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Abstract

The multispecies network coalescent (MSNC) is a stochastic process that captures how gene trees
grow within the branches of a phylogenetic network. Coupling the MSNC with a stochastic mutational
process that operates along the branches of the gene trees gives rise to a generative model of how multiple
loci from within and across species evolve in the presence of both incomplete lineage sorting (ILS)
and gene flow. We report on the first Bayesian method for sampling the parameters of this generative
model, including the species phylogeny, gene trees, divergence times, and population sizes, from DNA
sequences of multiple independent loci. We demonstrate the utility of our method by analyzing simulated
data and reanalyzing three biological data sets. Our results demonstrate the significance of not only co-
estimating species phylogenies and gene trees, but also accounting for gene flow and ILS simultaneously.
In particular, we show that when gene flow occurs, our method accurately estimates the evolutionary
histories, coalescence times, and divergence times. Methods that do not account for gene flow, on the
other hand, underestimate divergence times and overestimate coalescence times.

The availability of sequence data from multiple loci across the genomes of species and individuals within
species is enabling accurate estimates of gene and species evolutionary histories, as well as parameters such
as divergence times and ancestral population sizes (Rannala and Yang, 2003). Several statistical methods
have been developed for obtaining such estimates (Rannala and Yang, 2003; Edwards et al., 2007; Heled and
Drummond, 2010; Bouckaert et al., 2014). All these methods employ the multispecies coalescent (Degnan
and Rosenberg, 2009) as the stochastic process that captures the relationship between species trees and gene
genealogies.

As evidence of hybridization (gene flow between different populations of the same species or across dif-
ferent species) continues to accumulate (Rieseberg, 1997; Arnold, 1997; Barton, 2001; Koonin et al., 2001;
Gogarten et al., 2002; Mallet, 2005, 2007), there is a pressing need for statistical methods that infer species
phylogenies, gene trees, and their associated parameters in the presence of hybridization. We recently in-
troduced for this purpose the multispecies network coalescent (MSNC) along with a maximum likelihood
search heuristic (Yu et al., 2014) and a Bayesian sampling technique (Wen et al., 2016b). However, these
methods use gene tree estimates as input. Using these estimates, instead of using the sequence data directly,
has at least three drawbacks. First, the sequence data allows for learning more about the model than gene
tree estimates (Rannala and Yang, 2003). Second, gene tree estimates could well include erroneous informa-
tion, resulting in wrong inferences (DeGiorgio and Degnan, 2014; Wen et al., 2016b). Third, co-estimating
the species phylogeny and gene trees results in better estimates of the gene trees themselves (DeGiorgio and
Degnan, 2014; Zimmermann et al., 2014).

We report here on the first statistical method for co-estimating species (or, population) phylogenies
and gene trees along with parameters such as ancestral population sizes and divergence times using DNA
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sequence alignments from multiple independent loci. Our method utilizes a two-step generative process
(Fig. 1) that links, via latent variables that correspond to local gene genealogies, the sequences of multiple,
unlinked loci from across a set of genomes to the phylogenetic network Nakhleh (2010) that models the
evolution of the genomes themselves.
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Figure 1: From a phylogenetic network to multi-locus sequences via latent gene genealogies. The multi-
species network coalescent (Yu et al., 2014) is a stochastic process that defines a probability distribution on
gene genealogies along with their coalescent times. The parameters of the process consist of a phylogenetic
network topology, inheritance probabilities, divergence times, and population sizes. Each gene genealogy,
when coupled with model of sequence evolution, defines a probability distribution on sequence alignments.

Our method consists of a reversible-jump Markov chain Monte Carlo (RJMCMC) sampler of the pos-
terior of this generative process. In particular, our method co-estimates, in the form of posterior samples,
the phylogenetic network and its associated parameters for the genomes as well as the local genealogies for
the individual loci. We demonstrate the performance of our method on simulated data. Furthermore, we
analyze three biological data sets, and discuss the insights afforded by our method. In particular, we find
that methods that do not account, wrongly, for gene flow in the data tend to underestimate divergence times
of the species or populations and overestimate the coalescent times of individual gene genealogies. Our
method, on the other hand, estimates both the divergence times and coalescent times with high accuracy.
Furthermore, we demonstrate that coalescent times are much more accurately estimated when the estimation
is done simultaneously with the phylogenetic network than when the estimation is done in isolation.

As the model underlying out method extends the multispecies coalescent to cases that include gene flow,
our method is applicable to data from different sub-populations, not only different species, and to data where
more than one individual per species or sub-population is sampled. The method is implemented and publicly
available in the PhyloNet software package (Than et al., 2008).
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Model

The data in our case is a set S = {S1, . . . , Sm} where Si is a DNA sequence alignment from locus i (the
bottom part in Fig. 1). A major assumption is that there is no recombination within any of the m loci,
yet there is free recombination between loci. The model M consists of a phylogenetic network Ψ (the
topology, divergence times, and population sizes) and a vector of inheritance probabilities Γ (the top part
in Fig. 1). The topology of a phylogenetic network is a rooted, directed, acyclic graph, whose leaves are
labeled by the taxa under study. Every node in the network has at most two parents, and nodes with two
parents are called reticulation nodes. Associated with every internal node of the phylogenetic network is a
divergence time parameter (the leaves are all assumed to be at time 0). Associated with every branch of the
network, including one incident into the root, is a population size parameter. Furthermore, associated with
the branches coming into reticulation nodes are the inheritance probabilities given by Γ. See Methods for a
formal definition.

The posterior of the model is given by

p(M |S ) ∝ p(S |M )p(M ) = p(M )

m∏
i=1

∫
G
p(Si|g)p(g|M )dg, (1)

where the integration is taken over all possible gene trees (the middle part in Fig. 1). The term p(Si|g) gives
the gene tree likelihood, which is computed using Felsenstein’s algorithm (Felsenstein, 1981) assuming a
model of sequence evolution, and p(g|M ) is the probability density function for the gene trees, which was
derived for the cases of species tree and species network in (Rannala and Yang, 2003) and (Yu et al., 2014),
respectively; see Methods.

The integration in Eq. (1) is computationally infeasible except for very small data sets. Furthermore,
in many analyses, the gene trees for the individual loci are themselves a quantity of interest. Therefore, to
obtain gene trees, we sample from the posterior as given by

p(Ψ,Γ, G|S) ∝ p(M )
m∏
i=1

p(Si|gi)p(gi|M ) = p(Ψ)p(Γ)
m∏
i=1

p(Si|gi)p(gi|Ψ,Γ), (2)

where G = (g1, . . . , gm) is a vector of gene trees, one for each of the m loci. This co-estimation approach
is adopted by the two popular Bayesian methods ∗BEAST (Heled and Drummond, 2010) and BEST (Liu,
2008), both of which co-estimate species trees (hybridization is not accounted for) and gene trees.

To fully specify the co-estimation given by Eq. (2), two priors p(Ψ) and p(Γ) need to be defined. For
phylogenetic network Ψ, we denote by Ψret, Ψtop, Ψτ , and Ψθ its number of reticulation nodes, topology,
divergence times, and population sizes, respectively. We have

p(Ψ|ν, δ, η, ψ) = p(Ψret|ν)× p(Ψtop|Ψret,Ψτ , η)× p(Ψτ |δ)× p(Ψθ|ψ), (3)

where ν, δ, η, and ψ are hyper-parameters. For the inheritance probabilities Γ, we use a uniform prior on
[0, 1], though a Beta distribution would also be appropriate in general cases; see Methods for full details.

As computing the posterior distribution given by Eq. (2) is computationally intractable, we implement
a Markov chain Monte Carlo (MCMC) sampling procedure based on the Metropolis-Hastings algorithm.
In each iteration of the sampling, a new state (Ψ′,Γ′, G′) is proposed and either accepted or rejected based
on the Metropolis-Hastings ratio r that is composed of the likelihood, prior, and Hastings ratios. When the
proposal changes the dimensionality of the sample by adding a new reticulation to or removing an existing
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reticulation from the phylogenetic network, the absolute value of the determinant of the Jacobian matrix is
also taken into account, which results in a reversible-jump MCMC, or RJMCMC (Green, 1995, 2003).

Our sampling algorithm employs three categories of moves: One for sampling the phylogenetic network
and its parameters, one for sampling the inheritance probabilities, and one for sampling the gene trees. To
propose a new state of the Markov chain, one element from (Ψ, γ1, . . . , γΨret , g1, . . . , gm) is selected at
random, then a move from the corresponding category is applied. The workflow, design and full derivation
of the Hastings ratios of the moves are given in the SI.

Results

We implemented our method in PhyloNet (Than et al., 2008), a publicly available, open-source software
package for phylogenetic network inference and analysis. We studied the performance of the method on
synthetic data and revisited the analyses of three biological data sets, as we now describe.

Performance on simulated data

For the synthetic data, we generated sequence alignments of varying numbers of loci by simulating their
evolution within the branches of the phylogenetic network of Fig. 2A. The network topology and associated
parameters are inspired by the phylogenetic network of the mosquito data set in (Wen et al., 2016a); full
details of the simulation setup are given in the SI. A few observations are in order. First, while ∗BEAST
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0.3

B
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0.25±0.04
0.33±0.04

G C A LQ R

1.0

Figure 2: Results of ∗BEAST and our method on simulated data of 128 loci each of length 500 nucleotides.
(A) The true phylogenetic network with the shown inheritance probabilities. (B) The MPP (maximum a
posteriori probability) species tree estimated by ∗BEAST (94%) with the average divergence times. (C)
The MPP phylogenetic network along with the inheritance probabilities estimated by our method. The scale
bar of divergence times represents 1 coalescent unit for (A-C). (D) The coalescent times of the MRCAs
of (C,G), (A,Q), (A,C), (Q,R) from co-estimated gene trees inferred by ∗BEAST (green) and our method
(blue).

is not designed to deal with hybridization, it inferred the tree topology (Fig. 2B) that is obtainable by
removing the two hybridization events (the two arrows) from the true phylogenetic network. Second, our
method identified the true phylogenetic network as the one with the highest posterior (2C). Furthermore, the
estimated inheritance probabilities are very close to the true ones. Third, since ∗BEAST does not account
for hybridization, it accounts for all gene tree heterogeneity as being caused by incomplete lineage sorting
(ILS) by underestimating all branch lengths. Indeed, 2D shows that the minimum coalescent times of
the co-estimated gene trees by ∗BEAST force the divergence times in the inferred species tree to be very
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low. Our method, on the other hand, accurately estimates the branch lengths of the inferred phylogenetic
network since networks differentiate between divergence and migration times. For example, 2D shows
that the coalescent times of clade (C,G) across all co-estimated gene trees is a continuum with a minimum
value around 2, which defines the divergence time of these two taxa in the phylogenetic network. Our
method clearly identifies two groups of coalescent times for each of the two clades (A,C) and (Q,R): The
lower group of coalescent times correspond to hybridization, while the upper group of coalescent times
correspond to the coalescences above the respective MRCAs of the clades. We also note that the minimum
value of coalescent times corresponding to (Q,R) is larger than that corresponding to (A,Q), which correctly
reflects the fact that hybridization from R to Q happened before hybridization from C to A, as indicated in
the true phylogenetic network. Finally, for clade (A,Q), three groups of coalescence times are identified by
our method, which makes sense since there are three common ancestors of A and Q in the network: at the
MRCA of (A,Q) in the case of no hybridization involving either of the two taxa, at the MRCA of (A,Q,L,R)
in the case of the hybridization involving Q, and at the root of the network in the case of the hybridization
involving A.

More generally, we inspected the trace plots of our method on the posterior values to ensure that the
MCMC chains converged and mixed well. We also evaluated the accuracy of the estimated gene trees
by computing their Robinson-Foulds (RF) distances (Robinson and Foulds, 1981) and Normalized Rooted
Branch Scores (nrBS) (Heled and Drummond, 2010; Kuhner and Felsenstein, 1994) against the true gene
trees. Recent studies (DeGiorgio and Degnan, 2014; Zimmermann et al., 2014) showed that simultaneous
inference of species trees and gene trees leads to more accurate gene tree estimates. The average RF dis-
tances between true gene trees and gene trees estimated by our method, ∗BEAST, and RAxML (Stamatakis,
2014) (in the case of RAxML, only gene trees are inferred) are 0.7, 0.9, and 1.0, respectively, further demon-
strating the gains in gene tree topological accuracy from co-estimation. Furthermore, the nrBS values of our
method were lower than those of *BEAST. The accuracy of inferences made by our method improved as
more loci were used. It is important to note here that this analysis is not aimed at establishing the superiority
of one method over the other. Our method and *BEAST make different assumptions about the processes
at play and employ different models. The goal here is to demonstrate the utility of our method when the
evolutionary history involves hybridization. When the evolutionary history is not reticulate, the performance
of both methods is very similar. Full details of the simulation setup and results are given in SI.

Comparing our method to existing phylogenetic network inference methods (Yu et al., 2014; Wen et al.,
2016b) that use gene tree estimates as input, our method not only estimates more parameters, such as diver-
gence times and population sizes, but also estimates more accurate gene trees and phylogenetic networks.
For example, when we fed the true gene trees simulated within the network of Fig. 2A on 16, 32, 64, and
128 loci to the Bayesian method of (Wen et al., 2016b), the proportions of the true phylogenetic network
being sampled were 0%, 39%, 45%, and 60% for these numbers of loci, respectively. In other words, even
when the true gene trees were used as input, inference from gene tree data requires larger numbers of loci to
obtain accurate inferences than would be required for inference from sequence data.

In addition to the synthetic data, we analyzed a bread wheat genome data set from (Marcussen et al.,
2014), a data set of seven Saccharomyces species from (Rokas et al., 2003), and an Anopheles mosquitoes
(An. gambiae complex) data set from (Fontaine et al., 2015).

Analysis of a bread wheat data set

The bread wheat data set consists of three subgenomes of Triticum aestivum, TaA (A subgenome), TaB (B
subgenome) and TaD (D subgenome), and five diploid relatives Tm (T. monococcum), Tu (T. urartu), Ash
(Ae. sharonensis), Asp (Ae. speltoides) and At (Ae. tauschii). Marcussen et al. found that each of the A and
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B lineages is more closely related to D than to each other, as represented by the phylogenetic network in
Fig. 3A inferred using the parsimony approach of (Yu et al., 2011) given gene tree topologies of TaA, TaB,
and TaD. Based on this network, they proposed an evolutionary history of Triticum aestivum, where about 7
million years ago the A and B genomes diverged from a common ancestor and 1∼2 million years later these
genomes gave rise to the D genome through homoploid hybrid speciation (Marcussen et al., 2014).

A B

A D B

 ~6.5

~5.5

A D B

 ~8.5

~4.1
~4.4

~7.2 0.25±0.06

Figure 3: Phylogenetic history of the bread wheat data of (Marcussen et al., 2014). (A) The phylogenetic
network inferred using the parsimony approach of (Yu et al., 2011) given gene tree topologies of TaA, TaB,
and TaD. The times are estimated by gene tree analyses. (B) The phylogenetic network inferred by our
method given 68 loci of eight genomes. The times at the internal nodes are in millions of years.

We fed 68 loci of the eight genomes into our method. The only network in the 95% credible set is iden-
tical to the one in (Marcussen et al., 2014), shown in Fig. 3B where A, B, and D represent ((TaA,Tu),Tm),
(TaB,Asp), and ((TaD,At),Ash), respectively. Assuming a mutation rate of 1× 10−9 per-site per-generation
and 1 year per generation, a plausible evolutionary history posits that a common ancestor of A, B, and D
started differentiation ∼8.5 Ma into(A,D) and B genome lineages. Subsequently, (A,D) speciated at ∼7
Ma into A and D lineages. The hybridization occurred around 4-4.5 Ma from B to D genome lineages.
Although both proposed evolutionary histories contain one hybridization, phylogenetic networks with two
or more reticulations were inferred on larger data sets by our method and by the authors of the original study
(Marcussen et al., 2014). See SI for full details.

Analysis of a yeast data set

The yeast data set of (Rokas et al., 2003) consists of 106 loci from seven Saccharomyces species, S. cere-
visiae (Scer), S. paradoxus (Spar), S. mikatae (Smik), S. kudriavzevii (Skud), S. bayanus (Sbay), S. castellii
(Scas), S. kluyveri (Sklu). Rokas et al. (Rokas et al., 2003) reported on extensive incongruence of single-
gene phylogenies and revealed the species tree from concatenation method (Fig. 4A). Edwards et al. (Ed-
wards et al., 2007) reported as the two main species trees and gene tree topologies sampled from BEST (Liu,
2008) the two trees shown in Fig. 4A-B. The other gene tree topologies (Fig. 4C) exhibited weak phyloge-
netic signals among Sklu, Scas and the other species. Bloomquist and Suchard (Bloomquist and Suchard,
2010) reanalyzed the data set without Sklu since it added too much noise to their analysis. Their analysis
resulted in many horizontal events between Scas and the rest of the species because the Scas lineage-specific
rate variation is much stronger than that of the other species. Yu et al. (Yu et al., 2013a) analyzed the 106-
locus data set restricted to the five species Scer, Spar, Smik, Skud, and Sbay and identified a maximum
parsimony network that supports a hybridization from Skud to Sbay with inheritance probability of 0.38.

Analyzing the 106-locus data set using our method, the 95% credible set contains many topologies with
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Figure 4: Results on the yeast data set of (Rokas et al., 2003). (A) The species tree inferred using the
concatenation method (Rokas et al., 2003) and the main species tree and gene tree topology sampled using
BEST (Edwards et al., 2007). (B) The second most frequently sampled species and gene tree topology by
BEST (Edwards et al., 2007). (C) Many other gene tree topologies were sampled by BEST (Edwards et al.,
2007), indicating weak phylogenetic signals among Sklu, Scas, and the rest of the species. (D) A representa-
tive phylogenetic network inferred by our method on all 106 loci. (E) A representative phylogenetic network
inferred by our method on the 28 loci with strong phylogenetic signal (see SI). (F) The single phylogenetic
network inferred using all 106 loci from the five species Scer, Spar, Smik, Skud, Sbay.

similar hybridization patterns; the representative network is shown in Fig. 4D. All the previous findings
are encompassed by the networks inferred by our method. The two hybridizations between Sklu and Scas
(green edges in 4D) indicate the weak phylogenetic signals among Sklu, Scas and the rest of the species. The
hybridization from Scas to the other species except for Sklu (red edge in 4D) captures the stronger lineage-
specific rate variation in Scas. Finally, the hybridization from Skud to Sbay (blue edge in 4D) resolves the
incongruence between the two main species tree topologies in 4A-B.

We further investigated the phylogenetic signal in each locus by counting the number of internal branches
in the 70% majority-rule consensus of 100 maximum likelihood bootstrap trees. We found that only 28 out of
the 106 loci contain four internal branches, and no locus had a consensus tree with all five internal branches.
A representative phylogenetic network in the 95% credible set given these 28 loci, shown in Fig. 4E, in-
dicates the weak phylogenetic signals among Sklu, Scas and the rest of the species. We then analyzed the
106-locus data set restricted to the five species Scer, Spar, Smik, Skud, and Sbay. The phylogenetic signal
in this data set is very strong—the consensus trees of 99 out of the 106 loci contain two internal branches.
The MPP phylogenetic network in Fig. 4F contains the hybridization from Skud to Sbay, which is identical
to the sub-network in 4D. See SI for full details. In summary, analysis of the yeast data set demonstrates
the effect of phylogenetic signal in the individual loci on the inference and the care that must be taken when
selecting loci of analysis of reticulate evolutionary histories.

Analysis of a mosquitoes data set

The Anopheles mosquitoes (An. gambiae complex) data set of (Fontaine et al., 2015) consists of genome
alignment of An. gambiae (G), An. coluzzii (C), An. arabiensis (A), An. quadriannulatus (Q), An. merus
(R) and An. melas (L). Fontaine et al. reported on extensive introgressions in the An. gambiae complex
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(Fontaine et al., 2015). Gene tree analyses were performed to detect the donor, recipient and migration times
of the reticulation edges. Three major introgressions were added to the species tree backbone recovered from
the X chromosome, resulting in a plausible phylogenetic network. More recently, Wen et al. (Wen et al.,
2016a) reanalyzed the data set using the maximum likelihood method of (Yu et al., 2014) and then using the
Bayesian method of (Wen et al., 2016b) and provided new insights into the evolutionary history of the An.
gambiae complex.

Fontaine et al. inferred gene trees on 50-kb genomic windows using maximum likelihood and tabulated
and analyzed the frequencies of distinct gene tree topologies across the chromosomes. However, such
large genomic windows are very likely to include recombination. Indeed, a simple comparison of the 70%
majority-rule consensus of 100 maximum likelihood bootstrap trees on the entire window against individual
trees inferred from smaller regions of the same window highlight this issue (see SI for details).

To avoid using such large genomic windows, we randomly sampled 228 1-kb regions from the X chro-
mosome. We fed the 228-locus data set into ∗BEAST and our method. Our method produces a phylogenetic
network with many reticulations on this data set. We assessed the phylogenetic signal in each locus by
computing the number of internal branches in the 70% majority-rule consensus of 100 maximum likelihood
bootstrap trees. We found that only 59 out of the 228 loci contain three internal branches, and no locus
had a consensus tree with all four internal branches. Analyzing those 59 loci data set using our method,
the 95% credible set contains three topologies grouping (C,G) with R and positing hybridization from A, Q,
or (A,Q) to (C,G) with inheritance probability 0.33 (Fig. 5B). The MPP species tree inferred by ∗BEAST
(Fig. 5A) groups (A,Q) with (C,G) to account for heterogeneity across loci by means of ILS alone. The
divergence times of the MRCAs of (C,G), (A,Q), (A,Q,C,G), and (R,C,G) inferred by ∗BEAST are similar
to those inferred by our method. The minimum coalescent times of clades (C,G), (A,Q), (A,Q,C,G) and
(R,C,G) co-estimated by ∗BEAST (green) and our method (blue) in Fig. 5C further confirm this statement.
However, ∗BEAST underestimates the divergence times of the MRCA of (R,L) (or the root) to reconcile the
divergence times of (R,C,G). BEAST, which infers gene trees from sequences without regard to a species
tree, significantly underestimates all the coalescent times (sandy brown bars in Fig. 5C).
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Figure 5: Results on the An. gambiae complex data of (Fontaine et al., 2015). (A) The MPP species
tree inferred by ∗BEAST on regions with strong phylogenetic signal from the X chromosome. (B) The
phylogenetic network inferred by our method on the same regions as in A. (C) The coalescent times of the
MRCAs of (C,G), (A,Q), (A,Q,C,G), (R,C,G) and (R,L) from gene trees inferred by BEAST (sandy brown),
∗BEAST (green), and our method (blue) on the same regions as in A. (D) The phylogenetic network inferred
by the Bayesian method of (Wen et al., 2016b) given gene tree topologies from 2791 regions with varying
lengths of 1∼20-kb from the autosomes. (E) The phylogenetic network inferred by our method given 382
1-kb regions with strong phylogenetic signals from the autosomes.

For the autosomes, we randomly sampled 382 1-kb regions with strong phylogenetic signal and fed the
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data set into our method. The MPP phylogenetic network shown in Fig. 5E groups Q with R, and reveals
hybridization from (A,C,G) to Q. This network can be embedded in the phylogenetic network inferred by the
Bayesian method of (Wen et al., 2016b) given gene tree topologies from 2791 regions with varying lengths
of 1∼20-kb from the autosomes (Fig. 5D). Using data with strong phylogenetic signal would significantly
reduce the complexity of the model. See SI for details.

Discussion

To conclude, we have devised a Bayesian framework for sampling the parameters of the MSNC model,
including the species phylogeny, gene trees, divergence times, and population sizes, from sequences of mul-
tiple independent loci. Our work provides the first general framework for Bayesian phylogenomic inference
from sequence data in the presence of hybridization. The method is publicly available in the open-source
software package PhyloNet (Than et al., 2008). We demonstrate the utility of our method on simulated data
and three biological data sets. Our results demonstrate several important aspects. First, ignoring hybridiza-
tion when it had occurred results in underestimating the divergence times of species and overestimating the
coalescent times of individual loci. Second, co-estimation of species phylogeny and gene trees results in
more accurate gene tree estimates than the inferences of gene trees from sequences directly. Third, com-
paring to existing phylogenetic network inference methods (Yu et al., 2014; Wen et al., 2016b) that use
gene tree estimates as input, our method not only estimates more parameters, such as divergence times and
population sizes, but also estimates more accurate phylogenetic networks. Last but not the least, the phylo-
genetic signal in the individual loci on the inference must be taken into consideration when selecting loci of
analysis of reticulate evolutionary histories. In particular, when there is low phylogenetic signal in the data,
tree inference methods tend to result in unresolved trees. In the case of network methods, the counterpart
to an unresolved tree is an overly complex network. In other words, while low signal is captured by a soft
polytomy in trees, it is captured by multiple reticulations in networks. Therefore, it is very important that the
signal in individual loci is carefully assessed in network inference, and indeed, in phylogenomics in general.

Finally, we identify several directions for further improvements of our proposed approach. First, while
priors on species trees, such as the birth-death model, have been developed and employed by inference meth-
ods, similar prior distributions on phylogenetic networks are currently lacking. Second, while techniques
such as the majority-rule consensus exist for summarizing the trees sampled from the posterior distribu-
tion, principled methods for summarizing sampled networks are needed. Last but not least, the sequence
data used here, and in almost all phylogenomic analyses, consist of haploid sequences of randomly phased
diploid genomes. The effect of random phasing on inferences in general needs to be studied in detail.
Furthermore, the model could be extended to work directly on unphased data by integrating over possible
phasings (Gronau et al., 2011).

Methods

Phylogenetic networks and their parameters

A phylogenetic X -network, or X -network for short, Ψ is a directed, acyclic graph (DAG) with V (Ψ) =
{s, r} ∪ VL ∪ VT ∪ VN , where

• indeg(s) = 0 and outdeg(s) = 1 (s is a special node, that is the parent of the root node, r);

• indeg(r) = 1 and outdeg(r) = 2 (r is the root of Ψ);
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• ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the external tree nodes, or leaves, of Ψ);

• ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the internal tree nodes of Ψ); and,

• ∀v ∈ VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the reticulation nodes of Ψ).

The network’s edges, E(Ψ) ⊆ V × V , consist of reticulation edges, whose heads are reticulation nodes,
tree edges, whose heads are tree nodes, and special edge (s, r) ∈ E. Furthermore, ` : VL → X is the leaf-
labeling function, which is a bijection from VL to X . Each node in V (Ψ) has a species divergence time
parameter and each edge in E(Ψ) has an associated population size parameter. The edge er(Ψ) = (s, r)
is infinite in length so that all lineages that enter it coalesce on it eventually. Finally, for every pair of
reticulation edges e1 and e2 that share the same reticulation node, we associate an inheritance probability,
γ, such that γe1 , γe2 ∈ [0, 1] with γe1 + γe2 = 1. We denote by Γ the vector of inheritance probabilities
corresponding to all the reticulation nodes in the phylogenetic network (for each reticulation node, Γ has the
value for one of the two incoming edge only).

Given a phylogenetic network Ψ, we use the following notation:

• Ψtop: The leaf-labeled topology of Ψ; that is, the pair (V,E) along with the leaf-labeling `.

• Ψret: The number of reticulation nodes in Ψ. Ψret = 0 when Ψ is a phylogenetic tree.

• Ψτ : The species divergence time parameters of Ψ. Ψτ ∈ (R+)|V (Ψ)|.

• Ψθ: The population size parameters of Ψ. Ψθ ∈ (R+)|E(Ψ)|

We use Ψ to refer to the topology, species divergence times and population size parameters of the phyloge-
netic network.

It is often the case that divergence times associated with nodes in the phylogenetic network are measured
in units of years, generations, or coalescent units. On the other hand, branch lengths in gene trees are often
in units of expected number of mutations per site. We convert estimates back and forth between units as
follows:

• Given divergence time in units of expected number of mutations per site τ , mutation rate per site per
generation µ and the number of generations per year g, τ/µg represents divergence times in units of
years.

• Given population size parameter in units of population mutation rate per site θ, 2τ/θ represents diver-
gence times in coalescent units.

The likelihood function

Felsenstein (Felsenstein, 1981) introduced a pruning algorithm that efficiently calculates the likelihood of
gene tree g and DNA evolution model parameters Φ as

p(S|g,Φ) =
l∏

i=1

p(si|g,Φ),

where si is i-th site in S, and
p(si|g,Φ) = p(si|gtop, gτ , π, q, µ).
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Here, gtop is the tree topology, gτ is the divergence times of the gene tree, π = {πA, πT , πC , πG} is a
vector of equilibrium frequencies of the four nucleotides, q = {qAT , qAC , qAG, qTC , qTG, qCG} is a vector
of substitution rates between pairs of nucleotides, and µ is the mutation rate. Over a branch j whose
length (in expected number of mutations per site) is tj , the transition probability is calculated as eµqtj . In
the implementation, we use the BEAGLE library (Ayres et al., 2011) for more efficient implementation of
Felsenstein’s algorithm.

Yu et al. (Yu et al., 2012, 2013b, 2014) fully derived the mass and density functions of gene trees under
the multispecies network coalescence, where the lengths of a phylogenetic network’s branches are given in
coalescent units. Here, we derive the probability density function (pdf) of gene trees for a phylogenetic net-
work given by its topology, divergence/migration times and population size parameters following (Rannala
and Yang, 2003; Yu et al., 2014). Coalescence times in the (sampled) gene trees posit temporal constraints
on the divergence and migration times of the phylogenetic network.

We use τΨ(v) to denote the divergence time of node v in phylogeny Ψ (tree or network). Given a gene
tree g whose coalescence times are given by τ ′ and a phylogenetic network Ψ whose divergence times are
given by τ , we define a coalescent history with respect to times to be a function h : V (g) → E(Ψ), such
that the following condition holds:

• if (x, y) ∈ E(Ψ) and τΨ(x) > τg(v) ≥ τΨ(y), then h(v) = (x, y).

• if r is the root of Ψ and τg(v) ≥ τΨ(r), then h(v) = er(Ψ).

The quantity τg(v) indicates at which point of branch (x, y) coalescent event v happens. We denote the
set of coalescent histories with respect to coalescence times for gene tree g and phylogenetic network Ψ by
HΨ(g).

Given a phylogenetic network Ψ, the pdf of the gene tree random variable is given by

p(g|Ψ,Γ) =
∑

h∈HΨ(g)

p(h|Ψ,Γ), (4)

where p(h|Ψ,Γ) gives the pdf of the coalescent history (with respect to divergence times) random variable.
Consider gene tree g for locus j and an arbitrary h ∈ HΨ(g). For an edge b = (x, y) ∈ E(Ψ), we

define Tb(h) to be a vector of the elements in the set {τg(w) : w ∈ h−1(b)} ∪ {τΨ(y)} in increasing order.
We denote by Tb(h)[i] the i-th element of the vector. Furthermore, we denote by ub(h) the number of gene
lineages entering edge b and vb(h) the number of gene lineages leaving edge b under h. Then we have

p(h|Ψ,Γ) =
∏

b∈E(Ψ)

[ |Tb(h)|−1∏
i=1

2

θb
e
−( 2

θb
)(ub(h)−i+1

2 )(Tb(h)i+1−Tb(h)i)
]
×e−( 2

θb
)(vb(h)

2 )(τΨ(b)−Tb(h)|Tb(h)|)×Γ
ub(h)
b ,

(5)
where θb = 4Nbµ and Nb is the population size corresponding to branch b, µ is the mutation rate per-site
per-generation, and Γb is the inheritance probability associated with branch b.

Prior distributions

We extended the prior of phylogenetic network composed of topology and branch lengths in (Wen et al.,
2016b) to phylogenetic networks composed of topology, divergence times and population sizes, as given by
Eq. (3), where p(Ψret|ν), the prior on the number of reticulation nodes, and p(Ψtop|Ψret,Ψτ , η), the prior
on the diameters of reticulation nodes, were defined in (Wen et al., 2016b).
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It is important to note here that if Ψtop does not follow the phylogenetic network definition, then
p(Ψ|ν, δ, η, ψ) = 0. This is crucial since, in the MCMC kernels we describe below, we allow the moves to
produce directed graphs that slightly deviate from the definition; in this case, having the prior be 0 guaran-
tees that the proposal is rejected. Using the strategy, rather than defining only “legal” moves simplifies the
calculation of the Hastings ratios. See more details below.

Rannala and Yang used independent Gamma distributions for time intervals (branch lengths) instead of
divergence times. However, in the absence of any information on the number of edges of the species network
as well as the time intervals, it is computationally intensive to infer the hyperparameters of independent
Gamma distributions. Currently, we support two kinds of priors, a uniform distribution (as in BEST (Liu,
2008)), and an exponential distribution τv ∼ Exp(δ).

We assume one population size per edge, including the edge above the root. Population size parameters
are Gamma distributed, θb ∼ Γ(2, ψ), with a mean 2ψ and a shape parameter of 2. In the absence of any
information on the population size, we use the noninformative prior Pψ(x) = 1/x for hyperparameter ψ
(Heled and Drummond, 2010). The number of elements in θ is |E(Ψ)| + 1. To simplify inference, our
implementation also supports a constant population size across all branches, in which case θ contains only
one element.

For the prior on the inheritance probabilities, we use Γb ∼ Beta(α, β). Unless there is some specific
knowledge on the inheritance probabilities, a uniform prior on [0, 1] is adopted by setting α = β = 1. If
the amount of introgressed genomic data is suspected to be small in the genome, the hyper-parameters α
and β can be appropriately set to bias the inheritance probabilities to values close to 0 and 1 (a U-shaped
distribution).

Data access

All methods describe in this work have been implemented in the PhyloNet software (Than et al., 2008),
which is freely available for download in open source at http://bioinfo.cs.rice.edu/phylonet.
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