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Abstract 

Characterization of subpopulations is a key challenge in the emerging field of single-cell RNA-seq (scRNA-seq). 

In scRNA-seq data, gene expression has been used as feature to detect subpopulations, however, this data type is 

subject to significant amount of noise. Unconventionally, we propose to use filtered, effective and expressed 

nucleotide variations (eeSNVs) information from scRNA-seq data as improved predictive features for 

subpopulation identification. We developed a linear modeling framework called SSrGE (Sparse SNV inference 

to reflect Gene Expression) to detect eeSNVs that are associated with gene expression profiles. In all the datasets 

tested, these eeSNVs show better accuracy than gene expression for retrieving cell subpopulations. Moreover, 

bipartite graphs of cells in combination with eeSNVs have better visual representation of the different cell 

subpopulations than the other methods that use gene expression data. We ranked genes, according to their 

eeSNVs in the cancer scRNA-seq data, and found that genes in antigen processing and presentation pathway 

have top ranked eeSNVs. They include HLA-A, HLA-B, HLA-C and HLA-DRA in Human Leukocyte Antigen 

(HLA) complex, and B2M in histocompatibility complex MHC. Moreover, previously experimentally validated 

cancer relevant genes, such as KRAS and SPARC, are highly ranked for eeSNVs too. In summary, we 

emphasize that SNV features hidden in scRNA-seq data have merits for both subpopulation identification and 

linkage of genotype-phenotype relationship. The computational method is freely available at 

https://github.com/lanagarmire/SSrGE.  

 

Introduction 

Characterization of phenotypic diversity is a key challenge in the emerging field of single-cell RNA-sequencing 

(scRNA-seq). In scRNA-seq data, patterns of gene expression (GE) are conventionally used as features to 

explore the heterogeneity among single cells (Harris et al., 2015; Pierson & Yau, 2015; Vallejos, Marioni, & 
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Richardson, 2015). However, GE features are subject to significant amount of noises (Kolodziejczyk, Kim, 

Svensson, Marioni, & Teichmann, 2015). One issue of GE is the batch effect, where results obtained from two 

different runs of experiments may present substantial variations (Stegle, Teichmann, & Marioni, 2015), even 

when the input materials are identical. Additionally, the expression of certain genes vary with cell cycle 

(Buettner et al., 2015), increasing the heterogeneity observed in single cells. To cope with these sources of 

variations, normalization of GE is usually a mandatory step before downstream functional analysis (except those 

done with Unique Molecular Identifiers). Even with these procedures, other sources of biases still exist, e.g. 

dependent on read depth, cell capture efficiency and experimental protocols etc.  

Single nucleotide variations (SNVs) are small genetic alterations occurring in specific cells as compared to the 

population background. SNVs may manifest their effects on gene expression per cis and/or trans effect (Bryois 

et al., 2014; Hu, Lan, Xu, Beyene, & Greenwood, 2007). It is regarded that cancer evolution involves the 

disruption of the genetic stability e.g. increasing number of new SNVs (Berdasco & Esteller, 2010; Navin et al., 

2011). A cell may become the precursor of a subpopulation (clone) upon gaining a set of SNVs. Large 

heterogeneity exists not only between tumors but also within the same tumor (Almendro, Marusyk, & Polyak, 

2013; Burrell, McGranahan, Bartek, & Swanton, 2013). Therefore, investigating the patterns of SNVs provides 

means to understand tumor heterogeneity.  

In single cells, SNVs are conventionally obtained from the single-cell exome-sequencing approach (Zafar, Wang, 

Nakhleh, Navin, & Chen, 2016). Previously, the resulting SNVs were used to infer cancer cell subpopulations 

(Ross & Markowetz, 2016; Welch, Hartemink, & Prins, 2016). In this study, we propose to obtain useful SNV-

based genetic information from scRNA-seq data, in addition to the GE information. Rather than being 

considered the “by-products” of scRNA-seq, the SNVs not only have the potential to improve the accuracy of 

identifying subpopulations compared to GE, but also offer unique opportunities to study the genetic events 

(genotype) that are associated with gene expression (phenotype) (Gamazon et al., 2015; Pineda et al., 2015). 

Moreover, when the coupled DNA- and RNA- based single-cell sequencing techniques become mature, the 

computational methodology proposed in this report can be easily adopted as well. 

Here we first built a computational pipeline to identify SNVs from scRNA-seq raw reads directly. We then 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 21, 2016. ; https://doi.org/10.1101/095810doi: bioRxiv preprint 

https://doi.org/10.1101/095810


constructed a linear modeling framework to obtain filtered, effective and expressed SNVs (eeSNVs) associated 

with gene expression profiles. In all the datasets tested, these eeSNVs show better accuracies at retrieving cell 

subpopulation identities, compared to those from gene expression (GE). Moreover, when combined with cell 

entities into bipartite graphs, they demonstrate improved visual representation of the cell subpopulations. We 

ranked eeSNVs and genes according to their overall significance in the linear models, and discovered that 

several top-ranked genes (e.g. HLA genes) appear commonly in all cancer scRNA-seq data. In summary, we 

emphasize the SNV approach that were previously understudied in scRNA-seq analysis, which can successfully 

identify subpopulation complexities and highlight genotype-phenotype relationships. 

Results 

eeSNV detection from scRNA-seq data 
We implemented a pipeline to identify SNVs directly from FASTQ files of scRNA-seq data, following the SNV 

guideline of GATK (Suppl. Figure S1). We applied this pipeline to four scRNA-seq cancer datasets (Kim, Ting, 

Miyamoto and Patel, see Methods), and tested the efficiency of SNV features on retrieving single cell groups of 

interest. These datasets vary in tissue types, origins (Mouse or Human), read lengths and map-ability (Table 1). 

They all have pre-defined cell types (subclasses), providing good references to assess the performance of a 

variety of clustering methods used in this study. 

To link the relationship between SNV and GE, we developed a method called “Sparse SNV inference to reflect 

Gene Expression” (SSrGE), as detailed in Materials and Methods. This method uses SNVs as predictors to fit a 

linear model for gene expression, under LASSO regularization and feature selection (Tibshirani, 1996). The 

output is a subset of effective, expressed SNVs (eeSNVs) selected by LASSO, which serve as refined descriptive 

features for subsequent subpopulation identification (Suppl. Figure S2). To directly pinpoint the contributions of 

SNVs relevant to protein coding genes, we used the SNVs residing between transcription starting and ending 

sites of genes as the inputs. In SSrGE, the value of the regularization parameter a is the only tuning variable, 

controlling the sparsity of the linear models and influences the number of eeSNVs.  
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eeSNVs are better features than gene expression to identify subpopulations 
We measured the performance of SNVs and gene expression (GE) in the four datasets with five clustering 

approaches. These clustering approaches include two dimension reduction methods, namely Principal 

Component Analysis (PCA) (I T, 2002) and Factor Analysis (FA) (Cattell, 1952), followed by either K-Means 

or the hierarchical agglomerative method (agglo) with WARD linkage (Joe H Ward, 1963). We also used a 

recent algorithm SIMLR specifically designed for scRNA-seq data clustering and visualization (Wang et al., 

2016). To evaluate the accuracy of obtained subpopulations in each dataset, we used the metric of Adjusted 

Mutual Information (AMI) over 30 bootstrap runs, from the optimal a parameters (Supplementary Table S1). 

Even though the numbers are much reduced from the original SNVs, eeSNVs are still better features to retrieve 

cancer cell subpopulations compared to GE, independent of the clustering methods used (Figure 1). Among the 

clustering algorithms, SIMLR is a better choice in general using eeSNV features. In addition, we also computed 

Adjusted Rand index (ARI) (Vinh, Epps, & Bailey, 2010) and V-measure (Rosenberg & Hirschberg, 2007), two 

other metrics for modularity measurements and obtained similar trends (Suppl. Figure S3).  

Visualization of subpopulations with bipartite graphs 
Bipartite graphs are useful to represent binary relations between two different classes of objects. We next 

represented the binary eeSNVs features and the single cells with bipartite graphs using ForceAtlas2 algorithm 

(Bastian, Heymann, & Jacomy, 2009). We drew an edge (link) between a cell node and a given eeSNV node 

whenever an eeSNV is detected. The results show that bipartite graph is a robust and more discriminative 

alternative (Figure 2), comparing to PCA plots (using GE and eeSNVs) as well as SIMLR (using GE). For Kim 

dataset, bipartite graph separates the three classes perfectly. However, gene based visualization approaches using 

either PCA or SIMLR have misclassifications. For Ting data, eeSNVs-cell bipartite graph gives clear 

visualization of all six different subgroups of single cells. Other three approaches have more exaggerated 

separations among the same mouse circulating tumor cells (CTC) subgroup MP (orange color), but mix some 

other subpopulations (e.g. GM, MP and TuGMP groups). Miyamoto dataset is the most difficult one to visualize 

among the four datasets, due to its high number (24) of reference classes and heterogeneity among CTCs. 

Bipartite graph is not only able to condense the whole populations, but also separate subpopulations (e.g. the 

orange colored PC subpopulation) much better than the other three methods. 
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Characteristics of eeSNVs 
Since the selection of eeSNVs is dependent on regularization parameter a, we next explored their relationship. 

For every dataset, increasing the value of a decreases the number of selected eeSNVs overall (Figure 3A), as 

well as the average number of eeSNVs associated with every expressed gene (Figure 3B). The optimal a 

depends on the clustering algorithm and the dataset used (Suppl. Table S1 and Suppl. Figure S4). Increasing the 

value of a increases the proportion of eeSNVs that have annotations in human dbSNP138 database, indicating 

that these eeSNVs are biologically valid (Figure 3C). Finally, increasing a generally increases the average 

number of cells sharing the same eeSNVs, supporting the hypothesis that cancer cells differentiate with a 

growing number of genetic mutations over time (Figure 3D). Note the slight drop of the average number of cells 

sharing the same eeSNVs in Kim data when a > 0.6, this is due to over-penalization (eg. a =0.8 yields only 34 

eeSNVs).  

Cancer relevance of eeSNVs  
To further explore the biological functions, we ranked the different eeSNVs and the genes harboring them, using 

eeSNVs’ coefficients from SSrGE models (Suppl. Tables S2). We found that eeSNVs from multiple genes in 

Human Leukocyte Antigen (HLA) complex, such as HLA-A, HLA-B, HLA-C and HLA-DRA, are top ranked in 

all three human datasets (Table 2 and Suppl. Tables S2). HLA is a family encoding the major histocompatibility 

complex (MHC) proteins in human. Beta-2-microglobulin (B2M), on the other hand, is ranked 7th and 45th in 

Ting and Patel datasets, respectively (Table 2). Unlike HLA that is present in human only, B2M encodes a 

serum protein involved in the histocompatibility complex MHC that is also present in mice. Other previously 

identified tumor driver genes are also ranked top by SSrGE, demonstrating the significance of mutations on cis-

gene expression (Table 2 and Suppl. Tables S2). Notably, KRAS, previously linked to tumor heterogeneity by the 

original scRNA-Seq study (Kim et al., 2015), is ranked 13th among all eeSNV containing genes (Suppl. Tables 

S2). AR and KLK3, two genes reported to show genomic heterogeneity in tumor development in the original 

study (Miyamoto et al., 2015), are ranked 6th and 19th, respectively. EGFR, the therapeutic target in Patel study 

with an important oncogenic variant EGFRvIII (Patel et al., 2014), is ranked 88th out of 4,225 genes 

(Supplementary File 1). Therefore, genes top-ranked by their eeSNVs are empirically validated. 

Next we conducted more systematic investigation to identify KEGG pathways enriched in each dataset, using 
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these genes as the input for DAVID annotation tool (Huang, Sherman, & Lempicki, 2009) (Figure 4). The 

pathway-gene bipartite graph illustrates the relationships between these genes and enriched pathways (Figure 5). 

As expected, Antigen processing and presentation pathway stands out as the most enriched pathway, with the 

sum -log10 (p-value) of 9.22. “Phagosome” is the second most enriched pathway in all four data sets (Figure 4), 

largely due its members in HLA families (Figure 5). Additionally, pathways related to cell junctions and 

adhesion (focal adhesion, tight junction, cell adhesion molecules CAMs), protein processing (protein processing 

in endoplasmic reticulum and proteasome), and PI3K-AKT signaling pathway are also highly enriched with 

eeSNVs (Figure 5). 

Discussion 
Using GE to accurately analyze scRNA-seq data has many challenges, including technological biases such as the 

choice of the sequencing platforms, the experimental protocols and conditions. These biases may lead to various 

confounding factors in interpreting GE data (Stegle et al., 2015). SNVs, on the other hand, are less prone to these 

issues given their binary nature. In this report, we demonstrate that eeSNVs extracted from scRNA-seq data are 

ideal features to characterize cell subpopulations. Moreover, they provide a means to examine the relationship 

between eeSNVs and gene expression in the same scRNA-Seq sample. 

eeSNVs have improved accuracy on identifying tumor single-cell subpopulations 

The process of selecting eeSNVs linked to GE allows us to identify representative genotype markers for cell 

subpopulations. We speculate the following reasons attributed to the better accuracies of eeSNVs compared to 

GE.  First, eeSNVs are binary features rather than continuous features like GE, thus eeSNVs are more robust at 

separating subpopulations. We have noticed that SNVs are less affected by batch effects (Suppl. Figure S5). 

Secondly, LASSO penalization works as a feature selection method and minimizes the spurious SNVs (false 

positive) from the filtered set of eeSNVs. Thirdly, since eeSNVs are obtained from the same samples as scRNA-

seq data, they are more likely to have biological impact, and this is supported the observation that they have high 

prevalence of dbSNP annotations.  

eeSNVs have improved efficiency at identifying tumor single-cell subpopulations 

A small number of eeSNVs can be used to discriminate distinct single-cell subpopulations, as compared to 
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thousands of genes that are normally used for scRNA-seq analyses. Taking advantage of the eeSNV-GE 

relationship, a very small number of top eeSNVs still can clearly separate cell subpopulations of the different 

datasets (eg. 8 eeSNV features have decent accuracy for Kim dataset). Moreover, our SSrGE package can be 

easily parallelized and process each gene independently. It has the potential to scale up to (very) large datasets, 

well-poised for the new wave of scRNA-Seq technologies that can generate thousands of cells at one time 

(Tirosh et al., 2016).  One can also easily rank the eeSNVs and the genes harboring them, for the purpose of 

identifying robust eeSNVs as genetic markers for a variety of cancers.  

eeSNVs highlights genes linked to cancer phenotypes 

SSrGE uses an accumulative ranking approach to select eeSNVs linked to the expression of a particular gene. 

Particularly, HLA class I genes (HLA-A, HLA-B and HLA-C) are top-ranked for the three human datasets, and 

they contribute to “antigen processing and presentation pathway”, the most enriched pathways of the four 

datasets. HLA has amongst the highest polymorphic genes of the human genome (de Bakker et al., 2006), and 

the somatic mutations of genes in this family were reported in the development and progression of various 

cancers (Network & others, 2014; Shukla et al., 2015). HLA genes with eeSNVs could be used as fingerprints to 

characterize the cellular state of the cancer cells. B2M, another gene with top-scored eeSNVs in Ting and Patel 

datasets, is also known to be a mutational hotspot (Chang, Campoli, Restifo, Wang, & Ferrone, 2005). It is 

directly linked to immune response as tumor cell proliferation (Chang et al., 2005; Network & others, 2014). 

Many other top-ranked genes, such as KRAS and SPARC, were reported to be driver genes in the original studies 

of the different dataset. Thus, it is reasonable to speculate that SSrGE is capable of identifying some driver 

genes. However, SSrGE may miss some driver mutations, since its primary goal is to identify a minimal set of 

eeSNV features by LASSO penalization and LASSO may select one of those highly correlated SNV features that 

correspond to GE. 

Advantages of using bipartite graphs to represent scRNA-seq data 

Bipartite graphs are a natural way to visualize eeSNV-cell relationships. We have used force-directed graph 

drawing algorithms involve spring-like attractive forces and electrical repulsions between nodes that are 

connected by edges. This approach has the advantage to reveal “outlier” single cells, with a small set of eeSNVs, 

compared to those distance-based approaches. Moreover, the bipartite representation also reveals directly the 
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relationship between single cells and the eeSNV features. Contrary to dimension reduction approaches such as 

PCA that requires linear transformation of features into principle components, bipartite graphs preserve all the 

binary information between cell and eeSNV. Graph analysis software such as Gephi (Bastian et al., 2009) or 

Cytoscape (Shannon et al., 2003) can be utilized to explore the bipartite relationships in an interactive manner.  

Conclusion 
We demonstrated the efficiency of using eeSNVs for cell subpopulation identification over multiple datasets. 

eeSNVs are excellent genetic markers for intra-tumor heterogeneity and may serve as genetic candidates of new 

treatment options. We also have developed SSrGE, a linear model framework that correlates genotype (eeSNV) 

and phenotype (GE) information in scRNA-seq data. This method has the potential to be routinely integrated in 

future scRNA-seq analyses. Moreover, SSrGE can also be used to analyze coupled DNA- and RNA-based 

single-cell sequencing techniques on the horizon (Dey, Kester, Spanjaard, Bienko, & van Oudenaarden, 2015; 

Kim et al., 2015).  

Materials and Methods 

scRNA-seq datasets 
All four datasets were downloaded from the NCBI Gene Expression Omnibus (GEO) portal (Barrett et al., 

2013).  

Kim dataset (accession GSE73121): contains three cell populations from matched primary and metastasis tumor 

from the same patient (Kim et al., 2015). Patient Derivated Xenographs (PDX) were constructed using cells 

from the primary Clear Cell Renal Cell Carcinoma (PDX-pRCC) tumor and from the lung metastasic tumor 

(PDX-mRCC). Also, metastasic cells from the patient (Pt-mRCC) were sequenced.  

Patel dataset (accession GSE57872): contains five glioblastoma cell populations isolated from 5 individual 

tumors from different patients (MGH26, MGH28, MGH29 MGH30 and MGH31) and two gliomasphere cell 

lines, CSC6 and CSC8, used as control (Patel et al., 2014).  

Miyamoto dataset (accession GSE67980): contains 122 CTCs from Prostate cancer from 18 patients, 30 single 

cells derivated from 4 different cancer cell lines: VCaP, LNCaP, PC3 and DU145, and 5 leukocyte cells from a 
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healthy patient (HD1) (Miyamoto et al., 2015). A total of 23 classes (18 CTC classes + 4 cancer cell lines + 1 

healthy leukocyte cell lines) was obtained.  

Ting dataset (subset of accession GSE51372): contains 75 CTCs from Pancreatic cancer from 5 different KPC 

mice (MP2, MP3, MP4, MP6, MP7), 18 CTCs from two GFP-lineage traced mice (GMP1 and GMP2), 20 single 

cells from one GFP-lineage traced mouse (TuGMP3), 12 single cells from a mouse embryonic fibroblast cell line 

(MEF), 12 single cells from mouse white blood (WBC) and 16 single cells from the nb508 mouse pancreatic cell 

line (nb508) (Ting et al., 2014). KPC mice have uniform genetic cancer drivers (Tp53, Kras). Due to their shared 

genotype, we merged all the KPC CTCs into one single reference class. CTCs from GMP1 did not pass the QC 

test and were dismissed. CTCs from GMP2 mice were labeled as GMP. Finally, 6 reference classes were used: 

MP, nb508, GMP, TuGMP, MEF and WBC.  

SNV detection using scRNA-Seq data 
The SNV detection pipeline using scRNA-Seq data follows the guidelines of GATK 

(http://gatkforums.broadinstitute.org/wdl/discussion/3891/calling-variants-in-rnaseq). It includes four steps: 

alignment of spliced transcripts to the reference genome (hg19 or mm10), BAM file preprocessing, read 

realignment and recalibration, and variant calling and filtering (Suppl. Figure S1) (Auwera et al., 2013).  

Specifically, FASTQ files were first aligned using STAR aligner (Dobin & Gingeras, 2015), using mm10 and 

hg19 as reference genomes for mouse and human datasets, respectively. The BAM file quality check was done 

by FastQC (Andrews & others, 2010), and samples with lower than 50% of unique sequences were removed 

(default of FastQC). Also, samples with more than 20% of the duplicated reads were removed by STAR. Finally, 

samples with insufficient reads were also removed, if their reads were below the mean minus two times the 

standard deviation of the entire single-cell population. Raw gene counts �� were estimated using featureCounts 

(Liao, Smyth, & Shi, 2013), and normalized using the logarithmic transformation: 

 ���� � � log
�

�1 � ��  . ���

���.	

�  

where �� is the raw expression of gene j, R is the total number of reads and 
� is the length of the gene j.  Bam 

files were pre-processed and reordered using Picard Tools (http://broadinstitute.github.io/picard/), before subject 

to realignment and recalibration using GATK tools (Guidot et al., 2007). SNVs are then calculated and filtered 
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using GATK tools using default parameters.  

SNV annotation 
To annotate human SNV datasets, dbSNP138 from the NCBI Single Nucleotide Polymorphism database (Sherry 

et al., 2001) and reference INDELs from 1000 genomes (1000_phase1 as Mills_and_1000G_gold_standard) 

(Consortium & others, 2015) were used. To annotate the mouse SNV dataset, dbSNPv137 for SNPs and INDELs 

were downloaded from the Mouse Genomes Project of the Sanger Institute, using the following link: ftp://ftp-

mouse.sanger.ac.uk/REL-1303-SNPs_Indels-GRCm38/ (Keane et al., 2011). The mouse SNP databases were 

sorted using SortVcf command of Picard Tools, in order to be properly used by Picard Tools and GATK.  

SSrGE package to calculate eeSNVs  

For each dataset, we denote ���
  and ���  as the SNV and gene expression matrices, respectively. ���
  is 

binary and ���
�,� 
� 
0, 1� designates the presence/absence of SNV s in cell c. ����,� 

 is the log transformed 

gene expression value of the gene g in cell c. A gene and its associated SNVs were only considered when the 

gene was expressed in at least one sample. Sparse linear regression using LASSO was then applied to identify 

��  , the linear coefficients associated to the SNVs. The objective function (to minimize) is: 

�����

1
2� ||���
 . ��

�  � ����,� 
||�

� �  �. ||��||� 

where � is the regularization parameter.  

 

An SNV was considered as eeSNV when ����� � 0. To derive sensible eeSNVs, the linear regression was only 

done on a particular gene, when at least 10 cells in the population expressed it.  

Ranking of eeSNVs and genes  

SSrGE generates coefficients of eeSNVs for each gene, as a metric for their contributions to the gene expression. 

The score of an eeSNV is given by the sum of its weights over all genes: 

���������
 � � |��
�

���|
�

 

Each gene also receives a score according to its associated eeSNVs: 
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����������
� � ���������


����
 � �����  

 

In practice, we first obtained eeSNVs using a minimum filtering of �=0.1, before using these two scores above 

to rank eeSNVs and the genes.  

Subpopulation clustering algorithms 

We combined two dimension reduction algorithms: Principal Component Analysis (PCA) (I T, 2002) and Factor 

Analysis (FA) (Cattell, 1952) with two popular clustering approaches: the K-Means algorithm (MacQueen & 

others, 1967) and agglomerative hierarchical clustering (agglo) with WARD linkage (Joe H Ward, 1963). We 

also used SIMLR, a recent algorithm specifically tailored to cluster and visualize scRNA-seq data, which learns 

the similarity matrix from subpopulations (Wang, Zhu, Pierson, & Batzoglou, 2016). Similar to the original 

SIMLR study, we used the embedding of the cells produced by the algorithm to apply K-Means algorithm.  

PCA and FA were performed using their corresponding implementation in Scikit-Learn (sklearn) (Pedregosa, 

Weiss, & Brucher, 2011). For PCA, FA and SIMLR, we used various input dimensions D [2, 3, 5, 10, 15, 20, 25, 

30] to project the data. To cluster the data with K-Means or the hierarchical agglomerative procedure, we used a 

different cluster numbers N (2 to 80) to obtain the best clustering results from each dataset. We computed 

accuracy metrics for each (D, N) pair and chose the combination that gives the overall best score. Between the 

two clustering methods, K-Means was the implementation of sklearn package with the default parameter, and 

hierarchical clustering was done by the AgglomerativeClustering implementation of sklearn, using WARD 

linkage. 

Validation metrics 

To assess the accuracy of the obtained clusters, we used three metrics: Adjusted Mutual Information (AMI), 

Adjusted Rand Index (ARI) and V-measure (Rosenberg & Hirschberg, 2007; Vinh et al., 2010). These metrics 

compare the obtained clusters C to some reference classes K and generate scores between 0 and 1 for AMI and 

V-measure, and between -1 and 1 for ARI. A score of 1 means perfect match between the obtained clusters and 

the reference classes. For ARI, a score below 0 indicates a random clustering. 

Rand Index (RI) was computed by:  ! � ���

��

����	
�
, where a is the number of con-concordant sample pairs in 
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obtained clusters C and reference classes K, where as b is the number of dis-concordant samples. As an 

improvement, ARI normalizes RI against random chances: " ! � 	����	�


� !�	�
���	�

 (Vinh et al., 2010). 

AMI, similarly to ARI, normalizes Mutual Information (MI) against chances (Vinh et al., 2010). The Mutual 

Information between two sets of classes C and K is equal to: MI �%, &� �  ∑ ∑ (��, )� log - "�#,�


"�#
"���

.|%|

�

|�|

# , where 

(��� is the probability that an object from C belongs to the class i, (&�)� is the probability that an object from K 

belongs to class j, and P(i, j) is the probability that an object are in both class i and j.  AMI is equal to: 

"�!�%, &� � '���,%
���'���,%



� !�()��
,)�%
*
���'���,%


, where /�%� and /�&� designates the entropy of C and K.  

V-measure, similar to F-measure, calculates the harmonic mean between homogeneity and completeness. 

Homogeneity is defined as 1 �  )��|%


)��

, where /�%|&� is the conditional entropy of C given K. Completeness is 

the symmetrical of homogeneity: 1 �  )�%|�


)�%

. 

Graph visualization 
The different datasets were transformed into GraphML files with Python scripts using iGraph library (Csardi & 

Nepusz, 2006). Graphs were visualized using GePhi software (Bastian et al., 2009) and spatialized using 

ForceAtlas2 (Jacomy, Venturini, & Bastian, 2011), a specific graph layout implemented into the GePhi software. 

Pathway enrichment analysis 
We used the KEGG pathway database to identify pathways related to specific genes (Kanehisa, Sato, 

Kawashima, Furumichi, & Tanabe, 2015). For each dataset, we selected the top 100 ranked genes by SSrGE and 

used the online interface of DAVID 6.8 functional annotation tool to identify significant pathways (Huang et al., 

2009). We used the default significance value (adjusted p-value threshold of 0.10).   

Code availability 
The SNV calling pipeline and SSrGE are available through the following GitHub project: 

https://github.com/lanagarmire/SSrGE.  
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Figure legends 
Figure 1: Comparison of clustering accuracy using eeSNV and gene expression (GE) features. 

(A) Bar plot comparing the clustering performance using eeSNV vs. gene expression (GE) as features, over four 

datasets and five different clustering strategies. Y-axis is the adjusted mutual information (AMI) obtained across 

30 bootstrap runs (mean ± s.d.). *: P<0.05, ** P<0.01 and *** P<0.001. (B) Heatmap of the rankings among 

different methods and datasets as shown in (A).  

Figure 2: Comparison of clustering visualization using eeSNV and gene expression (GE) features. 

(A) bipartite graphs using eeSNVs and cell representations. (B) Principle Component Analysis (PCA) results 

using gene expression. (C) PCA results using eeSNVs. (D) SIMILR results using gene expression.  

Figure 3: Characteristics of the eeSNVs. 

X-axis: the regularization parameter a values. And the Y-axes are: (A) Log10 transformation of the number of 

eeSNVs. (B) The average number of eeSNVs per gene. (C) The proportion of SNVs with dbSNP138 annotations 

(human datasets). (D) The average number of cells sharing eeSNVs. Insert: Patel dataset. 

Figure 4: KEGG pathways enriched with eeSNVs in the four datasets of this study. Pathways are sorted by 

the sum of the -log10(p-value) of each dataset, in the descending order. 

Figure 5: Bipartite graph for KEGG pathways and genes enriched with eeSNVs from each dataset in this 

study.  

Tables 
Table 1: Summary of scRNA-seq datasets used in this study. 

Data Description Type Sub- 
classes 

Cell  
counts 

Reads 
Per cell 

Map-
ability 

Read 
length 

Expressed 
genes 

Kim dataset 

(Kim et al., 

2015) 

Renal carcinoma 

cancer cell from 

patient and PDX 

Human 3 91 4,1M 82 % 100 18,288 

Ting dataset 
(Ting et al., 

2014) 

Pancreas Circulating 

Tumor cells (CTC) 

Cancer 

Mouse 6 116 13,7M 39 % 50 15,868 

Miyamoto data 

(Miyamoto et 
al., 2015) 

Prostate CTCs 

Cancer 

Human 24 133 2,0M 44 % 50 18,224 
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Table 2:  A list of interested genes highly ranked. Ranks with ‘*’ designate cancer driver genes reported in the 

original studies. 

Dataset Kim Patel Miyamoto 

Ting 

(mouse) 

HLA-A 32 8 2 - 

HLA-B 3 105 1 - 

HLA-C 1 98 4 - 

HLA-DRA 71 771 200 - 

B2M 1617 45 301 7 

KRAS 13* 2101 2254 235* 

TRP53 NA NA NA 365* 

SPARC 22 37 567 79 

EGFR 2231 88* NA NA 

AR NA NA 6* NA 

KLK3 NA NA 19* NA 

 

Supplemental Materials 
Supplementary Figure S1: the SNV calling pipeline. The follows GATK’s “Best Practice” workflow for SNP 

and INDEL calling, with four steps. Step 1: alignment. Step 2: preprocessing of BAM files. Step 3: read 

realignment and recalibration. Step 4: variant calling. 

Supplementary Figure S2: Sketch of Sparse SNV inference to Reflect Gene Expression (SSrGE) linear models. 

The SNVs calculated from the SNV calling pipeline (Supplementary Figure S1) are transformed into a predictor 

matrix  ���
 . Gene expression is the response matrix ��� . For each gene, a LASSO regression is fitted to 

identify non-null coefficient matrix W. The output of the models is a set of filtered eeSNVs and a set of 

corresponding genes in which eeSNVs are found.  

Supplementary Figure S3: Bar plot comparing the clustering performance using eeSNV vs. gene expression 

(GE) as features, over four datasets and five different clustering strategies. The metrics used are (A): Adjusted 

Rand Index (ARI), and (B): V-measure.  

Supplementary Figure S4: Relationship between the best accuracy metrics and the LASSO regularization 

Patel data 
(Patel et al., 

2014) 

Glioblastoma tumor 

cells 

Human 7 593 3,2M 63 % 25 25,053 
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parameter a, over the four datasets and five different clustering approaches. The accuracy metrics are: (A) 

Adjusted Mutual Information (AMI), B: Adjusted Rand Index (ARI), and (C): V-measure. 

Supplementary Figure S5: Comparison of the batch-effect on SNVs and gene expression, using scRNA-Seq 

data from glioblastoma patient MGH26. 

Supplementary Table S1: Regularization values (a) used for the clustering procedures along with the number 

of eeSNVs features.  

Supplementary Tables S2: Ranked eeSNVs and genes for each dataset (with minimum regularization filtering 

a=0.1). 

Supplementary File 1: Detailed description on top ranked genes and eeSNVs. 
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Clustering results with eeSNVs selected according to alpha
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