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Abstract 1 

1. The coefficient of determination R2 quantifies the proportion of variance explained by a 2 

statistical model and is an important summary statistic of biological interest. However, 3 

estimating R2 for (generalized) linear mixed models (GLMMs) remains challenging. We 4 

have previously introduced a version of R2 that we called R2
GLMM for Poisson and binomial 5 

GLMMs, but not for other distributional families. 6 

2. Similarly, we earlier discussed how to estimate intra-class correlation coefficients ICC (also 7 

known as repeatability in the field of ecology and evolution) using Poisson and binomial 8 

GLMMs, but not for other distributional families. ICC is related to R2 because they are both 9 

ratios of variance components.  10 

3. In this article we expand our method to additional non-Gaussian distributions, namely quasi-11 

Poisson, negative binomial and gamma GLMMs. However, in theory, our extension could 12 

be applied to any distribution and we include an explanatory calculation for the Tweedie 13 

distribution. 14 

4. While expanding our approach, we highlight two useful concepts, Jensen’s inequality and 15 

the delta method, both of which help in understanding the properties of GLMMs. Jensen’s 16 

inequality has important implications for the interpretation GLMMs while the delta method 17 

allows a general derivation of distribution-specific variances. We also discuss some special 18 

considerations for binomial GLMMs with binary or proportion data. 19 

5. We illustrate the implementation of our extension by worked examples in the R 20 

environment. However, our method can be used regardless of statistical packages and 21 

environments. We finish by referring to two alternative methods to our approach along with 22 

a cautionary note.  23 

Key words: repeatability, regression, heritability, goodness of fit, information criteria, 24 

variance explained, intra-class correlation, model fit, variance decomposition, reliability 25 

analysis. 26 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2016. ; https://doi.org/10.1101/095851doi: bioRxiv preprint 

https://doi.org/10.1101/095851
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

Introduction 27 

One of the main purposes of linear modelling is to understand the sources of variation in biological 28 

data. In this context it is not surprising that the coefficient of determination R2 is a commonly 29 

reported statistic because it represents the proportion of variance explained by a linear model. The 30 

intra-class correlation coefficient ICC is a related statistic that quantifies the proportion of variance 31 

explained by a grouping (random) factor in multilevel/hierarchical data. In the field of ecology and 32 

evolution, a type of ICC is often referred to as repeatability R, where the grouping factor is often 33 

individuals that have been phenotyped repeatedly (Lessells and Boag 1987, Nakagawa and 34 

Schielzeth 2010). We have reviewed methods for estimating R2 and ICC in the past (Nakagawa and 35 

Schielzeth 2010, 2013), with a particular focus on non-Gaussian response variables, featuring 36 

generalized linear mixed-effects models (GLMMs) as the most versatile engine for estimating R2 
37 

and ICC (specifically R2
GLMM and ICCGLMM). Our descriptions were limited to random-intercept 38 

GLMMs, but Johnson (2014) has recently extended the methods to random-slope GLMMs, 39 

widening the applicability of these statistics (see also, LaHuis et al. 2014; Jaeger et al. 2016).  40 

However, at least one important issue seems to remain. Currently these two statistics are only 41 

described for binomial and Poisson GLMMs. Although these two types of GLMMs are arguably the 42 

most popular (Bolker et al. 2009), there are other commonly used families for GLMMs, such as 43 

negative binomial and gamma distributions (Ver Hoef and Boveng 2007, Bolker 2008). In this 44 

article, we revisit and extend R2
GLMM and ICCGLMM to more distributional families, in particular to 45 

negative binomial and gamma distributions. In this context we discuss Jensen’s inequality and two 46 

variants of the delta method, which are useful not only for extending our method, but also for 47 

interpreting the results of GLMMs in general. Furthermore, we refer to some special considerations 48 

when obtaining R2
GLMM and ICCGLMM from binomially GLMMs for binary and proportion data, 49 

which we did not discuss in the past (Nakagawa and Schielzeth 2010, 2013). We provide worked 50 

examples focusing on implementation in the R environment (R Core Team 2016) and finish by 51 
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referring to two alternative approaches for obtaining R2 and ICC from GLMMs along with a 52 

cautionary note.  53 

Definitions of R
2

GLMM, ICCGLMM and overdispersion 54 

To start with, we present R2
GLMM and ICCGLMM for a simple case of Gaussian error distributions 55 

based on a linear mixed-effects model (LMM, hence also referred to as R2
LMM and ICCLMM). 56 

Imagine a two level dataset where the first level corresponds to observations and the second level to 57 

some grouping factor (e.g. individuals) with k fixed effect covariates. The model can be written as 58 

(model 1): 59 

,
  eqn 1 60 

,  eqn 2 61 

, 
 eqn 3 62 

where yij is the jth observation of the ith individual, xhij is the jth value of the ith individual for the 63 

hth of k fixed effects predictors, β0 is the (grand) intercept, βh is the regression coefficient for the 64 

hth predictor, αi is an individual-specific effect, assumed to be normally distributed in the 65 

population with the mean and variance of 0 and , εij is an observation-specific residual, assumed 66 

to be normally distributed in the population with mean and variance of 0 and , respectively. For 67 

this model, we can define two types of R2 as:  68 

,
  eqn 4 69 

,
  eqn 5 70 

, 
 eqn 6 71 

yij = β0 + βhxhij +αi +ε
h=1

k

∑
ij

α i ~ Gaussian(0,  σα
2 )

εij ~ Gaussian(0,  σ ε
2 )

σα
2

σ ε
2

RLMM(m)
2 =

σ f
2

σ f
2 + σα

2 + σε
2

RLMM(c )
2 =

σ f
2 +σα

2

σ f
2 +σ α

2 +σ ε
2

σ f
2 = var βhxhijh

k

∑( )
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where  represents the marginal R2, which is the variance accounted for by the fixed effects, 72 

 represents the conditional R2, which is the variance explained by both fixed and random 73 

effects, and  is the variance explained by fixed effects (Snijders and Bosker 1999, 2011). Since 74 

marginal and conditional R2 differ only in whether the random effect variance is included in the 75 

numerator, we avoid redundancy and present equations only for marginal R2 in the following. 76 

Similarly, there are two types of ICC: 77 

22

2

LMM(adj)ICC
εα

α

σσ
σ
+

=   eqn 7 78 

222

2

LMMICC
εα

α

σσσ
σ

++
=

f
  eqn 8 79 

If no fixed effects are included, the two versions are identical and represent unadjusted ICC, but if 80 

fixed effects are fitted, ICCLMM(adj) represents adjusted ICC, while ICCLMM represented unadjusted 81 

ICC (sensu Nakagawa and Schielzeth 2010). Since the two versions of ICC differ only in whether 82 

the fixed effect variance (calculated as in Equation 6) is included in the denominator, we avoid 83 

redundancy and present equations only for adjusted ICC in the following. 84 

One of the main difficulties in extending R2 from LMMs to GLMMs is defining the residual 85 

varianceσ ε
2 . For binomial and Poisson GLMMs with an additive dispersion terms, we have 86 

previously stated that σ ε
2

 is equivalent to σ e
2 +σ d

2  where  is the variance for the additive 87 

overdispersion term, and σ d
2  is the distribution-specific variance (Nakagawa and Schielzeth 2010, 88 

2013). Here overdispersion represents the excess variation relative to what is expected from a 89 

certain distribution and can be estimated by fitting an observation-level random effect (OLRE; see 90 

Harrison 2014, 2015). Alternatively, overdispersion in GLMMs can be implemented using a 91 

multiplicative overdispersion term (Browne et al. 2005). In such an implementation, we stated that 92 

σε
2

 
is equivalent to ω ⋅σ d

2  where  is a multiplicative dispersion parameter estimated from the 93 

model (Nakagawa and Schielzeth 2010). But obtaining σ d
2  for specific distributions is not always 94 

RLMM(m)
2

RLMM(c )
2

σ f
2

σ e
2

ω
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possible, because in many families of GLMMs the parameters are less clearly separated into a 95 

parameter for the expectation of the mean and a parameter for the (over)dispersion. It turns out that 96 

binomial and Poisson distributions are special cases where σ d
2  can be usefully calculated, because 97 

either all overdispersion is modelled by an OLRE (additive overdispersion) or by a single 98 

multiplicative overdispersion parameter (multiplicative overdispersion). However, as we will show 99 

below, we can always obtain the GLMM version of σ ε
2  (on the latent scale) directly. We refer to 100 

this generalised version of σ ε
2  as ‘the observation-level variance’ here rather than the residual 101 

variance (but we keep the notation σ ε
2 ). 102 

Extension of R
2

GLMM and ICCGLMM 103 

We now define R2
GLMM and ICCGLMM for an overdispersed Poisson (also known as quasi-Poisson) 104 

GLMM, because the overdispersed Poisson distribution can be considered a re-parameterization of 105 

the negative binomial distribution (Gelman and Hill 2007; Ver Hoef and Boveng 2007). Imagine 106 

count data repeatedly measured from a number of individuals with associated data on k covariates. 107 

We fit an overdispersed Poisson (OP) GLMM with the log link function (model 2):  108 

,  eqn 9 109 

,  eqn 10 110 

,  eqn 11 111 

where yij is the jth observation of the ith individual and yij follows an overdispersed Poisson 112 

distribution with two parameters, λij and ω, ln(λij) is the latent value for the jth observation of the ith 113 

individual, ω is the overdispersion parameter (when the multiplicative dispersion parameter ω is 1, 114 

the model becomes a standard Poisson GLMM), αi is an individual-specific effect, assumed to be 115 

normally distributed in the population with the mean and variance of 0 and , respectively (as in 116 

yij ~ OP(λij,  ω)

ln(λij ) = β0 + βhxhij +αih=1

k

∑

α i ~ Gaussian(0,  σ α
2 )

σ α
2
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model 1), and the other symbols are the same as above. For such a model, we can define R2
GLMM(m) 117 

and (adjusted) ICCGLMM as: 118 

,
  eqn 12 119 

,
  eqn 13 120 

where the subscript of R2 and ICC denote the distributional family, here OP-ln for overdispersed 121 

Poisson distribution with log link, the term  corresponds to the observation-level 122 

variance σ ε
2  (Table 1, for derivation see Appendix S1), ω is the overdispersion parameter, and λ is 123 

the mean value of λij. We discuss how to obtain λ below.  124 

The calculation is very similar for a negative binomial (NB) GLMM with the log link (model 3): 125 

,  eqn 14 126 

,  eqn 15 127 

,  eqn 16 128 

where yij is the jth observation of the ith individual and yij follows a negative binomial distribution 129 

with two parameters, λij and θ, where θ is the shape parameter of the negative binomial distribution 130 

(given by the software often as the dispersion parameter), and the other symbols are the same as 131 

above. R2
GLMM(m) and (adjusted) ICCGLMM for this model can be calculated as: 132 

,
  eqn 17 133 

,
  eqn 18 134 

Finally, for a gamma GLMM with the log link (model 4): 135 

yij ~ gamma(λij,  ν ),  eqn 19 136 

ROP−ln(m)
2 =

σ f
2

σ f
2 + σα

2 + ln(1+ ω / λ)

ICCOP−ln = σα
2

σα
2 + ln(1+ω / λ)

ln(1+ ω / λ)

yij ~ NB(λij,  θ )

ln(λij ) = β0 + βhxhij +αih=1

k

∑

α i ~ Gaussian(0,  σ α
2 )

RNB−ln(m )
2 =

σ f
2

σ f
2 +σα

2 + ln(1+1/ λ +1/θ )

ICCNB−ln = σα
2

σα
2 + ln(1+1/ λ +1/θ )
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,  eqn 20 137 

,  eqn 21 138 

where yij is the jth observation of the ith individual and yij follows a gamma distribution with two 139 

parameters, λij and ν, where ν is the shape parameter of the gamma distribution (sometimes 140 

statistical programs report 1/ v instead of v; also note that the gamma distribution can be 141 

parameterized in alternative ways, Table 1), R2
GLMM(m) and (adjusted) ICCGLMM can be calculated 142 

as: 143 

,
  eqn 22 144 

,
  eqn 23 145 

Obtaining the observation-level variance by the ‘first’ delta method 146 

For overdispersed Poisson, negative binomial and gamma GLMMs with log link, the observation-147 

level variance  can be obtained via the variance of the log-normal distribution, as described 148 

above (see Appendix S1). There are two more alternative methods to obtain the same target: the 149 

delta method and the trigamma function. The two alternatives have different advantages and will be 150 

discussed in some detail below. 151 

The delta method for variance approximation uses a first order Taylor series expansion, which is 152 

often employed to approximate the standard error (error variance) for transformations (or functions) 153 

of a variable x when the (error) variance of x itself is known (see Ver Hoff 2012; for an accessible 154 

reference for biologists, Powell 2007). A simple case of the delta method for variance 155 

approximation can be written as: 156 

,
  eqn 24 157 

ln(λij ) = β0 + βhxhij +αih=1

k

∑

α i ~ Gaussian(0,  σ α
2 )

Rgamma−ln(m)
2 =

σ f
2

σ f
2 +σα

2 + ln(1+1/ν )

ICCgamma−ln = σα
2

σα
2 + ln(1+1/ν )

σε
2

var[ f (x)] ≈ var[x]
d

dx
f (x)

⎛

⎝
⎜

⎞

⎠
⎟

2
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where x is a random variable (typically represented by observations), f represents a function (e.g. 158 

log or square-root), var denotes variance, and d/dx is a (first) derivative with respect to variable x. 159 

Taking derivatives of any function can be easily done using the R environment (examples can be 160 

found in the Appendices). It is the delta method that Foulley et al. (1987) used to derive the 161 

distribution specific variance σ d
2  for Poisson GLMMs as 1/λ: Given that  in Poisson 162 

distributions and , it follows that  (note that for Poisson 163 

distributions without overdispersion, σ d
2  is equal to σ ε

2  because σ e
2 = 0 ). One clear advantage of 164 

the delta method is its flexibility, and we can easily obtain the observation-level variance σ ε
2  for all 165 

kinds of distributions/link functions. For example, by using the delta method, it is straightforward to 166 

obtain  for the Tweedie (compound Poisson-gamma) distribution, which has been used to model 167 

non-negative real numbers in ecology (e.g., Foster & Bravington 2013; Zhang 2013). For the 168 

Tweedie distribution, the variance on the observed scale has the relationship  where μ 169 

is the mean on the observed scale and φ is the dispersion parameter (comparable to λ and ω in 170 

Equation 9), and p is a positive constant called an index parameter. Therefore, when used with the 171 

log-link function, an approximated σε
2  value can be obtained by  according to Equation 24. 172 

The log-normal approximation  is also possible (see Appendix S1; cf. Table 1).  173 

The use of the trigamma function  is limited to distributions with log link, but it should provide 174 

the most accurate estimate of the observation level variance σ ε
2 . This is because the variance of a 175 

gamma-distributed variable on the log scale is equal to  where ν is the shape parameter of the 176 

gamma distribution (Tempelman and Gianola 1999) and hence σ ε
2  is . At the level of the 177 

statistical parameters (Table 1; on the ‘expected data’ scale; sensu deVillemereuil et al. 2016; see 178 

their Figure 1), Poisson and negative binomial distributions can be both seen as re-179 

parameterizations of gamma distributions (Tempelman and Gianola 1999) and σ ε
2  can be obtained 180 

using the trigamma function (Table 1). For example, σ ε
2  for the Poisson distribution is  with 181 

var[λij ] = λ

d ln(λ) / dx =1/ λ var[ln(λij )] ≈ λ(1 / λ)2

σε
2

var[y] = ϕμ p

ϕμ ( p−2)

ln(1+ϕμ ( p−2) )

ψ1

ψ1(ν )

ψ1(ν )

ψ1(λ)
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the speciality that in the case of Poisson distributions σε
2 = σ d

2 . As we show in Appendix S2, 182 

ln(1+1/λ) (log-normal approximation), 1/λ (delta method approximation) and  (trigamma 183 

function) are similar if λ is greater than 2. Nonetheless, our recommendation is to use the trigamma 184 

function for obtaining  whenever this is possible.  185 

We note that in calculations of heritability (which can be seen as a type of ICC although in a strict 186 

sense, it is not; see de Villemereuil et al. 2016) using negative binomial GLMMs, the trigamma 187 

function has been previously used to obtain observation-level variance (Matos et al. 1997; 188 

Tempelman and Gianola 1999; cf. de Villemereuil et al. 2016). Table 1 summarises observation-189 

level variance  for overdispersed Poisson, negative binomial and gamma distributions for 190 

commonly used link functions.  191 

How to estimate λ from data 192 

Imagine a Poisson GLMM with log link and additive overdispersion fitted as an observation-level 193 

random effect (model 5):  194 

yij ~ Poisson(λij ),  eqn 25 195 

,  eqn 26 196 

,  eqn 27 197 

, 
 eqn 28 198 

where yij is the jth observation of the ith individual, and follows a Poisson distribution with the 199 

parameter λij, eij is an additive overdispersion term for jth observation of the ith individual, and the 200 

other symbols are the same as above. Using the log-normal approximation R2
GLMM(m) and (adjusted) 201 

ICCGLMM can be calculated as: 202 

ψ1(λ)

σε
2

σε
2

ln(λij ) = β0 + βhxhij + α i + e
h=1

p

∑ ij

α i ~ Gaussian(0,  σα
2 )

eij ~ Gaussian(0,  σ e
2 )
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, 
 eqn 29 203 

, 
 eqn 30 204 

where, as metioned above, the term ln(1+1/λ) is σ ε
2  (or ) for Poisson distributions with the log 205 

link (Table 1).  206 

In our earlier papers, we proposed to use the exponential of the intercept (from the intercept-only 207 

model or models with centred fixed factors) exp(β0) as an estimator of λ (Nakagawa and Schielzeth 208 

2010, 2013). We also suggested that it is possible to use the mean of observed values yij. 209 

Unfortunately, these two recommendations are often inconsistent with each other. This is because, 210 

given the model 5 (and all the models in the previous section), the following relationships hold:  211 

,
  eqn 31 212 

,
  eqn 32 213 

,
  eqn 33 214 

where E represents the expected value (i.e., mean) on the observed scale, β0 is the mean value on 215 

the latent scale (i.e. β0 from the intercept-only model),  is the total variance on the latent scale 216 

(e.g.,  in the models 1and 5, and  in models 2-4; Nakagawa and Schielzeth 2010; see 217 

also Carrasco 2010). In fact, exp(β0) gives the median value of yij rather than the mean of yij, 218 

assuming a Poisson distribution. Thus, the use of exp(β0) will often overestimate , providing 219 

conservative (smaller) estimates of R2 and ICC, than when using averaged yij, which is a better 220 

estimate of E[yij]. Quantitative differences between the two approaches may often be negligible, but 221 

when λ is small, the difference can be substantial so the choice of the method needs to be reported 222 

for reproducibility (Appendix S2). Our new recommendation is to obtain λ via Equation 32. When 223 

sampling is balanced (i.e. observations are equally distributed across individuals and covariates), 224 

RP−ln(m )
2 =

σ f
2

σ f
2 +σα

2 +σ e
2 + ln(1+1/ λ )

ICCP−ln = σα
2

σα
2 +σ e

2 + ln(1+1/ λ)

σ d
2

exp(β0 ) ≤ E[yij ]

E[λij ] = exp(β0 + 0.5στ
2 )

E[yij ] = E[λij ]

στ
2

σ α
2 +σ e

2 σα
2

σ d
2
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Equation 32 and the mean of the observed values will give similar values, but when unbalanced, 225 

method Equation 32 is preferable. This recommendation for obtaining λ also applies to negative 226 

binomial GLMMs (see Table 1). 227 

Jensen’s inequality and the ‘second’ delta method 228 

A general form of Equation 31 is known as Jensen’s inequality,  where g is a convex 229 

function. Hence, the transformation of the mean value is equal to or larger than the mean of 230 

transformed values (the opposite is true for a concave function; that is, ; Rao 2002). In 231 

fact, whenever the function is not strictly linear, simple application of the inverse link function (or 232 

back-transformation) cannot be used to translate the mean on the latent scale into the mean value on 233 

the observed scale. This inequality has important implications for the interpretation of results from 234 

GLMMs (and also generalized linear models GLMs and linear models with transformed response 235 

variables). 236 

Although log-link GLMMs (e.g., model 5) have an analytical formula (Equation 32), this is not 237 

usually the case. Therefore, converting the latent scale values into observation-scale values requires 238 

simulation using the inverse link function. However, the delta method for bias correction can be 239 

used as a general approximation to account for Jensen’s inequality when using link functions or 240 

transformations. This application of the delta method uses a second order Taylor series expansion 241 

(Oehlert 1992; Ver Hoef 2012). A simple case of the delta method for bias correction can be written 242 

as: 243 

,
       eqn 34 244 

where d2/dx2 is a second derivative with respect to the variable x and the other symbols are as in 245 

Equations 24 and 32. By employing this bias correction delta method (with 246 

g(x ) ≤ g(x)

g(x ) ≥ g(x)

E[ f (x)] ≈ f (x) + 0.5σ τ
2 d 2

dx2
f (x)
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), we can approximate Equation 32 using the same symbols as in Equations 247 

31-33: 248 

     eqn 35 249 

The comparison between Equation 32 (exact) and Equation 35 (approximate) is shown in Appendix 250 

S3. The approximation is most useful when the exact formula is not available as in the case of a 251 

binomial GLMM with logit link (model 6): 252 

,
        eqn 36 253 

logit(pij ) = β0 + βhxhij +αi + e
h=1

k

∑
ij ,

       eqn 37 254 

,
        eqn 38 255 

,
        eqn 39 256 

where yij is the number of ‘success’ in nij trials by the ith indivdiual at the jth occasion (for binary 257 

data, nij is always 1), pij is the underlying probability of success, and the other symboles are the 258 

same as above.  259 

To obtain corresponding values between the latent scale and data (observation) scale, we need to 260 

account for Jensen’s inequality (note the logit function combines of concave and convex sections). 261 

For example, the overall intercept,  on the latent scale could be transformed not just with the 262 

inverse (anti) logit function ( logit−1(x) = exp(x) / (1+ exp(x))) but also the bias corrected 263 

approximation. For the case of the binomial GLMM, we can use this approximation below given 264 

that d2logit−1(x) / dx2 = exp(x)(1− exp(x)) / (1+ exp(x))3
: 265 

E[yij ] = E[logit−1(β0 )] ≈ exp(β0 )
1+ exp(β0 )

+ 0.5στ
2 exp(β0 )(1− exp(β0 ))

(1+ exp(β0 ))3 .
   eqn 40 266 

d2 exp(x) / dx2 = exp(x)

E[λij ] = E[exp(β0 )] ≈ exp(β0 ) + 0.5στ
2 exp(β0 )

yij ~ binomial(pij,  nij )

α i ~ Gaussian(0,  σα
2 )

eij ~ Gaussian(0,  σ e
2 )

β0
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We can replace  with any value obtained from the fixed part of the model (i.e. ). 267 

Another approximation proposed by Zeger et al. (1988) produces similar (but slightly better) 268 

estimates than Equation 40. Using our notation, this approximation can be written as: 269 

.
      eqn 41 270 

A comparison between Equations 40 and 41 is also shown in Appendix S3. This approximation 271 

uses the exact solution for the inverse probit function, which can be written for a model like model 272 

6 but using the probit link (i.e., probit(pij ) = β0 + βhxhij +αi + e
h=1

k

∑
ij
 in place of Equation 37): 273 

.       eqn 42 274 

Simulation will give the most accurate conversions when no exact solutions are available. The use 275 

of the delta method for bias correction accounting for Jensen’s inequity is a very general and 276 

versatile approach that is applicable for any distribution with any link function (see Appendix S3) 277 

and can save computation time. We note that the accuracy of the delta method (both variance 278 

approximation and bias correction) depends on the form of the function f, the conditions for and 279 

limitation of the delta method are described in Oehlert (1992). 280 

Special considerations for binomial GLMMs 281 

The observation-level variance σ ε
2  can be thought of as being added to the latent scale on which 282 

other variance components are also estimated in a GLMM (Equations 10, 15, 20, 26, 37 for models 283 

2-6). Since the proposed R2
GLMM and ICC GLMM are ratios between variance components and their 284 

additive combinations, we can show using the delta method that R2
GLMM and ICC GLMM calculated 285 

via σε
2  approximate to those of R2 and ICC on the observation (original) scale (shown in Appendix 286 

β0 β0 + βh xhij∑

E[ pij ] ≈ logit−1 β0 1+ 16 3
15π

⎛

⎝
⎜

⎞

⎠
⎟

2

σ τ
2

−1⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

E[pij ] = probit−1 β0 1+σ τ
2

−1⎛

⎝
⎜

⎞

⎠
⎟
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S4 ). In some cases, there exist specific formulas for ICC on the observation scale (Nakagawa and 287 

Schielzeth 2010). In the past, we distinguished between ICC on the latent scale and on the 288 

observation scale (Nakagawa and Schielzeth 2010). Such a distinction turns out to be strictly 289 

appropriate only for binomial distributions but not for Poisson distributions (and probably also not 290 

for other non-Gaussian distributions). This is because the property of what we have called the 291 

distribution-specific variance σ d
2  for binomial distributions (e.g. π2/3 for binomial error distribution 292 

with the logit link function) is quite different from what we have discussed as the observation-level 293 

variance σ ε
2  although these two types of variance are related conceptually (i.e., both represents 294 

variance due to non-Gaussian distributions with specific link functions). Let us explain this further.  295 

A binomial distribution with a mean of p (the proportion of successes) has a variance of p(1–p) and 296 

we find that the observation-level variance is 1/(p(1–p)) using the delta method on the logit-link 297 

function (see Table 2). This observation-level variance 1/(p(1–p)) is clearly different from the 298 

distribution-specific variance π2/3. As with the observation-level variance for the log-Poisson model 299 

(which is 1/λ and changes with λ; note that we would have called 1/λ the distribuiton-specific 300 

variance; Nakagawa & Schielzeth 2010, 2013), the observation-level variance of the binomial 301 

distribution changes as p changes (see Appendix S5), suggesting these two observation-level 302 

variances (1/λ and 1/(p(1–p))) are analogous while the distribution-specific variance π2/3 is not. 303 

Further, the minimum value of 1/(p(1–p)) is 4, which is larger than π2/3 ≈ 3.29, meaning that the 304 

use of 1/p(1–p) in R2 and ICC will always produce larger values than those using π2/3. 305 

Consequently, Browne et al. (2005) showed that ICC values (or variance partition coefficients, 306 

VPCs) estimated using π2/3 were higher than corresponding ICC values on the observation 307 

(original) scale using logistic-binomial GLMMs (see also Goldstein et al. 2002; Nakagawa and 308 

Schielzeth 2010). Then, what is π2/3? 309 

Three common link functions in binomial GLMMs (logit, probit and complementary log-log) all 310 

have corresponding distributions on the latent scale: the logistic distribution, standard normal 311 
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distribution and Gumbel distribution, respectively. Each of these distributions has a theoretical 312 

variance, namely, π2/3, 1 and π2/6, respectively (Table 2). As far as we are aware, these theoretical 313 

variances only exist for binomial distributions. It is important to notice that, for example, the 314 

meaning of 1/(p(1–p)), which is the variance on the latent scale that approximates to the variance 315 

due to binomial distributions on the observation scale is distinct from the meaning of π2/3, which is 316 

the variance of the latent distribution (i.e., the logistic distribution) according to which the original 317 

data are theoretically distributed on the logit scale. We need distinguishing these theoretical 318 

(distribution-specific) variances from the observation-level variance. Put another way, R2 and ICC 319 

values using the theoretical distribution-specific variance can rightly be called the latent (link) scale 320 

(sensu Nakagawa and Schielzeth 2010) while, as mentioned above, R2 and ICC values using the 321 

observation-level variance estimate the counterparts on the observation (original) scale (cf. de 322 

Villemereuil et al. 2016). The use of the theoretical distribution-specific variance will almost 323 

always provide different values of R2
GLMM and ICC GLMM from those using the observation-level 324 

obtained via the delta method (see Appendix S5). In any case, we should be aware that binomial 325 

GLMMS are special cases for obtaining R2
GLMM and ICC GLMM from binomial GLMMs.  326 

Worked examples: revisting the beetles 327 

In the following, we present a worked example by expanding the beetle dataset that was generated 328 

for Nakagawa and Schielzeth (2013). In brief, the dataset represents a hypothetical species of beetle 329 

that has the following life cycle: larvae hatch and grow in the soil until they pupate, and then adult 330 

beetles feed and mate on plants. Larvae are sampled from 12 different populations (‘Population’; 331 

see Fig. 1). Within each population, larvae are collected at two different microhabitats (‘Habitat’): 332 

dry and wet areas as determined by soil moisture. Larvae are exposed to two different dietary 333 

treatments (‘Treatment’): nutrient rich and control. The species is sexually dimorphic and can be 334 

easily sexed at the pupa stage (‘Sex’). Male beetles have two different color morphs: one dark and 335 

the other reddish brown (‘Morph’, labeled as A and B in Fig 1). Sexed pupae are housed in standard 336 
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containers until they mature (‘Container’). Each container holds eight same-sex animals from a 337 

single population, but with a mix of individuals from the two habitats (N[container] = 120; N[animal] = 338 

960).  339 

We have data on the five phenotypes, two of them sex-limited: (i) the number of eggs laid by each 340 

female after random mating which we had generated previously using Poisson distributions (with 341 

additive dispersion) and we revisit here for analysis with quasi-Poisson models (i.e. multiplicative 342 

dispersion), (ii) the incidence of endoparasitic infections that we generated as being negative 343 

binomial distributed, (iii) body length of adult beetles which we had generated previously using 344 

Gaussian distributions and that we revisit here for analysis with gamma distributions, (iv) time to 345 

visit five predefined sectors of an arena (employed as a measure of exploratory tendencies) that we 346 

generated as being gamma distributed, and (v) the two male morphs, which was again generated 347 

with binomial distributions. We will use this simulated dataset to estimate R2
GLMM and ICC GLMM.  348 

All data generation and analyses were conducted in R 3.3.1 (R Development Core Team). We used 349 

functions to fit GLMMs from the three R packages: 1) the glmmadmb function from glmmADMB 350 

(Fournier et al. 2012), 2) the glmmPQL function from MASS (Venables and Ripley 2002) and 3) 351 

the glmer and glmer.nb functions from lme4 (Bates et al. 2015). In Table 1, we only report results 352 

from glmmADMB because this is the only function that can fit models with all relevant 353 

distributional families. All scripts and results are provided as an electronic supplement (Appendix 354 

S6). In addition, Appendix S6 includes an example of a model using the Tweedie distribution, 355 

which was fitted by the cpglmm function from the cplm package (Zhang 2013). Notably, our 356 

approach for R2
GLMM is kindly being implemented in the rsquared function in the R package, 357 

piecewiseSEM (Lefcheck 2016). Another important note is that we often find less congruence in 358 

GLMM results from the different packages than those of linear mixed-effects models, LMM. Thus, 359 

it is recommended to run GLMMs in more than one package to check robustness of the results 360 

although this may not always be possible.  361 
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In all the models, estimated regression coefficients and variance components are very much in 362 

agreement with what is expected from our parameter settings (Table 1 and Appendix S6). When 363 

comparing the null and full models, which had ‘sex’ as a predictor, the magnitudes of the variance 364 

component for the container effect always decrease in the full models. This is because the variance 365 

due to sex is confounded with the container variance in the null model. As expected, (unadjusted) 366 

ICC values from the null models are usually smaller than adjusted ICC values from the full models 367 

because the observation-level variance (analogous to the residual variance) was smaller in the full 368 

models (implying that the denominator of Equation 10 shrinks).  However, the numerator also 369 

becomes smaller for ICC values for the container effect from the parasite, size and exploration 370 

models so that adjusted ICC values are not necessarily larger than unadjusted ICC values. 371 

Accordingly, adjusted ICC[container] is smaller in the parasite and size models but not in the 372 

exploration model. The last thing to note is that for the morph models (binomial mixed models), 373 

both R2 and ICC values are larger when using the distribution-specific variance rather than the 374 

observation-level variance, as discussed above (Table 3; also see Appendix S4). 375 

Alternatives and a cautonary note 376 

Here we extended our simple methods for obtaining R2
GLMM and ICC GLMM for Poisson and 377 

binomial GLMMs to other types of GLMMs such as negative binomial and gamma. We have 378 

described three different ways of obtaining the observational-level variance and how to obtain the 379 

key rate parameter λ for Poisson and negative binomial distributions. We discussed important 380 

considerations which arise for estimating R2
GLMM and ICC GLMM with binomial GLMMs. As we 381 

have shown, the merit of our approach is not only its ease of implementation but also that our 382 

approach encourages researchers to pay more attention to variance components at different levels. 383 

Research papers in the field of ecology and evolution often report only regression coefficients but 384 

not variance components of GLMMs (Schielzeth and Nakagawa 2013).  385 
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We would like to highlight two recent studies that provide alternatives to our approach. First, Jaeger 386 

et al. (2016) have proposed R2 for fixed effects in GLMMs, which they referred to as R2
β* (an 387 

extension of an R2 for fixed effects in linear mixed models or R2
β by Edwards et al. 2008). They 388 

show that R2
β* is a general form of our marginal R2

GLMM; in theory, R2
β* can be used for any 389 

distribution (error structure) with any link function. Jaeger et al. (2016) highlight that in the 390 

framework of R2
β*, they can easily obtain semi-partial R2, which quantifies the relative importance 391 

of each predictor (fixed effect). As they demonstrate by simulation, their method potentially gives a 392 

very reliable tool for model selection. One current issue for this approach is that implementation 393 

does not seem as simple as our approach. We note that our R2
GLMM framework could also provide 394 

semi-partial R2 via commonality analysis (see Ray-Mukherjee et al. 2014; note that unique variance 395 

for each predictor in commonality analysis corresponds to semi-partial R2;; Nimon and Oswald 396 

2013).  397 

Second, de Villemereuil et al. (2016) provided a framework with which one can estimate exact 398 

heritability using GLMMs at different scales (e.g. data and latent scales). Their method can be 399 

extended to obtain exact ICC values on the data (observation) scale, which is analogous to, but not 400 

the same as, our ICC GLMM using the observation-level variance, σε
2  described above. Further, this 401 

method can, in theory, be extended to estimate R2
GLMM on the data (observation) scale. One 402 

potential difficulty is that the method of de Villemereuli et al. is exact but that a numerical method 403 

is used to solve relevant equations so one will require a software package (e.g., the QGglmm 404 

package; de Villemereuil et al. 2016). 405 

Finally, we finish by repeating what we said at the end of our original R2 paper (Nakagawa and 406 

Schielzeth 2013). Both R2 and ICC are indices that are likely to reflect only one or a few aspects of 407 

a model fit to the data and should not be used for gauging the quality of a model. We encourage 408 

biologists use R2 and ICC in conjunctions with other indices like information criteria (e.g. AIC, BIC 409 
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and DIC), and more importantly, with model diagnostics such as checking for model assumptions, 410 

heteroscedasticity and sensitivity to outliers.  411 
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Table 1. The observation-level variance σ ε
2  for the three distributional families: quasi-Poisson (overdispersed Poisson), negative binomial and 

gamma with the three different methods for deriving σε
2
: the delta method, long-normal approximation and the trigamma function, . 

Family Distributional 
parameters  

Mean (E[y])  

Variance (var[y]) 

Link function Delta method log-normal 
approximation 

trigamma function 

Quasi-Poisson 
(OP: overdispersed 
Poisson) 

  log    

Poisson  

(when ) 

λ > 0  

ω > 0  
 square-root  -  

Negative binomial 
(NB) 

  log    

 
λ  > 0  

θ > 0  
 square-root  -  

Gamma   log   
 

ψ1

OP(λ,  ω ) E[y] = λ ω
λ

ln 1+
ω
λ

⎛
⎝⎜

⎞
⎠⎟

ψ1

λ
ω

⎛

⎝
⎜

⎞

⎠
⎟

ω =1
var[y] = λω 0.25ω

NB(λ,  θ ) E[y] = λ 1
λ

+ 1
θ

ln 1+
1

λ
+

1

θ
⎛
⎝⎜

⎞
⎠⎟

ψ1

1

λ
+ 1

θ
⎡

⎣⎢
⎤
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⎞
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 when x follows gamma distribution. In the R environment, the function, trigamma can be used to obtain .  

 

  

var[ln(x)] = ψ1(ν ) = 1/ (ν + n)
n=1

∞
∑ ψ1(ν )

 
λ > 0  

ν > 0  

inverse 

(reciprocal) 
 -

 
 

Gamma (alternative 
parameterization) 

  
 

log  
 

 

 
ν > 0 

κ > 0  

inverse 

(reciprocal) 
 -

 
 

       

var[y] = λ 2

ν
1

νλ 2

gamma(ν,  κ ) E[y] = ν
κ

1

ν
ln 1+ 1

ν
⎛
⎝⎜

⎞
⎠⎟

ψ1 ν( )

var[y] = ν
κ 2

κ 2

ν 3
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  ‘erf-1’ is the inverse of the Gauss error function, which is often denoted as ‘erf’. 

  

Table 2. The distribution-specific variance σ d
2

 
and observation-level variance σ ε

2  for binomial (and Bernoulli) distributions; note that only one 
of them should be used for obtaining R2 and ICC. 

Family Distributional 
parameters, mean 
& variance 

Link name Link function Distribution-specific 
variance  

 

Observation-level variance using the 
delta method 
(min. values and corresponding p) 

Binomial 

(Bernoulli; 

n = 1) 

binomial(p, n) 

0 < p < 1 

n > = 1 (integers) 

logit  ~ 3.29 

(logistic distribution) 

 

(min = 4; p = 0.5) 

 

 

E[y] = np 

var[y] = np(1 – p) 

probit 

( )  

1 

(standard normal 
distribution) 

 

(min ~ 1.57; p = 0.5) 

  

cloglog 

(complimentary 
log-log)

 

 
~ 1.65 

(Gumbel distribution) 

 

(min ~ 1.54;  p ~ 0.8; 

~ 2.08; p = 0.5) 

 
 

 

  

 

ln
p

1− p

⎛

⎝⎜
⎞

⎠⎟

π 2

3

1

p(1− p)

Φ(p)
2erf −1(2p −1)

2π p(1− p) exp erf−1(2 p −1)⎡⎣ ⎤⎦
2( )2

ln(− ln(1− p))

π 2

6

p

ln(1− p)( )2
(1− p)
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Table 3. Mixed-effects model analysis of a simulated dataset estimating variance components and regression slopes for nutrient manipulations on fecundity, endoparasite 
loads, body length, exploration levels and male morph types; N[population]=12, N[container]=120 and N[animal]=960. 

Model name Fecundity models (log-link) 

Quasi-Poisson mixed models  

Parasite models (log-link) 

Negative binomial mixed models  

Size models (log-link) 

Gamma mixed models  

Exploration models (log-link) 

Gamma mixed models  

Morph models (logit-link) 

Binomial (binary) mixed models 

 Null Model  Full Model  Null Model  Full Model  Null Model  Full Model  Null Model  Full Model  Null Model  Full Model  

Fixed effects b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

Intercept 1.630 

[1.379, 1.882] 

1.261 

[0.989, 1.532] 

0.766 

 [0.330, 1.202] 

1.752 

[1.282, 2.223] 

2.682 

[2.616, 2.689] 

2.737 

[2.699, 2.775] 

4.752 

 [4.555, 4.949] 

4.056 

[3.842, 4.269] 

-0.108 

[-0.718, 0.501] 

-0.740 

[-1.450, -0.030] 

Treatment 
(experiment) 

- 0.491 

[0.391, 0.591] 

- -0.768 

[-0.870, -0.667] 

- 0.033 

[0.023, 0.044] 

- 2.007 

[1.965, 2.050] 

- 0.840 

[0.422, 1.258] 

Habitat (wet) - 0.152 

[0.055, 0.249] 

- 0.700 

[0.599, 0.801] 

- 0.009 

[-0.001, 0.019] 

- -0.560 

[-0.603, -
0.518] 

- 0.414 

[0.002, 0.826] 

Sex (male) -  - 

 

- -2.198 

[-2.511, -1.884] 

- -0.213 

[-0.230, -0.196] 

- -1.105 

[-1.256, -
0.955] 

- - 

- 

Random effects  σ
2 

σ
2 σ

2 σ
2 σ

2 σ
2 σ

2 σ
2 σ

2 σ
2 

Population 0.178 0.187 0.375 0.541 0.0026 0.0039 0.071 0.104 1.002 1.111 

Container 0.042 0.059 1.976 0.613 0.0140 0.0014 0.364 0.163 0.136 0.186 

Observation-level 

(Distribution-
specific) 

0.477 0.349 0.873 0.397 0.0069 0.0064 1.664 0.118 4.010 (3.290) 4.010 (3.290) 
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Fixed factors - 0.066 - 1.479 - 0.0116 - 1.393 - 0.220 

           

  - 10.01% - 48.83% - 49.54% - 78.34% - 

 

3.98% (4.57%) 

  - 47.19% - 86.91% - 72.52% - 93.34% 3.98% (4.57%) 27.46% 
(31.55%) 

ICC[Population] 25.50% 31.47% 11.62% 34.89% 11.38% 33.17% 3.40% 26.94% 19.49% 
(22.63%;) 

20.96% 
(24.23%) 

ICC[Container] 5.98% 9.84% 61.30% 39.53% 59.57% 12.37% 17.34% 42.34% 2.67% (3.07%;) 3.50% (4.05%) 

AIC 2498.8 2412.3 4342.6 3920.5 3379.9 3139.5 11223.8 9004.3 605.5 589.6 

95 % CI (confidence intervals) were calculated by the confint function in lme4. The observation-level variance was obtained by using the trigamma function. In the Morph 
models, both the observation-level variance and distribution-specific variance were used; note that ones in brackets use the distribution-specific variance for R2 and ICC. 
ICC[Container] is not a typical ‘repeatability’ but the proportion of variance due to the container effect beyond the population variance.  

RGLMM(m)
2

RGLMM(c )
2
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Figure legends 
Figure 1. A schematic of how hypothetical datasets are obtained (see the main text for details).  
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