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Abstract

A recent paper by Karin, Swisa, Glaser, Dor, and Alon introduced the mathematical notion of dynamical
compensation (DC) in biological circuits, arguing that DC helps explain important features of glucose
homeostasis as well as other key physiological regulatory mechanisms. The present paper establishes
a connection between DC and two well-known notions in systems biology: system equivalence and
parameter (un)identifiability. This recasting leads to effective tests for verifying DC in mathematical
models.

1 Introduction

The recent paper [1] argued that physiological control systems should ensure a precise dynamical response
despite variations in certain parameters, lest pathological conditions arise. The authors highlighted the bio-
logical significance of this robustness property through the analysis of several biological systems, including
models of plasma glucose response in the face of changes in insulin sensitivity, parathyroid hormone control
of calcium homeostasis, and arterial oxygen regulation in response to hypoxia. They formally introduced
the system property of dynamical compensation (DC) with respect to variations in a parameter p, meaning
that the complete output dynamics is exactly the same, for any time dependent input, independently of the
precise value of p. They went on to provide a sufficient condition for DC to hold, and applied this condition
to verify that their physiological examples have the DC property.

In this paper, we frame the notion of DC in the context of two related notions in systems biology: equivari-
ances and parameter identifiability. We provide a necessary and sufficient condition for DC in the language
of equivariances and partial differential equations, for which the sufficient condition given in [1] becomes
a particular case, as does the condition given in [2] for fold-change detection (FCD) or input symmetry
invariance, a Weber-like law in psychophysics [3]. We also point out that DC is equivalent to (structural)
non-identifiability, and this in turn leads to the formulation of another necessary and sufficient condition for
DC, this one using Lie-theoretic (directional) derivatives of observables along the vector fields defining the
system.

2 Systems and equivalence

We formally state definitions in the language of dynamical systems with inputs and outputs, the standard
paradigm in control systems theory [4]:

ẋ = f(x, u, p) , y = h(x, u, p) , x(0) = ξp , (1)
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or, more explicitly,

dx

dt
(t) = f(x(t), u(t), p) , y(t) = h(x(t), u(t), p) , t ≥ 0 , x(0) = ξp.

The functions f , h describe respectively the dynamics and the read-out map; u = u(t) is an input (stimulus,
excitation) function, assumed to be piecewise continuous in time, x(t) is an n-dimensional vector of state
variables, y(t) is the output (response, reporter) variable, and p is the parameter (or vector of parameters)
that we wish to focus our attention on. In typical applications, y(t) = xi(t) is a coordinate of x. Values of
states, inputs, outputs, and parameters are constrained to lie in particular subsets X, U, Y, P respectively,
of Euclidean spaces Rn,Rm,Rq,Rs. Typically in biological applications, one picks X as the set of positive
vectors in Rn, x = (x1, x2, . . . , xn) such that xi > 0 for all i, and similarly for the remaining spaces.
The state ξp ∈ X is an initial state, which could be different for different parameters; thus we view ξp as
a function P → X. (We prefer the notation ξp instead of ξ(p), so that we do not confuse p with the time
variable.) For each input u : [0,∞) → U, we write the solution of (1) with an initial condition x(0) = ξ
(for example, x(0) = ξp) as

x(t) = ϕ(t, ξ, u, p)

and the corresponding system response, which is obtained by evaluating the read-out map along trajectories,
as

y(t) = h(ϕ(t, ξ, u, p), u(t), p) = ψ(t, ξ, u, p) .

We assume that for each input and initial state (and each fixed parameter p), there is a unique solution of
the initial-value problem ẋ = f(x, u, p), x(0) = ξ, so that the mapping ϕ is well-defined; see [4] for more
discussion, regularity of f , properties of ODE’s, global existence of solutions, etc. We refer to (1) as a
parametrized (because of the explicit parameter) initialized (because of the specification of a given initial
state for each parameter) family of systems.

Depending on the application, one might wish to impose additional restrictions on ξp. For example, in [1]
an additional requirement is that 0 ∈ U and ξp ∈ X is an equilibrium when u(0) = 0, which translates into
f(ξp, 0, p) = 0, and a similar requirement is made in [2] (this latter reference imposes the requirement that
for each constant input u(t) ≡ µ there should exist an equilibrium, in fact). One may also impose stability
requirements on this equilibrium; nothing changes in the results to be stated.

3 I/O Equivalence, Equivariances, and Identifiability

The question that we wish to address is as follows: provide conditions on the functions f , h, and ξ so that

ψ(t, ξp, u, p) = ψ(t, ξq, u, q) ∀ t ≥ 0, u(·), p, q . (2)

This is the “dynamic compensation” property from [1]. We prefer to use the terminology P-invariance. This
property says that the parameters p are (structurally) unidentifiable from input/output data [5, 6].

In order to re-state this property in a more convenient form, let us fix from now on an arbitrary p ∈ P,
which we write as “1” (for example, if P is the set of all positive vectors (p1, . . . , ps), 1 could naturally
be taken as the vector (1, 1, . . . , 1)). Let us write f(x, u) := f(x, u, 1), h(x, u) := h(x, u, 1), ξ := ξ1,
ϕ(t, ξ, u) := ϕ(t, ξ, u, 1), and ψ(t, ξ, u) := ψ(t, ξ, u, 1). The following is a standard concept in control
theory:

Definition 1 For any given parameter p, the system (1) is said to be input/output (I/O) equivalent to the
system

ẋ = f(x, u) , y = h(x, u) , x(0) = ξ . (3)
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provided that
ψ(t, ξp, u, p) = ψ(t, ξ, u) ∀ t ≥ 0, u(·) . (4)

Obviously, (2) is equivalent to the property that, for every parameter p, (1) should be I/O equivalent to (3).
Two approaches to testing I/O equivalence (or its lack) are described next.

3.1 Equivariances

Definition 2 Given a parametrized initialized family of systems (1), a set of differentiable mappings

{ρp : X→ X}p∈P

is an equivariance family provided that:

f(ρp(x), u, p) = (ρp)∗(x)f(x, u) (5a)

h(ρp(x), u, p) = h(x, u) (5b)

ρp(ξ) = ξp (5c)

for all x ∈ X, u ∈ U, and p ∈ P, where in general ρ∗ denotes the Jacobian matrix of a transformation ρ. 2

An important observation is as follows.

Lemma 1 If an equivariance family exists, then the parametrized family is P-invariant.

Observe that (5a) is a first order quasilinear partial differential equation on the components of the vector
function ρp (for each constant value u ∈ U and each parameter p ∈ P), subject to the algebraic constraints
given by (5b,c). Such equations are usually solved using the method of characteristics [7]. In principle,
testing for existence of a solution through a “certificate” such as an equivariance is far simpler than testing
all possible time-varying inputs u(t) in the definition of equivalence, in a fashion analogous to the use of
Lyapunov functions for testing stability or of value functions in the Hamilton-Jacobi-Bellman formulation
of optimal control theory [4]. The paper [2] discusses the relation to classical equivariances in actions of
Lie groups and symmetry analysis of nonlinear dynamical systems.

Proof of Lemma 1. Fix a parameter p and an input u(·); we must show that (4) is satisfied. Let x(t) =
ϕ(t, ξ, u), t ≥ 0, be the solution of the initial-value problem ẋ = f(x, u), x(0) = ξ, so that ψ(t, ξ, u) =
h(x(t), u(t)). Viewing the mapping x 7→ ρp(x) as a change of variables, we define z(t) := ρp(x(t)).
Differentiating with respect to t,

ż(t) = (ρp)∗(x(t))ẋ(t) = (ρp)∗(x(t))f(x(t), u(t)) = f(ρp(x(t)), u(t), p) = f(z(t), u(t), p)

where we used (5a) applied with x = x(t) and u = u(t). Moreover, z(0) = ρp(x(0)) = ρp(ξ) = ξp,
because of (5c). Thus, since the solution of the initial-value problem ẋ = f(x, u, p), x(0) = ξp is unique, it
follows that z(t) = ϕ(t, ξp, u, p). Now, by definition,

ψ(t, ξp, u, p) = h(ϕ(t, ξp, u, p), u(t), p) = h(z(t), u(t), p) = h(ρp(x(t)), u(t), p) = h(x(t), u(t))

where the last equality follows from (5b). On the other hand, since ψ(t, ξ, u) = h(x(t), u(t)), we conclude
that (4) holds, as desired.

It is a deeper result that the existence of an equivariance is also necessary as well as sufficient, see Section 4
for a statement and proof. Necessity tells us that it is always worth searching for an equivariance, when
attempting to prove that a system has P-invariance. Often one can guess such functions by looking at the
structure of the equations.
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3.2 Identifiability and Lie derivatives

For simplicity, in this section of the paper we restrict attention to systems in which inputs appear linearly;
that is, systems defined by differential equations of the following general form:

ẋ = g0(x, p) + u1g1(x, p) + . . .+ umgm(x, p) , y = h(x, p) , x(0) = ξp , (6)

Linearity in inputs is not a serious restriction, nor is not having an explicit input in the read-out map, and it
is easy to generalize to more general classes of systems, but the notations become far less elegant. We write
the s coordinates of h as h = (h1, . . . , hs).

Consider the following set of functions (“elementary observables” of the system):

H :=
{
Lgi1 . . . Lgikhj

∣∣∣ (i1, . . . , ik) ∈ {0, . . . ,m}k, k ≥ 0, j ∈ {1, . . . , s}
}
.

We are using the notation
LXH := ∇H ·X

for the directional or Lie derivative of the function H with respect to the vector field X , and an expression
as LY LXH means an iteration LY (LXH). We include in particular the case in which k = 0, in which case
the expression in the defining formula is simply hj . For example, if the system is

ẋ1 = αu− δx1 , ẋ2 = βu− γx1x2 , y = x2

(initial states do not matter at this point; the parameters of interest could be all or a subset of α, β, γ, δ), then

g0 =

(
−δx1
−γx1x2

)
, g1 =

(
α
β

)
, h(x) = x2

and we compute, for example,

Lg0h = (0 1)

(
−δx1
−γx1x2

)
= −γx1x2 , Lg1Lg0h = (−γx2 − γx1)

(
α
β

)
= −αγx2 − βγx1 .

A necessary condition for invariance is as follows.

Lemma 2 If a system is P-invariant, then all elements in H, when evaluated at the initial state, are inde-
pendent of the values of parameters p.

This condition is most useful when proving non-invariance. One simply finds one element of H which
depends on parameters. This test can also be used as a test for identifiability, that is to say the possibility of
recovering all parameters perfectly from outputs: if one can reconstruct the values of p from the elementary
observables (evaluated at the initial state), that is to say if the map

p 7→
(
Lgi1 . . . Lgikhj(ξp)

)
(i1,...,ik)∈{0,...,m}k, k≥0, j∈{1,...,s}

is one-to-one, then the parameters are identifiable. We discuss two examples in Section 3.4.

We sketch the proof of Lemma 2; see [4], Remark 6.4.2 for more details and references. Consider a piece-
wise constant control which is equal to u1 on [0, t1), equal to u2 on [t1, t1 + t2), . . . , and equal to uk

on [t1 + . . . + tk−1, t1 + . . . + tk), starting from x(0) = ξp. By invariance, the resulting output at time
t = t1 + . . .+ tk is independent of the parameters. Let us denote the jth coordinate of this output value as

hj(t1, t2, . . . , tk, u
1, u2, . . . , uk) .

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2016. ; https://doi.org/10.1101/095828doi: bioRxiv preprint 

https://doi.org/10.1101/095828


It follows that the derivatives with respect to the ti’s of this output are also independent of parameters, for
every such piecewise constant control. By induction, one has

∂k

∂t1 . . . ∂tk

∣∣∣∣
t1=t2=...tk=0

hj(t1, t2, . . . , tk, u
1, u2, . . . , uk) = LX1LX2 . . . LXk

hj(x) ,

where we are using the notations Xl(x) = g0(x) +
∑m

i=1 u
l
igi(x). This expression is a multilinear function

of the uli’s, and a further derivation with respect to these control value coordinates gives the elementary
observables, which therefore must also be independent of parameters.

We remark that, assuming a certain technical condition, a converse statement holds: if the elementary ob-
servables give the same values for some two parameters p, q ∈ P, then the output for any possible inputs,
whether step inputs or arbitrary inputs, is the same for these two parameters. The technical condition is that
the vector fields gi are real-analytic, that is, that they can be expanded into locally convergent power series.
The expressions that commonly appear in systems biology models, such as mass action kinetics (polyno-
mial functions) or Hill functions (rational functions) are real analytic, as are trigonometric, logarithmic, and
exponential functions, so analyticity is not a strong restriction on the theory. The proof of this converse fact
consists two parts: (1) showing that outputs coincide for piecewise constant inputs, which is true because
hj(t1, t2, . . . , tk, u

1, u2, . . . , uk) can be expressed as a power series in terms of the observables, followed
by (2) an approximation of arbitrary inputs by step ones (combining Lemma 2.8.2 with Proposition 6.1.11
in [4]; see also Section 4 in [8] and [9]).

3.3 Method of time derivatives at t = 0

A variation of the Lie derivatives technique for testing invariance (or lack thereof) is to employ inputs that are
infinitely differentiable, checking if derivatives y(t), y′, y′′ of outputs are independent of parameter values.
For analytic systems, it suffices to check these derivatives at time t = 0 and to use analytic inputs (verified
again by an approximation argument). Typically, all higher-order derivatives of outputs can be expressed
as a function of a finite number of derivatives, which helps make computations effective using computer
algebra packages. The theory is developed in [9–11], and is based on work by Fliess and others [12–16].
We discuss an example in Section 3.4.

3.4 Examples from the paper [1]

In its Supplement, the paper [1] presents the following class of systems that have P-invariance, called there
“dynamic compensation” (for arbitary n, but the main text specializes to n = 1):

ẋ1 = g(p2xn+1, xn+2)− µ1x1 (7a)

ẋi = ηi−1xi−1 − µixi , i ∈ {2, . . . , n} (7b)

ẋn+1 = xn+1`(xn+2) (7c)

ẋn+2 = k(p1x1, p1x2, . . . , p1xn, xn+2, u) (7d)

y = xn+2 . (7e)

The state variables are positive, that is, X = Rn+2
>0 , inputs and outputs are scalar and positive, U = R>0,

Y = R>0, and the parameters for which we desire invariance are two positive numbers, p = (p1, p2) ∈ P =
R2
>0. The additional parameters ηi and µi are fixed, and g, k, ` are three scalar (differentiable) functions,

with the following positive homogeneity property for g:

g(rxn+1, xn+2) = rg(xn+1, xn+2) ∀ r > 0, xn+1 > 0, xn+2 > 0 . (8)
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The initial state is implicitly specified in [1] by the requirement that for any parameter vector p = (p1, p2)
there is a unique steady state when u = 0; we call this state ξp. We take the reference parameter set to be
1 = (1, 1).

In the paper [1], when n = 1 this system is motivated as a mechanism for a hormonal circuit in which
the output y is a regulated variable, x1 is a hormone that regulates y = x3, and the variable xn+1 = x2
represents the functional mass of the tissue that secretes the hormone x1. There is feedback on the regulated
variable y, with a gain p1, and a growth rate in xn+1 that is controlled by y, for instance through increase of
proliferation. The parameter p2 quantifies the magnitude of the effect of the mass on the hormone production
rate. In one of the examples in [1], the input u(t) is the meal intake of glucose, xn+1 represents β cells, x1
is insulin, and y is plasma glucose concentration; the coefficients ηi correspond to transport rates, and the
µi combine degradation rate and transport rates. In the more general case n > 1, the coordinates x1, . . . , xn
represent the various physiological compartments that the hormone may circulate through.

To show P-invariance, we exhibit an equivariance. In fact, the proof of dynamical compensation in [1] is
based (without using that terminology) on showing that the following mapping is an equivariance family:

ρp(x1, x2, . . . , xn, xn+1, xn+2) := (p−11 x1, p
−1
1 x2, . . . , p

−1
1 xn, p

−1
1 p−12 xn+1, xn+2) .

Since h(x, u, p) = xn+2 is not changed by ρp, we have that h(ρp(x), u, p) = h(x, u), and since as equiv-
ariances always map steady states into steady states, and steady states are assumed to be unique, there is no
need to test the condition ρp(ξ) = ξp. So we only need to check that:

f(ρp(x), u, p) = (ρp)∗(x)f(x, u)

for all p, x, u. The map ρp is linear, and its Jacobian matrix is diag (p−11 , p−11 , . . . , p−11 , p−11 p−12 , 1), thus we
need to verify:

g(p2(p
−1
1 p−12 xn+1), xn+2)− µ1(p−11 x1) = p−11 [g(xn+1, xn+2)− µ1x1]

ηi−1(p
−1
1 xi−1)− µi(p−11 xi) = p−11 [ηi−1xi−1 − µixi] , i ∈ {2, . . . , n}

(p−11 p−12 xn+1)`(xn+2) = p−11 p−12 [xn+1`(xn+2)]

k(p1(p
−1
1 x1), p1(p

−1
1 x2), . . . , p1(p

−1
1 xn), xn+2, u) = k(x1, x2, . . . , xn, xn+2, u) ,

the last n+1 of which are trivial, and the first one requires g(p−11 xn+1, xn+2) = p−11 g(xn+1, xn+2), which
holds because of the homogeneity property (8).

We next discuss the “linear integral feedback” and “linear proportional integral feedback” examples in the
paper [1], which are given as examples of systems that are not P-invariant (the paper does this by simulation).
The first system is:

ẋ1 = x2 − b
ẋ2 = a− p1x1 − p2x2 + u

y = x2

with the unique steady state ξp = ((a − p2b)/p1, b) for u(0) = 0. Let us show that there is no possible
equivariance ρp(x1, x2) = (αp(x1, x2), βp(x1, x2)). The requirement that h(ρp(x), u, p) = h(x, u) means
that βp(x1, x2) = x2, so ρp(x1, x2) = (αp(x1, x2), x2). The PDE f(ρp(x), u, p)) = (ρp)∗(x)f(x, u)
translates into:(

x2 − b
a− p1αp(x1, x2)− p2x2 + u

)
=

(
∂αp

∂x1
(x1, x2)(x2 − b) + ∂αp

∂x2
(x1, x2)(a− x1 − x2 + u)

a− x1 − x2 + u

)
.
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Comparing coefficients of u in the first component, we have that ∂αp

∂x2
≡ 0, and this in turn implies that

∂αp

∂x1
(x1, x2) ≡ 1. Thus the only possible choice is a linear function αp(x1, x2) = c+x1. On the other hand,

comparing second components, we have

αp(x1, x2) =
1

p1
x1 +

1− p2
p1

x2 ,

contradicting this formula. Thus, no possible equivariance exists, even if we only ask one of the parameters
to vary. Combined with the necessity result to be shown below, this implies no invariance.

Another way to analyze this example is as follows. Let us compute the derivatives di := y(i)(0+) when
applying an input u(t) that is differentiable for t > 0. We have that m0 = b, m1 = u0, m2 = −p2u0 + u1,
m3 = (p22− p1)u0− p2u1+u2, where ui := u(i)(0+). Therefore, from the output y (and in particular from
its derivatives at time zero) we can reconstruct p2 and p1, for example using a step function u ≡ 1. This
means that the parameter vector p is identifiable, which implies that the system is not P-invariant.

Alternatively, using the formalism of Lie derivatives, with

g0 =

(
x2 − b

a− p1x1 − p2x2

)
, g1 =

(
0
1

)
, h(x) = x2

we can compute
Lg1Lg0h(x) = −p2 , Lg1L

2
g0h = −p1 + p22 ,

and we again see that we can recover the parameters, giving identifiability and hence non-invariance.

The second example of a system that fails invariance in the paper [1] is the “linear proportional integral
feedback” given by:

ẋ1 = x3 − x1
ẋ2 = x3 − b
ẋ3 = a− p2x1 − p1x2 + u

y = x3

with the unique steady state ξp = (b, (a − p2b)/p1, b) for u(0) = 0. The non-existence of equivariances
is proved similarly to the previous example, and is not shown. For simplicity, we only perform the Lie
derivative test. One can find

Lg1L
2
g0h(x) = −p2 − p1 , Lg1L

3
g0h = p2 ,

so once more we can recover the parameters, giving identifiability and hence non-invariance.

Let us now illustrate the method of derivatives with the example in Equation 7, which was already shown to
be invariant by the method of equivariances. The equations are, in this case:

ẋ1 = p2x2x3 − x1
ẋ2 = x2(x3 − b)
ẋ3 = a− p1x1x3 + u

y = x3

where p = (p1, p2) are the parameters of interest, a, b are other positive parameters, and the equations evolve
in the positive orthant xi > 0. Using, for clarity, superscripts “(i)” to indicate derivative of order i, and since
y = x3, we have that:

y(1) = a− p1x1y + u
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and thus, taking derivatives of this expression and substituting the equation for ẋ1:

y(2) = u(1) + yx21p
2
1 + (−ap1 − p1u+ p1y)x1 − x2y2p1p2

so, taking again derivatives and substituting the equations for ẋ1 and ẋ2:

y(3) = u(2) − x1u(1)p1 − yx31p31 + (ap21 + p21u− 3p21y)x
2
1

+(4p31x2y
2 + 2ap1 + 2p1u− p1y)x1 − x2y3p1p2

+(b+ 1)p1p2x2y
2 + (−3ap1p2 − 3p1p2u)x2y .

Observe that these are all functions of t (argument not shown). We can solve for x1 and x2 in terms of y(1)

and y(2), obtaining:

x1 =
a+ u− y(1)

p1y

and

x2 =
u(1)y + (a− y(1) − y(2) + u)y − y(1)(a+ u− y(1))

y3p1p2

and, finally, substitute these expressions into the formula for y(3), to obtain:

y(3) =
(−y3 + (b+ y(1))y2 + ((−b− 2)y(1) − y(2))y + 3(y(1))2)

y2
u

+
(−y2 + (b+ 1)y − 3y(1))

y
u(1) + u(2)

+(−a+ y(1) + y(2))y + (−(y(1))2 + (a− b)y(1) + (a− y(2))b− y(2)

+
((b+ 2)y(1)

2
+ (−ab+ 4y(2) − 2a)y(1) − ay(2))y + 3(y(1))2(a− y(1))

y2

which involves only y, y(1), and y(2) but neither x1 and x2 nor the parameters p1 and p2. Taking derivatives
on both sides, and iterating, this implies, in turn, that higher-order derivatives of y can also be expressed in
terms of y, y(1), and y(2) and neither of the other state coordinates nor p1 and p2. This holds for all t, so
in particular at t = 0. Therefore, if we prove that y(0), y(1)(0), and y(2)(0) are independent of parameters,
the same will be true for all derivatives at t = 0, of any order, and therefore, because of analyticity (Taylor
expansions and analytic continuation), it will follow that y(t) is independent of the parameters, for all t (and
all inputs, even not differentiable, by the approximation argument mentioned earlier, combining Lemma
2.8.2 with Proposition 6.1.11 in [4]; see also Section 4 in [8] and [9]). Now, specializing at the equilibrium
initial state

ξp =

(
a

p1b
,

a

p1p2b2
, b

)
,

we have that, for any differentiable input, y(0) = b, y(1)(0) = u(0), and y(2)(0) = −(a/b)u(0) + u(1)(0).
Thus, indeed neither of these derivatives depends on the parameters p, which confirms invariance.

It is interesting to observe that, in this example, there is no invariance to the other parameters, a and b; in
fact, these parameters are identifiable. To see this, let us write, for convenience, α := a/b. Then,

y(2)(0) = −αu(0) + u(1)(0)

allows identification of α; for example, using the input u(t) ≡ 1, Y2,1 := y(2)(0) = −α, so can recover
α = −Y2,1. From

y(3)(0) = u(2)(0)− αu(1)(0) + α2 u(0)− αu(0)
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we cannot yet identify a and b individually. Taking one more derivative:

y(4)(0) = −bαu(0) + u(3)(0) − αu(2)(0) − 3
u(0)2α

b

−α3u(0) + 2α2u(0) + αu(0) + α2u(1)(0) − αu(1)(0)

and therefore, if the input is u ≡ 1, we obtain

Y4,1 := y(4)(0) = −bα− 3
α

b
− α3 + 2α2 + α

and if the input is u ≡ 2, we obtain

Y4,2 := y(4)(0) = −2bα− 12
α

b
− 2α3 + 4α2 + 2α

and combining these two results, we conclude that 2Y4,1−Y4,2 = 6α/b, allowing recovery of the parameter
b (observe that α = a/b 6= 0, since the parameters a and b are both positive).

3.5 Relations to FCD

The papers [2,3] studied a notion of scale invariance, or more generally invariance to input-field symmetries.
We restrict attention here to linear scalings

u = (u1, u2, . . . , um) 7→ p� u = (p1u1, p2u2, . . . , pmum) ,

although the same ideas apply to more general symmetries as well. The property being studied is the
invariance of the response of the following parametrized family of systems:

ẋ = f(x, p� u) , y = h(x, p� u) , x(0) = ξp ,

where the initial states ξp are the (assumed unique) steady states associated to p � u(0). This property is
also called “fold change detection” (FCD), because the only changes that are detectable are possibly “fold”
changes in u, not simply scalings such as changes of units. It is clear that this is merely a special case of the
current general setup.

4 Converses of the criteria

As pointed out earlier, the criterion in Lemma 2 admits a converse, provided that the system is defined by
real-analytic functions: if all elements of H, when elaluated at ξp, are independent of the values of the
parameters p, then the system is P-invariant. A similar result holds for identifiability: if one can recover all
parameters as functions (perhaps nonlinear) of the elementary observables, then there is complete parameter
identifiability (two different parameters give two different outputs, at least for some input).

The converse of Lemma 1 is also true, provided again that the maps f and h are real-analytic. An addi-
tional technical assumption, verified by all reasonable models including all examples in this paper, is that
the systems are irreducible, meaning that it is accessible from the initial state, and observable. An accessible
system is one for which the accessibility rank condition holds: FLA(ξp) = Rn, where FLA is the accessi-
bility Lie algebra of the system. Intuitively, this means that no conservation laws restrict motions to proper
submanifolds. For analytic systems, accessibility is equivalent to the property that the set of points reachable
from ξ has a nonempty interior; see a proof and more details in the textbook [4]. An observable system (for
a fixed parameter p ∈ P, not shown in the notation) is one for which ψ(t, ξ, u) = ψ(t, ξ′, u) for all u, t
implies ξ = ξ′. Intuitively, observability means that no pairs of distinct states can give rise to an identical
temporal response to all possible inputs. For analytic input-affine systems, observability is equivalent to the
property that any distinct two states can be separated by the observation space ( [4], Remark 6.4.2). The
proof of necessity is a corollary of a fundamental theorem in control theory, see the Appendix.

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2016. ; https://doi.org/10.1101/095828doi: bioRxiv preprint 

https://doi.org/10.1101/095828


A Appendix

We discuss here the notions of accessibility and observability required for the validity of a converse to
Lemma 1, and give a proof of this converse result.

A.1 Accessibility

We consider systems:
ẋ = f(x, u, p)

with the technical condition that f is a real-analytic functions of x. (Outputs do not matter for this section.)
For any fixed parameter vector p ∈ P, this system is said to be accessible from the initial state ξp if the set
of all states reached from ξp,

R(ξp) := {x(t) = ϕ(t, ξp, u, p), t ≥ 0, u ranging over all possible inputs} ,

has a non-empty interior. In other words, R(ξp) cannot be “too thin” (as would happen if there are conser-
vation laws among the species xi, in which case one should first reduce the model to independent variables).
See for instance the textbooks [4, 17] for details. Accessibility can be tested as follows. The Lie bracket
of two smooth vector functions X → Rn (more generally, one may extend to vector fields on a smooth
manifold, but we restrict here to Euclidean spaces) is the function [f, g] : X→ Rn defined by the following
formula:

[f, g] :=
∂g

∂x
f − ∂f

∂x
g .

Let F = {f(·, u, p), u ∈ U}, that is, the set of vector fields obtained when we plug-in an arbitrary constant
input (still for our fixed parameter vector p). We now define the set F∞ that consists of all possible iterated
brackets [f`, . . . , [f3, [f2, f1] . . .]], over all choices of fi’s in F and all ` ≥ 1. Formally, F∞ is the union of
the sets Fk that are recursively defined as follows:

F0 := F , Fk+1 := {[f, g] | f ∈ Fk, g ∈ F} , k = 0, 1, 2, . . . .

The accessibility (or controllability) rank condition is said to hold at ξp if there are n (the dimension of the
state space X) linearly independent vectors among all these vectors when evaluated at the initial state. An
equivalent way to state this condition is in terms of the Lie algebra FLA of vector fields generated by F ,
which is the linear span of F∞, the smallest Lie algebra of vector fields which contains F . The condition is
that FLA(ξp) = Rn. It can be shown that, for affine systems as in (6), FLA(ξp) = {g0, . . . , gm}LA(ξp).

As an illustration, take the example

ẋ1 = αu− δx1 , ẋ2 = βu− γx1x2 , y = x2

considered earlier. This is a system affine in inputs, with

g0 =

(
−δx1
−γx1x2

)
, g1 =

(
α
β

)
,

and we may compute:

[g0, g1] =

(
αδ

αγx2 + βγx1

)
, [g1, [g0, g1] =

(
0

2αβγ

)
.

Since the determinant of the matrix with columns g1 and [g1, [g0, g1]] is equal to 2α2βγ 6= 0 for every x, the
accessibility rank condition holds, in particular, at the initial state.
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A.2 Observability

Consider again systems as in (1):

ẋ = f(x, u, p) , y = h(x, u, p)

where f and h are real-analytic (initial states do not matter for this section). For any fixed parameter
vector p ∈ P, this system is said to be observable provided that, for any two distinct states ξ and ξ′,
there is some input function u (which might depend on the particular pair of states ξ and ξ′) such that the
temporal responses ψ(t, ξ, u) and ψ(t, ξ′, u) differ at at least one time t. The equivalent contrapositive of
this statement is “ψ(t, ξ, u) = ψ(t, ξ′, u) for all u, t implies ξ = ξ′.” For analytic input-affine systems (6)
with output h = (h1, . . . , hp), one can restate the observability property as follows. We consider the set H
of elementary observables Lgi1 . . . Lgikhj . Two states ξ and ξ′ are said to be separated by observables if
there exists some k ∈ H such that k(ξ) 6= k(ξ′). Observability is equivalent to the property that any distinct
two states can be separated by observables, or, in more intuitive terms, if all coordinates of the state can be
obtained as (possibly nonlinear) functions of observables. This is analogous to the discussion of parameter
identifiability, and its proof is also based on approximating arbitrary inputs by piecewise constant inputs,
combining Lemma 2.8.2 and Proposition 6.1.11 in [4] (see also Section 4 in [8]).

As an illustration, take once more

ẋ1 = αu− δx1 , ẋ2 = βu− γx1x2 , y = x2

We need to show that the coordinates of the states can be recovered from the elements in H. Since x2 =
h(x), so only need to give a formula for x2. Using

h1(x) := Lg0h(x) = −γx1x2 and h2(x) := Lg1Lg0h(x) = −αγx2 − βγx1 ,

x1 = − h1(x)
γh(x) , or, if we want to avoid division by zero when y = 0, x1 = −h2+αγh(x)

βγ .

A.3 The converse to Lemma 1

Lemma 1 states that if an equivariance family exists, then the parametrized family is P-invariant. We outline
next how the converse of this Lemma follows from the theory of minimal realizations of nonlinear systems.
Let us call a system irreducible if it is accessible from the initial state ξp, and observable. We assume
that the functions defining the system are analytic, and claim that, conversely, if the parametrized family is
P-invariant and the systems are irreducible, then an equivariance family always exists. To show this, let
us fix any parameter p ∈ P. We must find a differentiable mapping ρp : X → X so that ρp(ξ) = ξp and
f(ρp(x), u, p) = (ρp)∗(x)f(x, u), h(ρp(x), u, p) = h(x, u) for all x ∈ X and u ∈ U, This means that ρ
should be an isomorphism [18] between the two systems (1) and (3). Now, Theorem 5 in [18] shows that
for two analytic and irreducible systems, I/O equivalence implies the existence of am isomorphism, which
is exactly what we require.
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