS, acute respiratory distress syndrome; SIRS, systemic 

inflammatory response syndrome; VAP, ventilator-associated pneumonia. 

1a: Discovery Cohorts        

Accession First Author Cohort Description Timing of sepsis 
diagnosis 

Age 
Sex 
(% 

male) 
Severity Country 

N 
Surv-
ived   

N 
Died 

E-MEXP-3567 Irwin 
Children with 

meningococcal sepsis 
+/- HIV co-infection 

Admission to ED 
2.0 (IQR 
0.6-6.9) 

55 unk. Malawi 6 6 

E-MEXP-3850 Kwan 
Children w/ 

meningococcal sepsis 

Admission to hospital; 
sampled at multiple 

times 0-48 hrs 

1.3 
(range 

0.8-2.0) 
40 

PELOD; 
29.2 (range 

11-61) 
UK 19 5 

E-MTAB-1548 Almansa 
Adults with sepsis after 

surgery (EXPRESS 
study) 

Average post-
operation day 4 

(hospital acquired) 

69.7 (std. 
dev. 
13.1) 

67 
APACHE II 

17.0 (std. 
dev. 5.4) 

Spain 50 24 

GSE10474 Howrylak 
Adults in MICU with 

sepsis +/- ALI 
Admission to ICU 

57 (std. 
dev. 4.3) 

45 
APACHE II 

20.7 (std. 
dev. 1.6) 

USA 22 11 

GSE13015a 

Pankla 
Adults with sepsis, 

many from burkholderia 

Within 48 hours of 
diagnosis; both 

community-acquired 
and hospital-acquired. 

54.7 (std. 
dev. 
11.7) 

54 unk. Thailand 

35 13 

GSE13015b 8 7 

GSE27131 Berdal 

Adults with severe 
H1N1 influenza 

requiring mechanical 
ventilation 

Admission to ICU unk. unk. 

SAPS II 
29.3 

(std.dev. 
10.3) 

Norway 5 2 

GSE32707 Dolinay 
Adults in MICU with 

sepsis +/- ARDS 
Admission to ICU 

57.1 (std. 
dev. 
14.9) 

53 
APACHE II 

26.7 (std. 
dev. 8.5) 

USA 31 17 

GSE40586 Lill 
Infants, children, and 
adults with bacterial 

meningitis 

Within 48 hours of 
hospital admission 

43.4 
(range 17 
days - 70 

years) 

unk. unk. Estonia 19 2 

GSE63042 Tsalik 
Adults with sepsis 
(CAPSOD study) 

Admission to ED 
59.1 (std. 

dev. 
18.3) 

59 
APACHE II 

16.5 (std. 
dev. 7.3) 

USA 76 28 

GSE66099 Wong 
Children in ICU with 
sepsis/septic shock 

Admission to ICU 3.7 58 PRISM 15.7 USA 171 28 

GSE66890 Kangelaris 
Adults in ICU with 
sepsis +/- ARDS 

Admission to ICU 
63 (std. 
dev 19) 

56 
APACHE 

III 100 (std. 
dev. 35) 

USA 43 14 

1b: Validation Cohorts 
       

GSE21802 
Bermejo-

Martin 
Adults in ICU with 

severe H1N1 influenza 
Within 48 hours of 
admission to ICU 

43 (std. 
dev. 11) 

47 
SOFA 4.1 
(std.dev. 

3.5) 
Spain 7 4 

GSE33341 Ahn 
Adults with 2+ SIRS 

criteria and bacteremia 
Within 24 hours of 

admission to hospital 
58 (range 

24-91) 
61 unk. USA 49 2 

GSE54514 Parnell 
Adults in ICU with 

sepsis 
Admission to ICU 

61 (std. 
dev. 16) 

40 
APACHE II 
21 (std. dev. 

6) 
Australia 26 9 

GSE63990 Tsalik 
Adults with bacterial 

infection plus 2+ SIRS 
criteria 

Admission to ED 
49 (range 

14-88) 
50 unk. USA 64 6 

E-MTAB-4421.51 Davenport 
Adults with sepsis 

(GAinS study) 
Day of hospital 

admission 
64.2 (std. 
dev. 15.2 

55 
APACHE II 

18.6 (std. 
dev. 9.7) 

UK 15 7 
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1c: Hospital-Acquired Infection Cohorts 
       

Duke VAP 
Tsalik 

(unpublished) 

Adults who developed 
ventilator-associated 
pneumonia (VAP) 

Hospital days 1-30 
58.0 (std. 

dev. 
17.9) 

75 unk. USA 60 10 

Glue Grant 
Burns  

Glue Grant 
authors 

Adults with severe burns 
(whole blood) 

Hospital days 1-30 
14.1 (std. 

dev. 
16.2)  

64 

Denver 
Score 1.5 
(std. dev. 

1.7) 

USA 84 8 

Glue Grant 
Trauma 

Glue Grant 
authors 

Adults with severe 
traumatic injuries (buffy 

coat) 
Hospital days 1-30 

33.2 (std. 
dev. 
10.2) 

74 
MODS 6.4 
(std. dev. 

3.3) 
USA 48 1 

UF P50 12H  
Moldawer 

(unpublished) 
Adults with hospital-

acquired sepsis 
Hospital days 1-30 unk. unk. 

SOFA 5.5 
(std. dev. 

3.9) 
USA 66 5 

 

 

 

 

 

Table 2: Genomic predictors of sepsis mortality.  

Model 
name 

Direction of change in 
patients with mortality 

Genomic features 

Duke 

Up (5 genes) TRIB1, CKS2, MKI67, POLD3, PLK1 

Down (13 genes) 
TGFBI, LY86, CST3, CBFA2T3, RCBTB2, TST, CX3CR1, 

CD5, MTMR11, CLEC10A, EMR3, DHRS7B, CEACAM8 

Sage LR 

Up (9 genes) 
CFD, DDIT4, DEFA4, IFI27, IL1R2, IL8, MAFF, OCLN, 

RGS1 

Down (9 genes) 
AIM2, APH1A, CCR2, EIF5A, GSTM1, HIST1H3H, 

NT5E, RAB40B, VNN3 

Sage RF 
Up (13 genes) 

B4GALT4, BPI, CD24, CEP55, CTSG, DDIT4, G0S2, 

MPO, MT1G, NDUFV2, PAM, PSMA6, SEPP1 

Down (4 genes) ABCB4, CTSS, IKZF2, NT5E 

Stanford 
Up (8 genes) 

DEFA4, CD163, PER1, RGS1, HIF1A, SEPP1, C11orf74, 

CIT 

Down (4 genes) LY86, TST, OR52R1, KCNJ2 
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