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Abstract

Low phosphate (Pi) availability constrains plant development and crop

production in both natural and agricultural ecosystems. When Pi is scarce,

modifications of root system architecture (RSA) enhance soil exploration ability and

can lead to an increase in Pi uptake. In Arabidopsis, an iron-dependent

determinate developmental program that induces premature differentiation in the

root apical meristem (RAM) begins when the root tip contacts low Pi media,

resulting in a short-root phenotype. However, the mechanisms that enable the

regulation of root growth in response to Pi-limiting conditions remain largely

unknown. Cellular, genomic and transcriptomic analysis of low-Pi insensitive

mutants revealed that the malate-exudation related genes SENSITIVE TO

PROTON RHIZOTOXICITY (STOP1) a n d ALUMINUM ACTIVATED MALATE

TRANSPORTER 1 (ALMT1) represent a critical checkpoint in the root

developmental response to Pi starvation in Arabidopsis thaliana.
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Introduction 

Phosphorus is an essential nutrient for plant development, a constituent of

key molecules such as nucleic acids, ATP and membrane phospholipids. Plants

take up and metabolize phosphorus in the inorganic form of orthophosphate (Pi)

(1). Pi is the least accessible macronutrient in many natural and agricultural

ecosystems and its low availability in the soil often limits plant growth and

productivity. Under phosphate limiting conditions (-Pi), plants activate an array of

genetic (2–6), biochemical (7, 8) and morphological modifications (9–11) that

enhance their ability to cope with low Pi availability. 

Arabidopsis responses to low Pi availability have been divided in systemic

responses that depend upon the internal Pi status of the plant and local responses

that depend upon the level of Pi available in the external medium (5, 12). A

molecular dissection of local and systemic responses to Pi starvation using

transcriptomic analysis has been reported (5). Systemic responses include the up-

regulation of genes involved in the overall enhancement of Pi uptake and Pi

internal use efficiency, and are largely controlled by the master regulator PHR1 (a

Myb transcription factor) (6, 13). Local responses include alterations of root traits

such as the inhibition of primary root growth (14), an increase in lateral root density

(10) and higher density and length of root hairs (9). These changes in root system

architecture have been proposed to enhance the soil exploration ability of the plant

by increasing root surface area of exploration in the top layers of the soil where Pi

tends to accumulate. Some evidence indicates that there is some degree of

crosstalk between local and systemic responses to low Pi availability as mutants

altered in root system architecture responses to low Pi also have an altered

expression of genes involved in systemic responses (15). 

Growth of Arabidopsis seedlings under in vitro Pi-limiting conditions induces

a determinate developmental program known as RAM exhaustion (11). RAM

exhaustion consists of the loss of meristematic potential and the arrest of cell
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proliferation, leading to the inhibition of primary root growth. Meristematic potential

is lost due to premature differentiation of the cells that constitute the stem cell niche

(SCN), which includes the quiescent center (QC). Cell proliferation in the RAM is

lost due to a gradual reduction in mitotic activity. Root-tip contact with low

phosphate media (16) in the presence of iron (17) has been reported as essential

for the inhibition of primary root growth in response to Pi deficiency conditions in

Arabidopsis thaliana. Arabidopsis mutants that fail to trigger root system

morphological responses to low Pi have been reported previously (15, 16). Two of

these mutants, low phosphate root 1 and 2 (lpr1 and lpr2) were found to be

affected in genes encoding multicopper oxidases, suggesting that a metal with

different levels of oxidation could be involved in the alteration of root system

architecture in response to low Pi availability (16). A mutant that is hypersensitive

to low Pi, phosphate deficiency response 2 (pdr2), and triggers the root system

response to low Pi availability faster that the wild-type (WT) was also reported (18).

PDR2 encodes an ER localized P5-type ATPase (19). PDR2 and LPR1 have been

proposed to orchestrate RAM-exhaustion in a genetically interacting route under

low Pi conditions (19). Whilst the precise function of PDR2 has not been

determined, LPR1 is essential for primary root inhibition under low Pi conditions

and it has been shown to have ferroxidase activity (16, 19, 20). An LPR1-

dependent accumulation of Fe3+ in the apoplast of cells in the elongation and

meristematic regions of the primary root, that triggers the production of reactive

oxygen species (ROS), is essential for meristem exhaustion in low-Pi media (20).

ROS generation correlates with callose deposition in the RAM, which was

proposed to activate meristem exhaustion by blocking the cell-to-cell movement of

SHORT-ROOT (SHR), a transcription factor that is essential for stem cell

maintenance in the RAM (20). However, the mechanism that regulates iron

accumulation and relocation in the RAM remains largely unknown.

In this work, we characterized two low phosphate insensitive mutants (lpi5

and lpi6), which, in contrast to the short root phenotype of WT Arabidopsis

seedlings, show normal primary root elongation in low Pi media. Mapping by
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sequencing revealed that the l p i5 corresponds to SENSITIVE TO PROTON

RHIZOTOXICITY (STOP1) and lpi6 t o ALUMINUM ACTIVATED MALATE

TRANSPORTER 1 (ALMT1), the two genes previously reported to be responsible

for activating malate efflux in the roots of Arabidopsis seedlings exposed to toxic

concentrations of aluminum (21–23). Genetic, cellular and transcriptomic analysis

shows that STOP1 and ALMT1 are required for a malate-dependent accumulation

of iron in the root meristem, which leads to alterations in the redox balance that

triggers primary root growth inhibition and RAM exhaustion in response to Pi

deficiency conditions in Arabidopsis thaliana. 

Results

Arabidopsis EMS-mutants lpi5 and lpi6 show indeterminate primary

root growth under phosphate deficiency conditions

T h e Arabidopsis thaliana Col-0 accession seedlings grown in media

containing low Pi concentrations (below 50 µM Pi) show a short root phenotype

defined by a determinate pattern of primary root growth and RAM differentiation. To

identify mutants that are insensitive to the effect of low Pi on primary root growth,

we screened an EMS-mutagenized Col-0 population for mutant lines presenting a

long root phenotype under low-Pi (-Pi, 5 µM Pi) conditions. We isolated

approximately 50 mutant lines with different alterations in the primary root growth in

response to low-Pi availability. Two lines that were insensitive to the effect of low Pi

on primary root growth, which we named low phosphorus insensitive 5 and low

phosphorus insensitive 6 (lpi5 and lpi6), were chosen for further characterization

(Figure 1A, B, C). When grown under high Pi (+Pi; 100µM Pi) conditions, both lpi5

and lpi6 seedlings presented a primary root length similar to the WT Arabidopsis

Col-0 accession (Figure 1A). Under -Pi conditions at 10 dag, WT plants had a

visible reduction in primary root growth, whereas lp i5 a n d lp i6 seedlings had

primary root elongation similar to that of WT seedlings grown in +Pi media which is

four-fold longer than that of Pi-deprived WT seedlings (Figure 1B). Although lpi5
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seedlings had a long root phenotype in –Pi media, they had a slightly shorter

primary root than the WT and lpi6 in +Pi media and were also slightly shorter than

lpi6 in -Pi medium (Figure 1A, C). Analysis of segregation frequencies under -Pi

conditions showed that the long root phenotype in lpi5 and lpi6 is the result of

single recessive mutations (Supplementary Table 1).

In Pi-deprived Arabidopsis seedlings, the short-root phenotype is

accompanied by a reduction in cell proliferation and meristematic activity during the

process of RAM exhaustion (11). To test for signs of RAM exhaustion in lpi5 and

lpi6 seedlings grown in –Pi media, we examined the expression of the

proCycB1::GUS cell cycle activity marker (24) and the proQC46::GUS quiescent

center (QC) identity marker (25). In +Pi media, WT, lpi5 and lpi6 seedlings showed

clear cell proliferation activity as indicated by the proCycB1::GUS signal and an

active QC as shown by the proQC46::GUS signal (Figure 1D). In -Pi media at 10

dag the cell cycle and QC marker genes were undetectable in WT seedlings,

whereas GUS staining was clearly detectable for both the cell cycle

(proCycB1::GUS) and QC (proQC46::GUS) markers in the primary root of lpi5 and

lpi6 (Figure 1D).  These results show that, in contrast to the WT, low Pi does not

trigger meristem exhaustion in the RAM of lpi5 and lpi6 seedlings.
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Figure 1. Low-Pi insensitive mutants continue primary root growth and RAM

maintenance under Pi deficiency conditions. (A) Phenotypes of WT, lpi5 and lpi6 seedlings

grown under high (100 μM Pi; +Pi) and low Pi (5 μM Pi; -Pi) conditions 10 days-after-germination

(dag). Scale bar equals 1 centimeter (cm). (B) Primary root growth kinetics of seedlings grown

under -Pi conditions from 2 to 10 dag. Green, blue and red dots depict WT, lpi5 and lpi6 individuals

(n=30 from 3 independent experiments), respectively. Statistical groups were determined using a

Tukey HSD test (P-value < .05) and are indicated with letters. (C) Primary root length of seedlings

grown under +Pi and -Pi conditions. Green, blue and red dots depict WT, lpi5 and lpi6 individuals

(n=30 from 3 independent experiments), respectively. Statistical groups were determined using a

Tukey HSD test (P-value < .05) and are indicated with letters. (D) GUS staining of proCycB1::GUS

and proQC46::GUS expression in the RAM of WT, lpi5 and lpi6 seedlings 10 dag. Scale bar

indicates 100 µm. 

lpi5 and lpi6 have mutations in the transcription factor STOP1 and the

malate transporter ALMT1, respectively.

We used a mapping-by-sequencing approach to identify the genes

responsible for the lpi5 and lpi6 phenotypes (See Materials and Methods). We

identified 12 and 18 specific homozygous variants (missense, frameshift and
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splice-donor) potentially linked to lpi5 and lpi6 mutant phenotypes, respectively.

Given the alterations of primary root of lpi5 and lpi6 seedlings in response to an

environmental stress, we focused on the homozygous mutations that could

potentially be linked to alterations in root morphological or root responses to abiotic

stress. Among the potential candidates responsible for the root phenotype of lpi5

a n d lpi6 under low Pi conditions, SENSITIVE TO PROTON RHIZOTOXICITY

(STOP1) and ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (ALMT1) were

particularly interesting because both genes have been previously reported to

participate in the tolerance of the Arabidopsis root to toxic concentrations of Al+3.

STOP1 (At1g34370) encodes a zinc finger protein transcription factor that plays a

critical role in Al3+ tolerance and acid soil tolerance in Arabidopsis (21). ALMT1

encodes a transmembrane protein that mediates malate efflux in the root in

response to the presence of toxic Al3+ levels (22), and its expression has been

shown to be activated by STOP1 in response to Al stress conditions (21).

To test whether the long root phenotype of lpi5, lpi6 was indeed due to

lesions in STOP1 and ALMT1, we tested the phenotype of T-DNA insertional

mutants in STOP1 (SALK_114108) and ALMT1 (SALK_009629) in –Pi and +Pi

media. In +Pi media, WT, lpi6 and almt1 seedlings had a similar primary root

length, whereas lpi5 and stop1 had a slightly shorter root length than the WT

(Figure 2A-B). In -Pi media, the T-DNA insertional mutants stop1 and almt1 had a

long root phenotype that contrasted with the short root phenotype of the WT

(Figure 2A-B). It has been reported that stop1 is sensitive to low pH (4.7) and

levels of Al3+
 (2 µM) that are not yet toxic for Arabidopsis WT seedlings and that

almt1 is also sensitive to this Al3+ concentration (28). We also found that lpi5 was

sensitive to low pH and Al (as is stop1) and that lpi6 was sensitive to Al but not to

low pH (as observed for almt1) (Supplementary Figure 1). Crosses between lpi5

and almt1, and between lpi6 and stop1, showed that lpi5 and lpi6 are mutant

alleles of STOP1 and ALMT1, respectively (Supplementary Figure 1).
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Mapping-by-sequencing of lpi5 revealed a C:T (CAT:TAT) substitution in the

+84 position of STOP1. In silico analysis predicted that the lpi5 mutation caused an

amino acid substitution (H168Y) that replaces one of the two histidine residues that

are crucial for the formation of first of the four zinc fingers of the DNA binding

domain of STOP1 (Figure 2C). The first zinc finger domain of STOP1 is critical to

bind to the promoter of its target genes (29). Mapping-by-sequencing of the lpi6

mutant revealed a 13-base-pair deletion in the first exon of ALMT1 starting at

position +757 (Figure 2D). In silico analysis predicted that this deletion causes a

frameshift mutation that produces an aberrant protein that lacks 200 amino-acids of

the carboxy-terminal moiety of ALMT1 (Figure 2D). Our in silico sequence analysis

further confirmed that lpi5 and lpi6 are EMS-induced mutant alleles of STOP1 and

ALMT1, respectively. 
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Figure 2. Mapping by sequencing revealed lpi5 and lpi6 to be stop1 and almt1 mutants,

respectively. (A) Phenotypes of Col-0, lpi5, stop1, almt1 and lpi6 seedlings grown under high

phosphate (+Pi) and low phosphate (-Pi) conditions 10 dag. (B) Primary root length of WT, lpi5,

stop1, almt1 and lpi6 seedlings grown under high phosphate (+Pi) or low phosphate (-Pi) conditions

10 dag. Dots depict WT, lpi5, stop1, almt1 a n d l p i6 individuals (n=30 from 3 independent

experiments). Statistical groups were determined using a Tukey HSD test (P-value < .05) and are

indicated with letters. (A) C:T (CAT : TAT) substitution in the +84 base within the At1g34370 locus of

the lpi5 genome. lpi5 mutation causes an amino acid substitution (H168Y) that replaces one of the

two histidine residues of the four zinc fingers that constitute STOP1 (B) 13 base pair deletion in the

+757 base pair position within the first exon of the At1g08430 locus of the lpi6 genome. The 13

base deletion present in lpi6 causes a frameshift mutation that produces an aberrant protein with

200 amino-acids less than the WT.

ALMT1 is expressed in the RAM of Arabidopsis under Pi deficiency

conditions before meristematic exhaustion

To determine whether the expression of STOP1 and ALMT1 is regulated by

Pi availability in the root tip, we analyzed the expression of STOP1 and ALMT1 in

the root apex of 5 dag WT and stop1 seedlings using qRT-PCR (Figure 3A,

Supplementary Figure 3). In the WT, A L M T 1 expression increased by

approximately 4-fold in response to -Pi conditions, while the level of expression of

STOP1 was not significantly altered by Pi availability (Figure 3A). We also found

that in the stop1 background the expression of ALMT1 was undetectable

(Supplementary Figure 2). Our results confirm a previous report (21) showing that

STOP1 is essential for the expression of ALMT1, but also show that STOP1 is

required for the induction of ALMT1 in response to low Pi. 

Since STOP1 and ALMT1 appear to be essential for RAM-exhaustion under

Pi deficiency conditions, we examined the cell-specific expression pattern of these

two genes in seedlings grown under +Pi and -Pi conditions 5 dag, a time point prior

to full RAM exhaustion (Figure 1C), but when primary root growth inhibition has

already started (Figure 1C). Confocal microscopy of proSTOP1::GUS::GFP

seedlings grown in +Pi media revealed that STOP1 is expressed in the QC,

columella, lateral root cap and epidermis (Figure 3B) and that its expression
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pattern is not altered in –Pi media (Figure 3B). On the other hand no detectable

reporter activity of proALMT1::GUS::GFP was found in the RAM of seedlings

grown under +Pi conditions, whereas in –Pi media expression of the reporter gene

was clearly detectable in the proximal region of the SCN (QC, cortex and stele

initials), vascular bundle, pericycle, cortex, endodermis, columella and lateral root

cap (Figure 3B). 

Figure 3. STOP1 and ALMT1 are expressed in the RAM of Arabidopsis under Pi

deficiency conditions. (A) qRT-PCR analysis of STOP1 and ALMT1 expression in the root apex

(2-3 mm) of WT (Col-0) plants. Bars represent the mean fold change ±SEM of 2 biological

replicates with 3 technical replicates. WT +Pi samples were used as calibrator values. ACT2 and

UBQ10 were used as internal controls. Asterisk indicates that the expression was significantly

different between +Pi and –Pi conditions (Student t-test; p <0.05) (B) Transgenic Col-0 plants

harboring transcriptional gene fusions containing the STOP1 and ALMT1 promoter fused to a

double GFP-GUS reporter gene, respectively (proSTOP1::GUS::GFP and proALMT1::GUS::GFP),

were grown under +Pi and -Pi conditions and expression activity was observed at 5 dag using

confocal microscopy. Scale bar indicates 100 µm.

Malate treatment rescues the determinate developmental program in

the primary root of stop1 and almt1 in response to low Pi conditions

Since malate efflux has been shown to be affected in stop1 and almt1

mutants and both stop1 and almt1 present determinate primary root growth under
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Al3+ toxicity conditions (21, 22), we sought to determine whether malate exudation

also played a role in the Arabidopsis primary root response to low Pi availability. To

this end, we added increasing concentrations of malate to both +Pi and -Pi media

and tested the effect of malate treatment on the primary root growth of WT, stop1

and almt1 seedlings (Figure 4 and Supplementary Figure 3). We observed that

primary root growth was not altered by malate treatment under +Pi conditions in

any of the tested lines (Supplementary Figure 3). However, in -Pi media, treatment

with malate restored the short-root phenotype in stop1 and almt1 seedlings in a

concentration-dependent manner (Figure 4A-B).  Although stop1 seedlings treated

with 1 mM malate had significantly shorter roots than in media lacking malate, their

primary roots were slightly, but statistically significantly, larger than those of the WT

and almt1 seedlings grown in the same media (Figure 4A-B). Malate treatment of

Pi-deprived WT seedlings showed a small effect at 0.1 mM, however, this effect

was not observed at higher malate concentrations (Figure 4A-B) as WT seedlings

remained short under all treatments (Figure 4A). 

To determine whether malate treatment activates RAM exhaustion in stop1

a n d almt1 seedlings, we examined the expression of proCycB1::GUS and

 proQC46::GUS reporter genes in Pi-deprived/malate-treated stop1 a n d almt1

seedlings. Clear signs of cell differentiation in the RAM of Pi-deprived/malate-

treated almt1 seedlings were observed and proCycB1::GUS and  proQC46::GUS

reporter activity was undetectable. In the case of Pi-deprived/malate-treated stop1

seedlings, although cell proliferation was reduced, it was not completely arrested

a n d proQC46::GUS expression was still clearly detectable (Figure 4C). No

expression was found in the WT either in low-Pi media or low-Pi media

supplemented with 1 mM malate (Figure 4C). 
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Figure 4. Malate treatment rescues the mutant phenotype of stop1 a n d almt1

seedlings. (A) Primary root length of 10 dag WT, stop1 and almt1 seedlings grown under

increasing concentration of malate supplemented to -Pi medium. Green, blue and red dots depict

WT, stop1 and almt1 individuals (n=30 from 3 independent experiments), respectively. Statistical

groups were determined using Tukey HSD test (P-value <.05) and are indicated with letters. (B)

Phenotypes of 10 dag WT, stop1 and almt1 seedlings grown under low phosphate medium (-Pi) and

low phosphate medium supplemented with 1mM malate (-Pi/+Malate). Scale bar equals 1 mm. (C)

proCycB1::GUS (lower panels) and proQC46::GUS (upper panels) expression (D) Perls-DAB iron

staining in the RAM of WT, stop1 and almt1 grown under -Pi and malate treatment (1 mM; –Pi/

+Malate) conditions 5 dag. Scale bar equals 100 µm.

Fe accumulation is absent in the RAM of Pi-deprived stop1 and almt1

seedlings and can be rescued by malate treatment

Accumulation of Fe in the apoplast of cells in the RAM is required to activate

the primary root response to low Pi availability (20). As carboxylate-iron complexes

have been reported to participate in iron transport and acquisition in plants (30–32)

and malate efflux is affected in stop1 and almt1 mutants (21, 22), we explored

whether malate exudation plays a role in the Fe accumulation mechanism that is
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required to trigger primary root growth inhibition in response to low Pi availability.

First, we tested whether malate is required for the accumulation of Fe in the

apoplast of RAM cells using Perls-DAB histochemical Fe staining, which allows the

detection of changes in labile Fe3+
 (20), on the root tips of WT, stop1 and almt1 in

low Pi media with or without 1 mM malate (Figure 4D and Supplementary Figure

3). In Pi-deprived seedlings not exposed to malate, Fe staining was clearly

observed in the roots of WT seedlings while stop1 and almt1 seedlings showed a

much lower Fe accumulation (Figure 4D). In Pi-deprived WT seedlings treated with

1 mM malate, Fe staining was still clearly visible but in a more defined zone of the

root apex, which included the QC. In contrast to stop1 and almt1 seedlings grown

in -Pi media lacking malate, those treated with 1 mM of this organic acid showed a

very similar pattern to that observed for the WT under the same conditions.

Although malate-treated Pi-deprived stop1 seedlings show a clear Fe staining,

accumulation of Fe3+ in the RAM was apparently lower around the QC than that

observed for the WT and almt1 seedlings treated with malate (Figure 4C). We did

not observe significant differences in the patterns of Fe staining between the root

tips of WT, stop1 and almt1 seedlings under +Pi conditions treated with 1 mM

malate (Supplementary Figure 3).

Citrate, as well as malate, is an organic acid that is released by plant roots

in response to low-Pi availability (33). Since organic acids are naturally occurring

metal chelating agents, and if the malate chelating-effect is responsible for the

primary root growth inhibition in -Pi media, we wanted to test whether citrate

treatment of Pi-deprived seedlings (1 mM citrate) could also phenocopy the short-

root phenotype in Pi-deprived stop1 and almt1 seedlings. In –Pi media, we

observed that citrate treatment slightly reduced primary root elongation of stop1

seedlings (10%) (Supplementary Figure 4A-B) and had no significant effect in the

root growth of Pi-deprived a l m t 1 seedlings (Supplementary Figure 4A-B).

Interestingly, citrate treatment of Pi-deprived WT seedlings resulted in an average

2.5 fold increase in root length compared to that observed for WT seedlings grown

in low-Pi media in the absence of citrate (Supplementary Figure 4A-B). These
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results suggest a specific role of malate in primary root growth inhibition by

promoting the accumulation of Fe in the apoplast of root cells in the meristematic

area. 

As malate is capable of inducing root growth inhibition and meristem

exhaustion in almt1 seedlings, linked to an effect on Fe-accumulation in the RAM

of almt1 seedlings, we hypothesized that malate has a chelating effect on Fe that

contributes to its accumulation in the root tip. To test our hypothesis, we performed

molecular dynamic calculations to simulate the effect of malate on the aggregation

of metallic ions such as Fe2+, Fe3+
 and Al3+. We built 4 different simulation sets

using ascending malate:metal molecular ratios, starting from 0:120 to 120:120

(Supplementary Figure 5). We observed non-bonded interactions between malate

and Fe2+ ions but the interactions did not induce Fe2+ aggregation in any of the

simulated systems (Supplementary Figure 5). In the case of the malate and Fe3+

system we observed non-bonded interactions and the formation of large malate-

Fe3+ aggregates in all ratios tested with an increasing size of aggregates when an

equimolar concentration of malate and Fe3+ was used (Supplementary Figure 5).

Metals did not aggregate when malate was not included in the simulation set

(Supplementary Figure 5). These results suggest that malate can form large

aggregates with Fe3+ and Al3+ but not with Fe2+, which could be relevant for the

activation of the Arabidopsis primary root response to low Pi.

Differential expression analysis revealed a preferential loss of local

transcriptional responses to Pi starvation in stop1 and almt1 root tips

The root tip plays a fundamental role in the ability of the root system to

sense and respond to Pi starvation (16). Therefore, to understand the role of

STOP1 and ALMT1 in the local and systemic responses of the Arabidopsis root to

low phosphate, we performed a whole transcriptome sequencing (RNA-seq)

analysis of gene expression in root tips from WT, stop1 and almt1 seedlings grown
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under +Pi and -Pi conditions (Figure 5). We performed pairwise comparisons of

transcript abundances between -Pi and +Pi conditions to determine differentially

expressed genes (-1.5 < logFC < 1.5; FDR<.05) in response to Pi deficiency in WT,

stop1 and almt1 root tips (Figure 5A). A total of 1488 genes were found to be

responsive to low phosphate in the WT (819 up; 669 down), while only 569 in

stop1 (294 up; 275 down) and 463 in almt1 (224 up; 239 down) (Figure 5A). To

identify the biological processes whose expression is misregulated in the root apex

of stop1 and almt1 in response to Pi availability, we performed a Gene Ontology

(GO) enrichment analysis (Figure 5). First, we performed a GO clusterization of all

the over-represented categories that included genes that belong to the same

biological process in the root tips of WT seedlings (Figure 5B). We found seven

clusters that were named after the most significantly over-represented category of

the cluster and included the cellular response to phosphate starvation

(GO:0016036), secondary metabolism (GO:0019748), macromolecule metabolic

process (GO:0044260), cell wall organization (GO:0071555) and systemic

acquired resistance (GO:0009627). A full list of the GO categories that were

enriched in the WT is included in Supplementary File 1. We then performed an

analysis of the percentage of genes belonging to each cluster that were

differentially expressed in stop1 and almt1 relative to the WT (Figure 5C). Using

such an approach we determined that, overall, the percentage of genes that were

activated in response to low phosphate in the root tip of the WT and were

misregulated in stop1 and almt1 ranged between 40% to 95% (Figure 5C). The

most affected biological process was “cell wall organization” as evidenced by the

reduced number of transcripts from the cluster that were activated in response to

low Pi in stop1 and almt1 (41 WT; 4 stop1; 2 almt1). Of the 46 differentially

expressed genes included in the “response to phosphate starvation” that were

regulated in WT root tips, 46% and 40% (21 stop1; 18 almt1) were differentially

expressed in the root tips of stop1 and almt1, respectively.

We found that the expression of SPX1 and SPX2, two key genes in the

regulation of Pi-responsive genes that are systemically induced (34), were normally
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induced in the root tips of stop1 a n d almt1 mutants (Supplementary File 1).

Therefore, we examined the transcription levels of genes that are known targets of

the PHR1/SPX systemic regulatory node (6). Of the 94 PHR1 direct targets that we

found induced in the root tips of WT plants, we found that 60% (63 stop1; 57 almt1)

were also induced in stop1 and almt1 in response to low Pi conditions (Figure 5D).

Since the activation of genes in the “cell wall organization” cluster is one of the

most affected in stop1 and almt1 and its transcriptional regulation has been

recently linked to the local response to low Pi availability (35), our results suggest

that the local response to low Pi is largely lost in stop1 and almt1 and that the

systemic response to low Pi is significantly less affected than the local response in

these two mutants. To confirm that this was indeed the case, we performed a

comparison of genes that had been previously defined to participate in local and

systemic responses to low Pi (5) with those that were not activated in stop1 and

almt1 (Figure 5D). We found that among the 79 systemic and 147 local genes that

were differentially expressed in the WT in response to Pi deficiency under our

experimental conditions, over 60% of the systemically regulated genes remained

responsive in stop1 (52) and almt1 (51), while less than 28 % of locally regulated

genes (40 stop1; 24 almt1) remained responsive to Pi starvation in the root tips of

the mutants (Figure 5D). These results confirm that STOP1 and ALMT1 have a key

role in regulating the expression of genes in the local response to Pi deficiency.

Nonetheless, STOP1 and ALMT1 also seem to have a significant effect on a group

of genes that are systemically induced by low Pi availability.
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Figure 5. Differential expression profiling of WT, stop1 and almt1 revealed a loss of

transcriptional response to Pi starvation in the root apex of stop1 and almt1. (A) Venn

diagram of differentially expressed genes (DEG) that are up- and down-regulated (-1.5 > logFC(-

Pi/Pi) > 1.5; FDR < .05) in the root tip of WT, stop1 and almt1 seedlings in response to -Pi

conditions. A bar-graph illustrating the number of upregulated and downregulated transcripts in WT,

stop1 and almt1 is presented. (B) Gene Ontology (GO) enrichment analysis of overrepresented

categories that are activated in the root apex of Pi-deprived WT seedlings. Each circle corresponds

to a significantly enriched GO category (P-value <.05; hypergeometric test; Benjamini-Hochberg

correction). Color code resembles P-value and size resembles the number of genes that are

associated to that respective GO category. GO categories that share genes are connected and

clustered by the biological process that corresponds to the most significantly enriched category of

the cluster. (C) Analysis of DEG by cluster in the root tip of stop1 and almt1. The number of genes

that belong to each GO cluster and are differentially expressed in stop1 and almt1 is presented as a

percentage of the number of genes that are differentially expressed in WT (% DEG of WT). (D)

Transcriptomic analysis of locally and systemically regulated genes in the root apex of WT, stop1

and almt1 revealed a key role of STOP1 and ALMT1 in the local response to Pi starvation in

Arabidopsis. WT, stop1 and almt1 logFC values of genes that are differentially expressed in the root

tips of WT seedlings (-1.5 > logFC(-Pi/Pi) > 1.5; FDR < .05) in response to -Pi conditions and were

reported as PHR1-direct targets (6) and of those that were classified as part of the local or systemic

transcriptional response as reported by (5) is represented in a heatmap, respectively. Genes that

are differentially expressed in WT root tips and their expression levels in WT, stop1 and almt1

seedlings grown under -Pi conditions are illustrated according to the key.
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Malate treatment rescued the expression of local-response genes

encoding apoplast-located proteins

As we observed that malate treatment rescued iron accumulation in the

RAM and the long root phenotype of stop1 and almt1 mutants, we sought to

identify the subset of genes that regulate primary root growth inhibition and whose

expression under low Pi conditions is re-activated by malate treatment in stop1 and

almt1 seedlings. To this end, we isolated mRNA from the root tips of Pi-deprived

stop1 and almt1 mutants that were treated with malate (1 mM) and carried out

RNA-seq analysis (Figure 6). Our rationale was that the common set of genes that

are differentially expressed in the root tips of Pi-deprived seedlings that have a

short-root phenotype (WT, stop1+ M , almt1+M) and that are not differentially

expressed (induced or repressed) in the root tips of Pi-deprived stop1 and almt1

seedlings, which have a long root phenotype in -Pi media, are linked to the malate-

dependent mechanism that triggers primary root growth inhibition under Pi

deprivation conditions. A common set of 210 differentially expressed genes (63

upregulated; 147 downregulated) was found between the genotypes/treatment that

induce a short root phenotype under -Pi conditions and that are not differentially

expressed in Pi-deprived seedlings with a long root phenotype (Figure 6A). Among

the genes whose expression was rescued by malate treatment, we found several

peroxidase family genes (PEROXIDASE2, PEROXIDASE37, AT3G01190,

PEROXIDASE4) which are closely related to the control of ROS homeostasis (36).

A full list of the genes and description is included in Supplementary File 1.

Interestingly, using SUBA, a subcellular prediction tool (Tanz et al. 2013), we found

that 30% of proteins encoded by genes whose responsiveness to low Pi is restored

by malate treatment in stop1 and almt1 Pi-deprived seedlings are targeted to the

apoplast or extracellular region (Figure 6B), confirming a previous study in which a

major role of the apoplast in the root response to Pi starvation was highlighted (35).

Furthermore, an additional 16% of genes are targeted to the plasma membrane

(Figure 6B). 
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Figure 6. Malate treatment rescues the expression of transcripts whose products are

targeted to the extracellular region. (A) Schematic of the Venn diagram analysis of

common differentially expressed genes  (DEG; -1.5 > logFC(-Pi/Pi) > 1.5; FDR < .05) in

short-root phenotypes (WTՈstop1Ոalmt1) minus the DEG in long-root phenotypes

(stop1Սalmt1) under Pi deficiency conditions, that was performed to determine the genes

whose expression is linked to short-root phenotype and is rescued by malate treatment in

stop1 and almt1 seedlings. A heatmap of the logFC values in WT, stop1/+M and almt1/+M

of the determined gene set is presented. (B) Predicted subcellular location of the DEG

whose expression is restored by malate treatment.  ( C ) LPR1, UPBEAT1 and VTC4

expression levels are presented in fold change (FC; FDR<.05) as revealed by our

transcriptomic studies in the root apex of WT, stop1 a n d almt1 seedlings under -Pi

conditions and -Pi and malate treatment (almt1+M, stop1+M) conditions. 
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LPR1 acts downstream of STOP1 and ALMT1

In Arabidopsis, LPR1 has been reported to mediate the oxidation of Fe2+ to

Fe3+ in the apoplast, which was correlated with ROS generation that triggers

callose deposition in the root apex and disrupts SHR transport which ultimately

induces determinate primary root growth in response to Pi deficiency conditions

(20). As both Fe3+ accumulation and the regulation of peroxidases are lost and

rescued by malate treatment in stop1 and almt1 mutants, using our RNASeq data,

we analyzed if malate treatment had the same effect on the LPR1 expression in

response to low Pi conditions in the root apex of stop1 and almt1 (Figure 6C). The

expression of LPR1 was found to be enhanced in the root apex of WT seedlings

(3.29 fold) exposed to low-Pi, induction that was significantly lower in stop1 (1.64

fold) and almt1 (1.25 fold) Pi-deprived seedlings (Figure 6C). Our data revealed

that, indeed, malate treatment increased LPR1 transcript levels in Pi-deprived

stop1 seedlings from 1.5 to 2.0-fold and in almt1 seedlings from 1.2 to 2.7-fold

(Figure 6C). The higher increase in LPR1 expression induced by malate treatment

in almt1 than stop1 correlates with the capacity of the treatment to better restore

the primary root response to low in almt1 than stop1 (Figure 6C). To test whether

the effect of malate was dependent or independent of LPR1, we studied the effect

of malate treatment on the primary root elongation of lpr1 seedlings grown in media

lacking Pi. We observed that malate treatment did not rescue the lpr1 mutant

phenotype (Supplementary Figure 6), suggesting that the effect of malate to trigger

the determinate root developmental program in response to Pi deficiency requires

the presence of a functional LPR1 protein.

Since alterations in the ROS balance in the RAM of Arabidopsis are linked

to the meristem exhaustion process observed in Pi-deprived seedlings (37) and

LPR1 is essential for the low-Pi dependent ROS signaling that takes place in the

primary root of Arabidopsis, we decided to analyze the transcript levels of

UPBEAT1 (UPB1; Figure 6C); the only transcription factor known to module ROS
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balance and control the transition from cell proliferation to cell differentiation in the

RAM by modulating the transcription of peroxidase genes (38). We observed that

UPBEAT1 is down-regulated 0.48-fold in response to low Pi in the root apex of WT

seedlings and that it is downregulated to a lower degree in stop1 (0.64 FC) and

almt1 (0.67 FC). Malate treatment restored the downregulation of UPB1 in Pi-

deprived almt1 (0.46 FC) and stop1 (0.37 FC) seedlings to WT levels (Figure 6C).

Since LPR1 and UPB1 seem to be involved in modulating ROS balance in the

RAM and their expression is misregulated in stop1 a n d almt1, we identified

peroxidase genes which have been related with ROS homeostasis in the root (36)

and analyzed their expression levels in WT, stop1 and almt1 seedlings. We found

that 18 peroxidase genes (PRXS) were transcriptionally regulated by low Pi in the

root apex of WT seedlings of which 13 PRXS were not responsive to low Pi in

stop1 and almt1 (Supplementary File 1). Interestingly, the responsiveness of 11

peroxidase genes (PEROXIDASE52, AT4G08780, AT4G08780, PEROXIDASE2,

AT5G06730, AT5G39580, PEROXIDASE37, AT5G15180, PEROXIDASE4,

AT2G39040, AT3G01190) was rescued by malate treatment in Pi-deprived stop1

and almt1 seedlings (Supplementary Figure 7). Alterations of ROS balance have

been related to callose deposition in the primary root of Arabidopsis (20). Given

that the transcription of ROS-related genes (UPB1, LPR1 and PRXS) is disrupted

in stop1 and almt1 under low Pi conditions, we analyzed the expression values of

genes coding for callose synthases (CALS). We found that the expression of 4

genes coding for CALS (CALLOSESYNTHASE7, CALLOSESYNTHASE9,

GLUCANSYNTHASELIKE4, GLUCANSYNTHASELIKE5) was induced (1.1 logFC;

FDR<.05) in the root apex of WT seedlings and that it was induced to a lesser

extent (logFC<0.6) in stop1 and almt1 seedlings. It was observed that malate

treatment also rescued the expression of these 4 CALS in Pi-deprived stop1 and

almt1 (Supplementary Figure 7). Our results suggested that malate efflux is

required for the ROS signaling cascade that has been reported to be affected in

low-Pi insensitive mutants (20, 37).
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Given that Fe tends to its higher oxidation state (Fe3+) in natural

environments and the iron uptake genes IRON REGULATED TRANSPORTER 1

(IRT1) and FERRIC REDUCTION OXIDASE 2 (FRO2) have been reported to be

repressed in response to Pi deficiency conditions (3, 5, 39) we asked whether an

alternative Fe3+ reduction mechanism could provide Fe2+ to LPR1 to initiate the

proposed ROS signaling cascade that is induced in the RAM in response to low Pi.

An ascorbate dependent Fe2+ reduction mechanism has been reported recently

(31), in which VITAMINC4 (VTC4), a gene encoding a protein with dual myo-

inositol-monophosphatase and ascorbate synthase activity (40), could play a

central role. We found that VTC4 is induced in the root apex of WT (5 FC), almt1

(4.3 FC) and stop1 (3.22 FC) seedlings (Figure 6C). Interestingly, VTC4 belongs to

the set of genes that are direct targets of PHR1 (6), providing a potential link

between local and systemic signaling in the primary root response to low Pi and

the crosstalk between Fe and P in the Pi deficiency response. 

Discussion

LPR1 has been proposed to promote the accumulation of Fe in the apoplast

of cells in the RAM, which in turn triggers an accumulation of callose that alters

symplastic transport causing meristem differentiation (20). However, the precise

mechanism by which Fe accumulates in the apoplast of RAM cells remained to be

determined. Here we show that STOP1 and ALMT1 participate in the mechanism

that triggers RAM exhaustion in response low Pi availability by mediating the

accumulation of Fe3+ in the apoplast of RAM cells. STOP1 and ALMT1 were

originally described as genes responsible of the malate efflux that protects the

Arabidopsis root from Al3+
 toxicity (21, 22). AtSTOP1 is constitutively expressed in

Arabidopsis, indicating that its involvement in the Al-dependent induction of gene

expression must involve posttranslational processes of modification or the direct

binding of Al+3. The finding that mutations in STOP1 and ALMT1 lead to long root

phenotypes in Pi-deprived seedlings suggests that malate excretion is also
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involved in the process of meristem exhaustion in response to low Pi availability.

We found that STOP1 is expressed in the RAM in a Pi-independent fashion and

that ALMT1 is expressed in the RAM but only in seedlings grown in media with low

Pi concentrations. Although the expression domains of STOP1 and ALMT1 do not

completely overlap, we found that the expression directed by the ALMT1 promoter

is completely dependent on an intact copy of STOP1 (Supplementary Figure 2).

The apparent inconsistency between the role of an activator with its target gene

and the differences in patterns of expression of STOP1 and ALMT1 could be

explained by the recent report that STOP1 mRNA is cell-to-cell mobile (42). 

Pi and Fe availability have been shown to coordinately regulate RAM

maintenance and primary root growth in vitro (11, 17, 20). Our results corroborate

that, in Arabidopsis WT seedlings, Fe availability (Supplementary Figure 8) in the

medium is required for RAM-exhaustion in media with a low Pi concentration and

that Fe accumulation in the RAM is associated with the process of RAM-

exhaustion (Figure 4). Apoplastic iron accumulation in the RAM was reported to be

essential for primary root growth inhibition in response to -Pi conditions (20),

however, the mechanism for iron accumulation in the root remained to be

determined.  We found that Fe failed to accumulate in the root apex of stop1 and

almt1 seedlings grown in Pi-deficient media and that the treatment of stop1 and

almt1 seedlings with malate restores both Fe accumulation in the RAM and the

inhibition of primary root growth in Pi-deprived seedlings (Figure 4). These data

show that malate secretion is necessary and sufficient for iron accumulation in the

RAM and to trigger cell differentiation in the RAM that is responsible for the

meristem exhaustion process induced by Pi deficiency. We propose that such

mechanism of iron accumulation happens in the apoplast as ALMT1 is reported to

be a malate efflux protein (22) and thus, exogenous malate, which probably

diffuses through the apoplast, can rescue iron accumulation in almt1 and stop1.

Malate supplementation was found to fully rescue the short-root phenotype of

almt1 while it only partially restored primary root growth inhibition in stop1,
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suggesting that, in addition to ALMT1, STOP1 regulates the expression of other

genes whose activation by low Pi is required for full meristem exhaustion.

Molecular dynamic simulation of Fe3+ and Fe2+ interaction shows that malate

can form large complexes with Fe+3 but not Fe+2
 (Supplementary Figure 5). This

data suggests that malate promotes the accumulation of Fe+3 in the apoplast by

forming these large molecular weight complexes, which by a still largely unknown

mechanism that correlates with ROS generation (20), activate the processes

required for meristem exhaustion. lpr1 seedlings also show a long root phenotype

in low Pi media, suggesting that the ferroxidase activity of LPR1 is required to

trigger cell differentiation during the primary root meristem exhaustion process

triggered by Pi-deprivation. We found that the long root phenotype of lpr1 in low-Pi

media cannot be rescued by malate treatment, suggesting that LPR1 acts

downstream of STOP1 and ALMT1 and that most probably is required to activate

the Fe-mediated mechanism involved in the process of RAM exhaustion observed

in Pi-deprived seedlings. Therefore, cell-wall-localized LPR1 ferroxidase activity

which catalyzes Fe+2 to Fe+3 conversion (20), could act synergistically with malate

efflux in the accumulation of Fe3+
 in the apoplast of RAM cells. LPR1-dependent

Fe3+ production in the apoplast could trigger ROS production by initiating a Fe

redox cycle as previously proposed (43). Either ferric-chelate reductase oxidase

activity, which reduces apoplast-diffusible Fe3+
 chelates, or effluxed ascorbate (31)

could reduce the Fe3+ produced by LPR1 to a redox-active Fe2+ to complete a

cycle thereby triggering root cell differentiation. Supporting this notion, LPR1

overexpression causes ectopic Fe3+ and ROS generation in Pi-deprived seedlings

(20). Our data suggest the existence of a STOP1, ALMT1 and LPR1 coordinated

redox mechanism that involves Fe+3 deposition in the apoplast of RAM cells of

seedlings exposed to low Pi. ALMT1 is transcriptionally upregulated in a similar

fashion in WT and lpr1 mutants (35), confirming that LPR1 acts downstream of the

STOP1/ALMT1 low Pi regulatory node.
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Expression of up to 80% of the genes involved in the local response to low

Pi was affected in stop1 and almt1, whereas less than 40% of Pi systemically

responsive genes were affected in the same mutants (Figure 5D). These results

show that, in addition to controlling the primary root developmental response to low

Pi, STOP1 and ALMT1 play an important role in modulating the transcription of

other genes involved in the local response to Pi starvation. However, the reduction

in both local and systemic responses in stop1 and almt1 points to a cross-talk

between the signaling pathways that regulates the transcriptional activation or

repression of the systemic and local responses to low Pi in the root apex. However,

we cannot rule out the possibility that the internal concentration of Pi could be

higher in the root tip of stop1 and almt1 than the WT, which could lead to a

downregulation of the systemic response, as has been observed in plants grown in

low Pi and low Fe conditions (17). Further experiments regarding a possible

STOP1 and ALMT1 interaction directly with Pi, PHR1 or SPX-domain proteins

could shed light on the existence of a coordinated response to external and internal

Pi levels in the root apex. The observation that PHR1 activates the expression of

the ascorbate synthase VTC4 under Pi deficiency conditions together with the

recent report that ascorbate efflux contributes to Fe3+ reduction (31), support the

notion that the redox cycle that generates ROS and triggers RAM exhaustion could

be controlled by both local and systemic responses to Pi starvation. 

Our transcriptomic analysis revealed that L P R 1 is responsive to Pi-

deprivation in the root tips of WT plants (Figure 6C) and that this response is

significantly reduced in the root tips of stop1 and almt1 seedlings (Figure 6C).

These results suggest that a threshold level of LPR1 is required to activate

meristem exhaustion in Pi-deprived seedlings. This notion is supported by the

observation that the treatment with malate that reverts the long root phenotype of

Pi-deprived stop1 and almt1 seedlings (Figure 4A) also leads to an increase in

LPR1 transcript levels (Figure 6C). Moreover, Arabidopsis accessions with higher

LPR1 transcription levels have shorter primary roots under low Pi conditions (16)

and we observed that, in the case of malate-treated Pi-deprived stop1 and almt1
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seedlings, a higher LPR1 expression in almt1 than in stop1 correlated with a

shorter primary root in almt1 than stop1 (Figure 4B, 6C). A recent report on the

interplay between the transcriptional activation of genes coding for extracellular

enzymes and iron-redistribution in the apoplast in response to Pi-deprivation

highlighted the role of the apoplast in the Pi starvation response (35).

Transcriptomic analysis of Pi-deprived stop1 and almt1 seedlings showed that

malate treatment reactivates the low-Pi-responsiveness of genes that encode

extracellular proteins involved in cell-wall modification and ROS homeostasis, such

as peroxidases (36). Our transcriptomic results confirm a previously reported role

of apoplastic peroxidases in the Pi starvation response (35), and highlight the role

of malate secretion in the cell wall remodeling processes potentially involved in the

changes of Arabidopsis root system architecture induced by low Pi availability. In

this context, the finding that UPBEAT1, a transcription factor that modulates the

transition from cell proliferation to cell differentiation in the RAM by repressing

peroxidase genes (38), is repressed in response to Pi deficiency conditions and the

fact its expression is altered in stop1 and almt1, support the notion that ROS

generation plays an important role in the root response to Pi deprivation. Further

experiments regarding the specific pattern of ROS signaling in the RAM under Pi

starvation conditions are required.

A model that summarizes what is known about the local response to Pi

starvation and the proposed role of STOP1 and ALMT1 in the root response to Pi

deprivation is presented in Figure 7. Under Pi deficiency conditions, expression of

LPR1 is enhanced by a malate-dependent mechanism and PDR2 activity is

inhibited facilitating LPR1 mobilization from the ER to the plasma membrane (20)

where LPR1 ferroxidase activity catalyzes Fe2+
 to Fe3+

 conversion in the apoplast of

RAM cells (Figure 7). The mechanisms by which LPR1 is transported from the ER

to the extracellular region and how PDR2 activity is regulated by Pi-availability

remain to be determined. STOP1, a constitutively expressed gene, up-regulates

the expression of ALMT1 in seedlings exposed to low Pi, thereby activating the

excretion of malate. LPR1 ferroxidase activity in the plasma membrane of cells in
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the meristem and elongation zones of the primary root locally produces Fe3+ which

forms large complexes with malate, leading to its accumulation. Expression of the

ascorbate synthase VTC4 under Pi deficiency conditions is activated and the

presence of ascorbate in the apoplast produces the Fe2+ required to complete a

redox cycle that generates ROS. Expression of the UPB1 repressor is reduced by

a Fe/malate-dependent mechanism under low Pi conditions, which enhances the

transcription of peroxidase genes. Enhanced transcription of local response

peroxidase genes likely triggers ROS generation in the root of Pi-deprived

seedlings as previously reported (37). ROS generation triggers callose deposition

as previously reported (20, 44). This notion is supported by the observation that the

expression of several CALS genes is enhanced in the root apex of WT but not in

stop1 and almt1 seedlings (Supplementary Figure 7). Callose synthesis impairs

symplastic transport by physically blocking plasmodematal pores, which reduces or

inactivates the cell to cell movement of SHR (20). Since SHR cell to cell movement

is required for stem cell niche maintenance, meristem exhaustion takes place in

seedlings exposed to low Pi availability. However, since CLE-like peptide signaling

is also required for stem cell niche maintenance in Arabidopsis (45) we cannot rule

out that ROS or Fe3+ accumulation in the RAM could induce the transcription of

CLE peptides that could also execute RAM exhaustion.

STOP1 controls ALMT1 transcription and its expression is not regulated by

Pi availability, suggesting that STOP1 is most likely involved in sensing external Pi-

levels or an environmental cue that it is linked to low-Pi levels in the medium. Since

STOP1 also controls low pH and Al3+
 toxicity responses, it emerges as a possible

master regulator/sensor that orchestrates the root responses to multiple

environmental stresses. 
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Figure 7. STOP1 and ALMT1 regulate the RAM response to low Pi conditions in

Arabidopsis. In response to limiting Pi levels in the medium, STOP1 induces ALMT1

(Figure 3) which triggers malate efflux in the root apex. Low Pi levels also inhibit PDR2

negative regulation over LPR1 and induce, in a largely unknown mechanism, LPR1

transport to the plasma membrane. Malate contributes to the aggregation of Fe3+ ions in

the apoplast and enhances the expression of LPR1, callose synthase genes (CALS)

peroxidase genes (PRX) under Pi deficiency conditions. LPR1 and PRX activity generates

reactive oxygen species (ROS) which enhance callose deposition by CALS. Callose

deposition closes the symplastic channels of communication which ultimately impairs the

transport of transcription factors, such as SHR, that are essential to maintain cell

proliferation and organization in the RAM. Alternative factors induced by ROS, such as

signaling peptides, could also induce cell differentiation in the RAM. A crosstalk between

internal sensing, mediated by the PHR1/SPX1 module, and external Pi-sensing could be

interconnected by ascorbate efflux into the apoplast, which can reduce Fe3+ to Fe2+ and

could re-start the proposed redox cycle. Ascorbate can be produced by VTC4 whose gene

is induced by PHR1 when internal Pi levels are limiting . Arrows represent relationships

between the components. Dotted lines represent hypothetical relations, and the regulation

key illustrates the type of evidence that has been provided for that relationship. 

Materials and Methods
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Plant material

Arabidopsis thaliana Col-0 accesion (CS70000) was used in this work. Stop1-

SALK_114108 (N614108), almt1-SALK_009629 (N509629), and lpr1 (N516297)

lines were provided by the NASC (European Arabidopsis Stock Center).

Growing conditions

Seeds were surface sterilized and sowed in 1% agar, 0.1x MS medium as

described by (10). 1mM KH2PO4 (high Pi; +Pi) or 10µM KH2PO4 (low Pi; -Pi) Pi

concentrations were used. 1% (w/v) sucrose and 3.5mM MES was added. Fe-free

medium was prepared as described (15), and 100µM ferrozine (SIGMA-82950)

was added to reduce agar Fe-availability. Malate and citrate (SIGMA-M1000 and

SIGMA-C0759, respectively) were added to medium before sterilization. Seedlings

were grown in a Percival chamber at 22 ºC, under 16/8 hrs photoperiod with >200

µmol*m-2*-1 luminous intensity.

EMS mutagenesis

Over 3000 Arabidopsis seeds were surface sterilized with ethanol 95% (v/v)

ethanol for 10min and 20% (v/v) bleach for 6 min. The sterilized seeds were left

overnight at 4°C on a rocker in distilled water. Then seeds were incubated with

0.04% EMS (SIGMA-M0880) during in 100 mM sodium phosphate buffer, pH7.

After 9 hours the seeds were washed ten times with distilled water to remove EMS

residues. EMS mutagenized seeds (M1) were propagated under greenhouse

conditions and F1 seeds (M2) were harvested and grown under -Pi conditions.

Mutants that presented a long-root phenotype under in -Pi media were selected.  

Gene mapping

Plant mapping populations were built crossing lpi5 and lpi6 homozygous lines vs

Col-0 (CS70000) respectively, according to the Mutmap protocol (26).

Heterozygous F1 plants were self-fertilized for seed propagation. The F2

segregating individuals, were re-screened for WT (short root) and mutant (long
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root) phenotypes, respectively for each of the two crosses. Then, DNA was

extracted from 100 plants for each phenotype, pooled and sequenced using

Illumina Miseq technology (paired-end, 250 base-pair reads length and 50X

coverage). Reads obtained were processed with fastQC and Trimmomatic (46) to

improve their quality. Only paired-end reads were considered. Reads were mapped

to the Col-0 reference genome (TAIR10) using BWA (47) and SAMtools (48). To

identify and to evaluate specific variants related with the mutant phenotype (long

root) a pipeline using GATK (https://software.broadinstitute.org/gatk/), VCFtools

(49), SNPeff and SNPshif (27) was implemented. IGV was used to visualize the

variants analyzed (50).

Transcriptional reporter lines

Transgenic Col-0 plants harboring transcriptional gene fusions containing

the STOP1 and ALMT1 promoter regions, respectively, fused to a double GFP-

G U S r e p o r t e r g e n e w e r e p r o d u c e d u s i n g 4900pb (primers:

s t o p 1 F w : G A A C G A C A A G A T T A C A A G T A G G T T C a n d

stop1Rv:GTTGCACAAATCGTCTTCAGTTTCC) and 2253 (pr imers :

a l m t 1 F w : G G C A G A T A A A G A G G C A C T C G T G a n d

almt1Rv:CTCTCTCACTTTCTCCATAACACC) intergenic regions of STOP1 and

ALMT1, respectively, were used to build the proSTOP1::GUS-GFP and

proALMT1::GUS-GFP transcriptional reporter lines respectively. Intergenic region

were cloned on the pKGWFS7 using the Gateway system. Arabidopsis plants were

agro-infiltrated using the floral-dip method (51).

Histochemical GUS staining

Histochemical GUS staining was performed as reported by (52). The stained roots

were clarified following the protocol reported by (53). A representative root stained

was chosen and photographed using Nomarski optics on a Leica DMR

microscope.
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Histochemical iron staining

Perls iron staining and DAB intensification were carried out as described in (20)

and analyzed using Nomarski optics on a Leica DMR microscope.

Malate and Fe(II), Fe(III) and Al(III) Molecular Dynamics

Molecular dynamic (MD) calculations were carried out to obtain insight about the

behavior between malate molecules and Fe(II), Fe(III) and Al(III) ions in explicit

water solution. Non-bonded parameters for the metallic cations were taken from

the 12-6-4 Lennard-Jones-type non-bonded model for divalent (54) and highly

charged metal ions (55) respectively. These parameters were then adapted to the

GROMOS 53a6 force field and integrated with GROMACS 5.0 as a user specified

non-bonded potential employing tabulated interaction functions (56). The all-atom

PDB optimized geometry structure and parameters for malate molecules were

taken from the ATB web server (57). A total of nine systems were built with the

malate-Fe(II), malate-Fe(III) and malate-Al(III) proportions of 0:120, 40:120, 80:120

and 120:120 within a cubic box with periodic boundary conditions. In all systems,

the box was solvated with SPC/E (58) type water molecules and the steepest

descents method was employed to minimize the energy. The temperature was set

to 300 K and an equilibration phase of 100 ps in the canonical ensemble (NVT)

was conducted using the V-rescale algorithm (59). Long-range electrostatics were

calculated employing the PME method (60, 61) with a cutoff of 12 Å and the same

cutoff was chosen for the van der Walls non-bonded interactions. All bond lengths

were constrained with Linear Constraint Solver (LINCS; (62). A final production of

50 ns in the isothermal-isobaric ensemble (NPT) was conducted using the

Parrinello-Rahman algorithm (63). Snapshots were stored after each 10 ps and the

final MD trajectories were analyzed using the g_aggregate tool (64).

Preparation of root tip mRNA-seq libraries

Total RNA was isolated from frozen root tip powder using TRIzol reagent

(Invitrogen) according to the manufacturer’s instructions. Frozen root tip powder
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was obtained from root tip sections of approximately 2-3 mm length from

approximately 500 individuals per treatment (5 dag). Non-strand specific mRNA-

seq libraries were generated from 5 µg of total RNA and prepared using the TruSeq

RNA Sample Prep kit (Illumina) according to the manufacturer’s instructions.

RNA-seq High-throughput Sequencing and Data Analysis

High-throughput sequencing and data analysis were carried out as in (65). Briefly,

quality assessment of the reads generated with the Illumina analysis pipeline (fastq

format) was performed using FastQC (version 0.11.4) and processed using

Trimmomatic (46) (version 0.35) to remove reads that contained adapter

sequences and low quality reads. Single and paired-end clean reads were aligned

to the Arabidopsis thaliana TAIR10 reference sequence using TopHat2 (66)

(version 2.0.9). Raw counts per gene were estimated using HTseq (67) (version

0.6.0). Data was normalized in edgeR (68) (version 3.12.0) using the trimmed

mean of M values (TMM) method. Genes with ≥ 3 reads in total, across all

samples, were included in the final analysis.  Transcript abundance as represented

by the normalized raw counts per gene was used to determine differential

expression using the edgeR package. Analysis of GO enriched categories and

clusterization into functional groups by biological process was performed using

Cytoscape (69) (version 3.4) plugin ClueGO+CluePedia (70). 

qRT-PCR

Total RNA was isolated using TRIzol reagent (Invitrogen) according to the

manufacturer’s instructions. Real-time PCR was performed with an Applied

Biosystems 7500 real-time PCR system using SYBR Green detection chemistry

(Applied Biosystems) and gene-specific primers. The relative expression levels

were computed by the Ct method of relative quantification. Oligonucleotide primer

sequences are available upon request.
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Supplementary Material

Supplementary Table 1. Segregation ratios of the F2 progeny seedlings obtained
from lpi5 X WT and lpi6 X WT crosses.
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Supplementary Figure 1. Primary root growth of lpi5, stop1, lpi6 and almt1 10-day-old

seedlings in response to low pH and aluminum toxicity. (A) Boxplot representation of the

primary root length of WT, lpi5, stop1, lpi6, and almt1 10-day-old individuals (n=30) grown under low

pH (4.6) (left) and aluminum toxicity (2 µM) (right) conditions. Dots represent individuals and genetic

backgrounds are depicted by colors as described. Statistical groups were determined using a Tukey

HSD test (P-value < .05) and are indicated by a letter. B) WT, lpi5, stop1, lpi6, and almt1 10-dag

seedlings grown under low pH (4.6) (left) and aluminum toxicity (2 µM) (right) conditions. Scale bar

equals 1 mm. C) Segregation ratios of F1 progeny seedlings (long root phenotype under -Pi

conditions) obtained from stop1 vs lpi5 and almt1 vs lpi6 crosses. All F1 progeny seedlings from the

lpi5 x salk_114108 and lpi6 x salk_009629 crosses were observed to have a mutant phenotype

under –Pi conditions.  
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Supplementary Figure 2. STOP1 is essential for ALMT1 expression in the root tip. qRT-PCR

analysis of ALMT1 expression in root apex of WT and stop1 plants. Bars represent the mean logFC

±SEM of 2 biological replicates with 3 technical replicates. WT +Pi samples were used as calibrator

values. ACT2 and UBQ10 were used as internal controls.

Supplementary Figure 3. Malate effect on primary root growth and iron distribution in the

root under high phosphate conditions. (A) Primary root length of 10 dag WT, stop1 and almt1

seedlings in response to increasing concentrations of malate supplemented to +Pi medium. (B)

DAB-Perls iron staining of roots from 10 dag Col-0, stop1 and almt1 seedlings grown under +Pi and

+Pi medium supplemented with 1 mM malate (+Pi+M). 
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Supplementary Figure 4. Citrate supplementation of low Pi medium did not rescue

the long root phenotype of stop1 and almt1 mutants. (A) Phenotypes of 10 dag WT, stop1 and

almt1 seedlings grown in low phosphate medium (-Pi) and low phosphate medium supplemented

with 1mM citrate (-Pi+C). Scale bar equals 1 mm. (B) Primary root length of 10 dag WT, stop1 and

almt1 seedlings under -Pi and -Pi medium supplemented with 1mM citrate. Green, blue and red

dots depict WT, stop1 and almt1 individuals (n=30 from 3 independent experiments), respectively.
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Statistical groups were determined using Tukey HSD test (P-value <.05) are indicated with letters.

Supplementary Figure 5. Molecular dynamic calculations revealed the malate-chelating

effect that induces Fe3+ aggregation. 120 molecules of each metal (A-D) Fe2+, (E-H) Fe3+ and (I-L)

was simulated (see Materials and Methods) with 0, 40, 80 and 100 molecules of malate,

respectively. Structural representation at the end (50 microseconds) of simulation between the

higher malate concentration (120 molecules) and (M) Fe2+, (N) Fe3+ and (O) Al3+, respectively.
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Supplementary Figure 6. Malate supplementation of low Pi medium did not rescue the long

root phenotype of lpr1 mutants. (A) Phenotypes of Col-0 (WT) and lpr1 seedlings grown under

-Pi conditions (left) and -Pi medium supplemented with 1 mM malate (-Pi+M) (right) conditions 10

dag. (B) Primary root length of 10 dag WT and lpr1 seedlings grown under -Pi conditions and -Pi+M

conditions. (C) DAB-Perls iron staining of roots from Col-0 and lpr1 seedlings grown under -Pi and

-Pi+M conditions 10 dag. 
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Supplementary Figure 7. Malate treatment rescues the expression of peroxidase and callose

synthase genes in Pi-deprived stop1 and almt1 seedlings. The locus ID (atID), description and

the expression values (logFC) of (A) PEROXIDASE and (B) CALLOSE SYNTHASE genes are

presented for Pi-deprived seedlings (WT, stop1 a n d almt1) and malate-treated Pi-deprived

seedlings (stop1+ M , almt1+M). Non colored values mean that the gene is not differentially

expressed (FDR>.05) in the respective genotype/conditions. 
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Supplementary Figure 8. Iron-dependence of the inhibition of primary root under low

Pi conditions. (A) Primary root length of 10 dag WT, stop1 and almt1 seedlings grown In –

Pi media (-Pi+Fe) and –Pi media lacking Fe (-Pi-Fe; See Materials and Methods). Green,

blue and red dots depict WT, stop1 and almt1 individuals (n=30 from 3 independent

experiments), respectively. (B) Phenotypes of 10 dag WT, almt1 and stop1 seedlings

grown under -Pi-Fe conditions. Scale bar equals 1 centimeter (cm). 
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