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ABSTRACT Fisher’s geometric model was originally introduced to argue that complex adaptations must occur in small

steps because of pleiotropic constraints. When supplemented with the assumption of additivity of mutational effects on

phenotypic traits, it provides a simple mechanism for the emergence of genotypic epistasis from the nonlinear mapping

of phenotypes to fitness. Of particular interest is the occurrence of reciprocal sign epistasis, which is a necessary con-

dition for multipeaked genotypic fitness landscapes. Here we compute the probability that a pair of randomly chosen

mutations interacts sign-epistatically, which is found to decrease with increasing phenotypic dimension n, and varies

non-monotonically with the distance from the phenotypic optimum. We then derive expressions for the mean number

of fitness maxima in genotypic landscapes composed of all combinations of L random mutations. This number increases

exponentially with L, and the corresponding growth rate is used as a measure of the complexity of the landscape. The

dependence of the complexity on the model parameters is found to be surprisingly rich, and three distinct phases char-

acterized by different landscape structures are identified. Our analysis shows that the phenotypic dimension, which is

often referred to as phenotypic complexity, does not generally correlate with the complexity of fitness landscapes and

that even organisms with a single phenotypic trait can have complex landscapes. Our results further inform the inter-

pretation of experiments where the parameters of Fisher’s model have been inferred from data, and help to elucidate

which features of empirical fitness landscapes can be described by this model.
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A fundamental question in the theory of evolutionary adap-
tation concerns the distribution of mutational effect sizes

and the relative roles of mutations of small versus large ef-
fects in the adaptive process (Orr 2005). In his seminal 1930
monograph, Ronald Fisher devised a simple geometric model
of adaptation in which an organism is described by n pheno-
typic traits and mutations are random displacements in the trait
space (Fisher 1930). Each trait has a unique optimal value and
the combination of these values defines a single phenotypic fit-
ness optimum that constitutes the target of adaptation. Because
random mutations act pleiotropically on multiple traits, the
probability that a given mutation brings the phenotype closer to
the target decreases with increasing n. Fisher’s analysis showed
that, for large n, the mutational step size in units of the distance
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to the optimum must be smaller than 1/
√

n in order for the mu-
tation to be beneficial with an appreciable probability. He thus
concluded that the evolution of complex adaptations involving
a large number of traits must rely on mutations of small effect.
This conclusion was subsequently qualified by the realization
that small effect mutations are likely to be lost by genetic drift,
and therefore mutations of intermediate size contribute most
effectively to adaptation (Kimura 1983; Orr 1998, 2000).

During the past decade Fisher’s geometric model (FGM) has
become a standard reference point for theoretical and exper-
imental work on fundamental aspects of evolutionary adap-
tation (Tenaillon 2014). In particular, it has been found that
FGM provides a versatile and conceptually simple mechanism
for the emergence of epistatic interactions between genetic mu-
tations in their effect on fitness (Martin et al. 2007; Gros et al.
2009; Blanquart et al. 2014). For this purpose two extensions
of Fisher’s original formulation of the model have been sug-
gested. First, phenotypes are assigned an explicit fitness value,
which is usually taken to be a smooth function on the trait
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space with a single maximum at the optimal phenotype. Sec-
ond, and more importantly, mutational effects on the pheno-
types are assumed to be additive. As a consequence, any de-
viations from additivity that arise on the level of fitness are
solely due to the nonlinear mapping from phenotype to fit-
ness, or, in mathematical terms, due to the curvature of the
fitness function. Because the curvature is largest around the
phenotypic optimum, epistasis generally increases upon ap-
proaching the optimal phenotype and is weak far away from
the optimum. Several recent studies have made use of the
framework of FGM to interpret experimental results on pair-
wise epistastic interactions and to estimate the parameters of
the model from data (Martin et al. 2007; Velenich and Gore 2013;
Weinreich and Knies 2013; Perfeito et al. 2014; Schoustra et al.
2016).

A particularly important form of epistatic interaction is sign
epistasis, where a given mutation is beneficial or deleterious de-
pending on the genetic background (Weinreich et al. 2005). Two
types of sign epistasis are distinguished depending on whether
one of the mutations affects the effect sign of the other but the
reverse is not true (simple sign epistasis), or whether the inter-
action is reciprocal (reciprocal sign epistasis); for a pictorial rep-
resentation of the two kinds of sign epistasis, see, for example,
Poelwijk et al. (2007). Sign epistasis can arise in FGM either be-
tween large effect beneficial mutations that in combination over-
shoot the fitness optimum, or between mutations of small fit-
ness effect that display antagonistic pleiotropy (Blanquart et al.
2014). The presence of sign epistasis is a defining feature of
genotypic fitness landscapes that are complex, in the sense
that not all mutational pathways are accessible through sim-
ple hill-climbing and multiple genotypic fitness peaks may ex-
ist (Weinreich et al. 2005; Franke et al. 2011; de Visser and Krug
2014). Specifically, reciprocal sign epistasis is a necessary con-
dition for the existence of multiple fitness peaks (Poelwijk et al.
2011; Crona et al. 2013).

Following a common practice, here a genotypic fitness land-
scape is understood to consist in the assignment of fitness val-
ues to all combinations of L haploid, biallelic loci that together
constitute the L-dimensional genotype space. A peak in such
a landscape is a genotype that has higher fitness than all its
L neighbors that can be reached by a single point mutation
(Kauffman and Levin 1987). Note that, in contrast to the con-
tinuous phenotypic space on which FGM is defined, the space
of genotypes is discrete.

Blanquart et al. (2014) showed that an ensemble of L-
dimensional genotypic landscapes can be constructed from
FGM by combining subsets of L randomly chosen mutational
displacements. Each sample of L mutations defines another re-
alization of the landscape ensemble, and the exploratory simu-
lations reported by Blanquart et al. (2014) indicate a large vari-
ability among the realized landscapes. Nevertheless some gen-
eral trends in the properties of the genotypic landscapes were
identified. In particular, as expected on the basis of the consider-
ations outlined above, the genotypic landscapes are essentially
additive when the focal phenotype representing the unmutated
wild type is far away from the optimum and become increas-
ingly rugged as the optimal phenotype is approached.

In this article we present a detailed and largely analytic
study of the properties of genotypic landscapes generated un-
der FGM. The focus is on two types of measures of land-
scape complexity, that is, the fraction of sign-epistatic pairs
of random mutations and the number of fitness maxima in

the genotypic landscape. A central motivation for our inves-
tigation is to assess the potential of FGM and related phe-
notypic models to explain the properties of empirical geno-
typic fitness landscapes of the kind that have been recently re-
ported in the literature (Szendro et al. 2013; Weinreich et al. 2013;
de Visser and Krug 2014). The ability of nonlinear phenotype-
fitness maps to explain epistatic interactions among multiple
loci has been demonstrated for a virus (Rokyta et al. 2011) and
for an antibiotic resistance enzyme (Schenk et al. 2013), but a
comparative study of several different data sets using Approx-
imate Bayesian Computation has questioned the broader ap-
plicability of phenotype-based models (Blanquart and Bataillon
2016). It is thus important to develop a better understanding of
the structure of genotypic landscapes generated by phenotypic
models such as FGM.

In the next section we describe the mathematical setting and
introduce the relevant model parameters: the phenotypic and
genotypic dimensionalities n and L, the distance of the focal
phenotype to the optimum, and the standard deviation of mu-
tational displacements. As in previous studies of FGM, specific
scaling relations among these parameters have to be imposed
in order to arrive at meaningful results for large n and L. We
then present analytic results for the probability of sign epistasis
and the behavior of the number of fitness maxima for large L,
both in the case of fixed phenotypic dimension n and for a sit-
uation where the joint limit n, L → ∞ is taken at constant ratio
α = n/L.

Similar to other probabilistic models of genotypic fit-
ness landscapes (Kauffman and Levin 1987; Weinberger
1991; Evans and Steinsaltz 2002; Durrett and Limic 2003;
Limic and Pemantle 2004; Neidhart et al. 2014), the number
of maxima generally increases exponentially with L, and we
use the exponential growth rate as a measure of genotypic
complexity. We find that this quantity displays several phase
transitions as a function of the parameters of FGM which
separate parameter regimes characterized by qualitatively
different landscape structures. Depending on the regime, the
genotypic landscapes induced by FGM become more or less
rugged with increasing phenotypic dimension. This indicates
that the role of the number of phenotypic traits in shaping the
fitness landscapes of FGM is much more subtle than has been
previously appreciated, and that the sweeping designation of
n as (phenotypic) “complexity” can be misleading. Further
implications of our study for the theory of adaptation and
the interpretation of empirical data will be elaborated in
Discussion.

Model

Basic properties of FGM

In FGM, the phenotype of an organism is modeled as a
set of n real-valued traits and represented by a vector ~y =
(y1, y2, . . . , yn) in the n dimensional Cartesian space, ~y ∈ R

n.
The fitness W(~y) is assumed to be a smooth, single-peaked func-
tion of the phenotype~y. By choosing an appropriate coordinate
system, the optimum phenotype, i.e., the combination of phe-
notypic traits with the highest fitness value, can be placed at
the origin in R

n. We also assume that the fitness W(~y) depends
on the distance to the optimum |~y| but not on the direction of
~y, which can be justified by arguments based on random ma-
trix theory (Martin 2014). The uniqueness of the phenotypic
optimum at the origin implies that W(~y) is a decreasing func-
tion of |~y|. The form of the fitness function will be specified
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below when needed. Most of the results presented in this paper
are however independent of the explicit shape of W(~y), as they
rely solely on the relative ordering of different genotypes with
respect to their fitness.

When a mutation arises the phenotype of the mutant be-

comes ~y + ~ξ, where ~y is the parental phenotype and the mu-

tational vector ~ξ corresponds to the change of traits due to the
mutation. The key result derived by Fisher (1930) concerns the
fraction Pb of beneficial mutations arising from a wild type phe-
notype located at distance d from the optimum. Assuming that

mutational displacements have a fixed length |~ξ| = r and ran-
dom directions, he showed that for n ≫ 1

Pb =
1√
2π

∫ ∞

x
e−t2/2 dt =

1

2
erfc(x/

√
2), (1)

where erfc denotes the complementary error function and x =
r
√

n/(2d). Thus, for large n the mutational step size has to be
much smaller than the distance to the optimum, r ∼ d/

√
n ≪ d,

for the mutation to have a chance of increasing fitness.

As has become customary in the field, we here assume
that the mutational displacements are independent and iden-
tically distributed (i.i.d.) random variables drawn from a n-
dimensional Gaussian distribution with zero mean. The covari-
ance matrix can be taken to be of diagonal form σ2 I, where I
is the n-dimensional identity matrix and σ2 is the variance of
a single trait (Blanquart et al. 2014). In the limit n → ∞ the
form of the distribution of the mutational displacements be-
comes irrelevant owing to the central limit theorem, and there-
fore Fisher’s result Equation 1 holds also in the present setting
of Gaussian mutational displacements of mean size r = σ

√
n

(Waxman and Welch 2005; Ram and Hadany 2015); an explicit
derivation will be provided below. Because lengths in the phe-
notype space can be naturally measured in units of σ, the pa-
rameters d and σ should always appear as the ratio d/σ as can
be seen in Equation 1. Thus, without loss of generality, we can
set σ = 1. In the following we denote the (scaled) wild type

phenotype by ~Q, its distance to the optimum by

Q = |~Q| = d

σ
, (2)

and draw the displacement vectors ~ξ from the n-dimensional

Gaussian p(~ξ) with unit covariance matrix.

By normalizing phenotypic distances to the standard devia-
tion σ of the mutational effect on a single trait, we are adopt-
ing a particular pleiotropic scaling that has been referred to
as the “Euclidean superposition model” (Wagner et al. 2008;
Hermisson and McGregor 2008). An alternative choice which
is closer to Fisher’s original formulation but appears to have
less empirical support is the “total effect model”, wherein the
total length r of the mutational displacements is taken to be in-
dependent of n. Since r = σ

√
n, this implies that the single trait

effect size decreases with n as σ ∼ 1/
√

n. As a consequence the
parameter Q defined by Equation 2 becomes n-dependent and
increases as

√
n, provided d does not depend on n (Orr 2000).

The results presented below will always be given in terms of
ratios of the basic parameters of FGM, such that their transla-
tion to the total effect model is in principle straightforward. We
will nevertheless explicitly point out instances where the two
settings give rise to qualitatively different behaviors.

Figure 1 Examples of three-dimensional genotypic fitness
landscapes induced by FGM with two phenotypic dimensions
(L = 3 and n = 2). The panels show the projection of the
discrete genotype space onto the phenotype plane, where the
phenotypic optimum is represented by a black dot. In the left
panel the binary sequence notation for genotypes is indicated.
The wild type genotype 000, marked by a green triangle, is lo-
cated at distance Q from the phenotypic optimum. The nodes
represented by red squares are local fitness maxima of the
genotypic landscapes, as can be seen from the contour lines
of constant fitness. In the right panel the mutant phenotypes
overshoot the optimum, whereas in the left panel they do not.

The genotypic fitness landscape induced by FGM

In order to study epistasis within FGM, Fisher’s original def-
inition has to be supplemented with a rule for how the ef-
fects of multiple mutations are combined. Based on earlier
work (Lande 1980) in quantitative genetics, Martin et al. (2007)
introduced the assumption that mutations act additively on
the level of the phenotype. Thus the phenotype arising from

two mutations ~ξ1, ~ξ2 applied to the wild type ~Q is simply

given by ~Q + ~ξ1 + ~ξ2. This definition suffices to associate an
L-dimensional genotypic fitness landscape to any set of L mu-

tational displacements ~ξ1,~ξ2, . . . ,~ξL (Blanquart et al. 2014). For
this purpose the haploid genotype τ is represented by a binary
sequence with length L, τ = (τ1, τ2, . . . , τL) with τi = 1 (τi = 0)
in the presence (absence) of the i’th mutation. For the wild type
τi = 0 for all i, and in general the phenotype vector associated
with the genotype τ reads

~z(τ) = ~Q +
L

∑
i=1

τi
~ξi. (3)

Two examples illustrating this genotype-phenotype map and
the resulting genotypic fitness landscapes with L = 3 and n = 2
are shown in Figure 1.

Since fitness decreases monotonically with the distance to
the optimum phenotype, a natural proxy for fitness is the nega-
tive squared magnitude of the phenotype vector

− |~z(τ)|2 = −|~Q|2 − 2
L

∑
i=1

(~Q ·~ξi)τi −
L

∑
i,j=1

(~ξi ·~ξ j)τiτj, (4)

where ~x ·~y denotes the scalar product between two vectors ~x
and ~y. This quantity is thus seen to consist of a part that is ad-
ditive across loci with coefficients given by the scalar products
~Q · ξi and a pairwise epistatic part with coefficients ~ξi ·~ξ j.

It is instructive to decompose Equation 4 into contributions
from the mutational displacements parallel and perpendicular
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to ~Q. Writing ~ξi = ξ
‖
i Q−1~Q +~ξ⊥i with ~Q · ~ξ⊥i = 0, Equation 4

can be recast into the form

− |~z(τ)|2 = −
(

Q +
L

∑
i=1

ξ
‖
i τi

)2

−
L

∑
i,j=1

(~ξ⊥i ·~ξ⊥j )τiτj. (5)

The first term on the right hand side contains both additive and
epistatic contributions associated with displacements along the
~Q-direction. The second term is dominated by the diagonal
contributions with i = j and is of order L(n − 1) because

|~ξ⊥i |2 = n − 1 on average.
We now show how the first term on the right hand side of

Equation 5 can be made to vanish for a range of Q. For this pur-
pose consider the subset of phenotypic displacement vectors for

which the component ξ
‖
i in the direction of ~Q is negative. There

are on average L/2 such mutations, and the expected value of
each component is

2
∫ 0

−∞
dy

y√
2π

e−y2/2 = −
√

2

π
≡ −2q0, (6)

where the factor 2 in front of the integral arises from condition-

ing on ξ
‖
i < 0. Setting τi = 1 for s out of these L/2 vectors and

τi = 0 for all other mutations, the sum inside the brackets in
Equation 5 becomes approximately equal to −2q0s which can-
cels the Q-term for s = Q/2q0. Since s can be at most L/2 in
a typical realization, such genotypes can be constructed with a
probability approaching unity provided Q < q0L.

We will see below that the structure of the genotypic fitness
landscapes induced by FGM depends crucially on whether or
not the phenotypes of multiple mutants are able to closely ap-
proach the phenotypic optimum. Assuming that the contribu-
tions from the perpendicular displacements in Equation 5 can
be neglected, which will be justified shortly, the simple argu-
ment given above shows that a close approach to the optimum
is facile when Q < q0L but becomes unlikely when Q ≫ q0L.
This observation hints at a possible transition between different
types of landscape topographies at some value of Q which is
proportional to L. The existence and nature of this transition is
a central theme of this paper.

Scaling limits

Since we are interested in describing complex organisms with
large phenotypic and genotypic dimensions, appropriate scal-
ing relations have to be imposed to arrive at meaningful asymp-
totic results. Three distinct scaling limits will be considered.

(i) Fisher’s classic result (Equation 1) shows that the distance
of the wild type from the phenotypic optimum has to be in-
creased with increasing n in order to maintain a nonzero frac-
tion of beneficial mutations for n → ∞. In our notation Fisher’s
parameter is

x =
n

2Q
(7)

and hence Fisher scaling implies taking n, Q → ∞ at fixed ratio
n/Q. We will extend Fisher’s analysis by computing the prob-
ability of sign epistasis between pairs of mutations for fixed x
and large n, which amounts to characterizing the shape of geno-
typic fitness landscapes of size L = 2.

(ii) We have argued above that the distance towards the phe-
notypic optimum that can be covered by typical multiple mu-
tations is of order L, and hence the limit L → ∞ is naturally

accompanied by a limit Q → ∞ at fixed ratio

q =
Q

L
. (8)

From a biological point of view one expects that L ≫ n ≫ 1,
which motivates to consider the limit L, Q → ∞ at constant phe-
notypic dimension n. Under this scaling the first term on the
right hand side of Equation 5 is of order L2, whereas the contri-
bution from the perpendicular displacements is only (n − 1)L.
Thus in this regime the topography of the fitness landscape
is determined mainly by the one-dimensional mutational dis-

placements in the ~Q-direction, which is reflected by the fact that
the genotypic complexity is independent of n to leading order
and coincides with its value for the case n = 1, in which the
perpendicular contribution in Equation 5 does not exist (see Re-

sults).
(iii) By contrast, the perpendicular displacements play an im-

portant role when both the phenotypic and genotypic dimen-
sions are taken to infinity at fixed ratio

α =
n

L
. (9)

Combining this with the limit Q → ∞ at fixed q = Q/L, both
terms on the right hand side of Equation 5 are of the same order
∼ L2. Fisher’s parameter (Equation 7) is then also a constant
given by x = α/(2q).

Preliminary considerations about genotypic fitness maxima

To set the stage for the detailed investigation of the number
of genotypic fitness maxima in Results, it is useful to develop
some intuition for the behavior of this quantity based on the ele-
mentary properties of FGM that have been described so far. For
this purpose we consider the probability Pwt for the wild type
to be a local fitness maximum, which is equal to the probabil-
ity that all the L mutations are deleterious. Since mutations are
statistically independent, we have

Pwt = [1 − Pb]
L = 2−L

[
1 + erf(x/

√
2)
]L

, (10)

where erf = 1 − erfc is the error function. Under the (highly
questionable) assumption that this estimate can be applied to
all 2L genotypes in the landscape, we arrive at the expression

Nwt = 2LPwt =
[
1 + erf(x/

√
2)
]L

(11)

for the expected number of genotypic fitness maxima.
Consider first the scaling limit (ii), where x = n/(2Q) =

n/(2qL) → 0. Expanding the error function for small argu-
ments as erf(y) ≈ 2y/

√
π we obtain

Nwt ≈
[

1 +
2x√
2π

]L

→ exp

(
q0n

q

)
(12)

for L → ∞, where q0 = 1/
√

2π was defined in Equation 6.
We will show below that this expression correctly captures the
asymptotic behavior for very large q but generally grossly un-
derestimates the number of maxima. The reason is that for mod-
erate values of q (in particular for q < q0) the relevant mutant
phenotypes are much closer to the origin than the wild type,
which entails a mechanism for generating a large number of fit-
ness maxima that grows exponentially with L.

Such an exponential dependence on L is expected from Equa-
tion 11 in the scaling limit (iii), where x = α/(2q) is a nonzero
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Table 1 List of Mathematical Symbols

Symbols Description

n Number of phenotypic traits, also referred to as phenotypic dimension.

L Length of the binary genetic sequence, also referred to as genotypic dimension.

α Ratio of phenotypic to genotypic dimension (α = n/L).

~Q, Q n-dimensional vector ~Q representing the wild type phenotype and its magnitude Q = |~Q|.
~q, q Wild type phenotype vector in units of L (~q = ~Q/L) and its magnitude (q = |~q|).

τ Genotype represented by a binary sequence of length L.

τi Binary number indicating absence (0) or presence (1) of a mutation at site i (i = 1, . . . , L) of the genotype τ.

~z(τ) , z(τ) Phenotype vector corresponding to the genotype τ (Equation 3) and its magnitude z = |~z|.
~ξ, ξ Random phenotypic displacement vector representing a mutation and its magnitude ξ = |~ξ|.
p(~ξ) Probability density of the random vector ~ξ. In this paper, the density is Gaussian with unit covariance matrix .

x Fisher’s scaling parameter; in our notation x = n
2Q .

N Total number of fitness maxima in a genotypic fitness landscape averaged over all realizations of sets of ~ξ’s.

Σ∗ Genotypic complexity defined as the ratio of lnN to L for L → ∞ (Equation 13).

qc Transition point of q that separates regimes I and II.

q0 Half of the average mutational displacement ξi of a single trait conditioned on being positive (q0 = 1/
√

2π).

ρ Fraction of mutations that are present in a genotype τ, ρ = L−1 ∑
L
i=1 τi.

ρ∗ Mean value of ρ of a local maximum, also referred to as mean genotypic distance from the wild type.

z∗ Mean value of z(τ) of a local maximum, also referred to as mean phenotypic distance from the optimum.

constant and the expression in the square brackets is larger than
1. Although this general prediction is confirmed by the detailed
analysis for this case, the behavior of the number of maxima
predicted by Equation 11 will again turn out to be valid only
when q is very large. In particular, whereas Equation 11 is an
increasing function of α for any q, we will see below that the
expected number of maxima actually decreases with increas-
ing phenotypic dimension (hence increasing α) in a substantial
range of q. In qualitative terms, this can be attributed to the
effect of the perpendicular displacements in Equation 5, which
grows with α and makes it increasingly more difficult for the
mutant phenotypes to closely approach the origin.

The observation that the number of genotypic fitness max-
ima grows exponentially with L in most cases motivates to
make use of the corresponding growth rate as a measure of the
ruggedness of the landscape. We therefore define the genotypic
complexity Σ∗ through the limiting relation

Σ∗ = lim
L→∞

lnN
L

, (13)

where N is the average number of genotypic fitness maxima and
L is the sequence length. Since the total number of binary geno-
types is 2L, the complexity is bounded from above by ln 2. If any
genotype had the same probability Pmax of being a fitness max-
imum (which is in fact not the case for FGM), we could write
N = 2LPmax and hence Pmax ∼ exp[−(ln 2 − Σ∗)L].

Data availability

The authors state that all data necessary for confirming the con-
clusions presented in the article are represented fully within

the article. All numerical calculations including simulations1

described in this work were implemented in Mathematica and
C++. All relevant source codes are available upon request.

Results

Preliminary note

In the following sections our results on the structure of geno-
typic fitness landscapes induced by FGM are stated in precise
mathematical terms and the key steps of their derivation are
outlined, with some technical details relegated to the Appen-
dices. In order to facilitate the navigation through the inevitable
mathematical formalism, we display the definitions of the most
commonly used mathematical symbols in Table 1. Moreover,
we provide numbered summaries at the end of each subsection
which state the main results without resorting to mathematical
expressions.

Sign epistasis

We first study the local topography of the fitness landscape
around the wild type, focusing on the epistasis between two

random mutations with phenotypic displacements ~ξ and ~η.
Since fitness is determined by the magnitude of a phenotypic
vector, i.e., the distance of the phenotype from the origin, the
epistatic effect of the two mutations can be understood by ana-

lyzing how the magnitudes of the four vectors ~Q, ~Q +~ξ, ~Q +~η

1 When counting the number of local genotypic maxima, we checked all geno-
types and counted the number exactly for a randomly realized landscape, then
took an average.
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A B

Figure 2 Domains in the (R2, R)-plane contributing to differ-
ent types of epistasis: magnitude epistasis (ME), simple sign
epistasis (SSE) and reciprocal sign epistasis (RSE). The two
panels illustrate the two cases: (A) R1 > 0 and (B) R1 < 0.
The red solid lines indicate R = R1 + R2. The labeling of the
domains D1, . . . , D6 is used in the derivation in Appendix B.

and ~Q +~ξ +~η are ordered. To this end, we introduce the quan-
tities

R1 ≡ 1

n

(
|~ξ + ~Q|2 − Q2

)
, R2 ≡ 1

n

(
|~η + ~Q|2 − Q2

)
,

R ≡ 1

n

(
|~ξ +~η + ~Q|2 − Q2

)
, (14)

where division by n guarantees the existence of a finite limit for
n → ∞. The sign of these quantities determines whether a mu-
tation is beneficial or deleterious. For example, if R1 < 0, the

mutation ~ξ is beneficial; if R > 0 the two mutations combined
together confer a deleterious effect; and so on. We will see later
that R1,2 and R are actually closely related to the selection coef-
ficients of the respective mutations.

We proceed to express the different types of pairwise epis-
tasis defined by Weinreich et al. (2005) and Poelwijk et al. (2007)
in terms of conditions on the quantities defined in Equation 14.
Without loss of generality we assume R1 < R2 and consider
first the case where both mutations are beneficial, R1 < R2 < 0.
Then magnitude epistasis (ME), the absence of sign epistasis,
applies when the fitness of the double mutant is higher than
that of each of the single mutants, i.e., R < R1 < R2 < 0. Simi-
larly for two deleterious mutations the condition for ME reads
R > R2 > R1 > 0. When one mutant is deleterious and the
other beneficial, in the case of ME the double mutant fitness
has to be intermediate between the two single mutants, which
implies that R1 < R < R2 when R2 > 0 > R1.

The condition for reciprocal sign epistasis (RSE) reads R >

R2 > R1 when both single mutants are beneficial and R < R1 <

R2 when both are deleterious, and the remaining possibility
R1 < R < R2 corresponds to simple sign epistasis (SSE) be-
tween two mutations of the same sign. If the two single mutant
effects are of different signs, RSE is impossible and SSE applies
when R < R1 < 0 < R2 or R > R2 > 0 > R1. Figure 2
depicts the different categories of epistasis as regions in the
(R2, R)-plane. Note that the corresponding picture for R1 > R2

is obtained by exchanging R1 ↔ R2.

To find the probability of each epistasis, we require the joint
probability density P(R1, R2, R). In Appendix A it is shown

that

P(R1, R2, R) =
x2n1/2

4
√

2π3/2
e−

1
8 n(−R+R1+R2)2− x2

2 ((R1−1)2+(R2−1)2)

×
(

1 + O

(
1

n

))
, (15)

which can be obtained rather easily by resorting to the cen-
tral limit theorem (CLT). The applicability of the CLT follows
from the fact that R1,2 and R are sums of a large number
of independent terms for n → ∞ (Waxman and Welch 2005;
Ram and Hadany 2015). According to the CLT, it is sufficient
to determine the first and second cumulants of these quan-
tities. Denoting averages by angular brackets, we find the

mean 〈Ri〉 = 1, the variance
〈

R2
i

〉 − 〈Ri〉2 = 1/x2, and
the covariance 〈R1R2〉 − 〈R1〉 〈R2〉 = 0 (i = 1, 2). Similarly,
the corresponding quantitites evaluated for R − R1 − R2 are

〈R − R1 − R2〉 = 0,
〈
(R − R1 − R2)

2
〉− 〈R − R1 − R2〉2 = 4/n,

and 〈(R − R1 − R2)Ri〉 − 〈R − R1 − R2〉 〈Ri〉 = 0 (i = 1, 2).
With an appropriate normalization constant, this leads directly
to Equation 15.

As a first application, we rederive Fisher’s Equation 1 by in-
tegrating P(R1, R2, R) over the region R1 < 0 for all R2 and R,
which indeed yields

Pb =
∫ 0

−∞
dR1

∫ ∞

−∞
dR2

∫ ∞

−∞
dRP(R1, R2, R) =

1

2
erfc

(
x√
2

)
.

An immediate conclusion from the form of P(R1, R2, R) is that
it is unlikely to observe sign epistasis for large n, because
P(R1, R2, R) becomes concentrated along the line R = R1 + R2

as n increases. As can be seen in Figure 2, this line touches
the region of SSE in one point for R1 < 0, whereas it main-
tains a finite distance to the region of RSE everywhere. This
indicates that the probability of reciprocal sign epistasis de-
cays more rapidly with increasing n than the probability of sim-
ple sign epistasis. Moreover, one expects the latter probability
to be proportional to the width of the region around the line
R = R1 + R2 where the joint probability in Equation 15 has ap-
preciable weight, which is of order 1/

√
n.

To be more quantitative, we need to integrate P(R1, R2, R)
over the domains in Figure 2 corresponding to the different cat-
egories of epistasis. In Appendix B, we obtain the asymptotic
expressions

PRSE =
2x2

πn
e−x2

+ O(n−3/2), (16)

PSSE =
4x

π
√

n
e−x2/2 + O

(
n−1

)
, (17)

for the probabilities of reciprocal (PRSE) and simple (PSSE) sign
epistasis. Due to the non-linearity of the phenotype-fitness
map, FGM does not allow for strictly non-epistatic combina-
tion of fitness effects. The probability of magnitude epistasis,
therefore, is given by PME = 1 − PRSE − PSSE. Interestingly, the
probability of sign epistasis varies non-monotonically with x.
To confirm our analytic results, we compare our results with
simulations in Figure 3, which shows an excellent agreement.

Similarly, we can calculate the probabilities of sign epistasis
conditioned on both mutations being beneficial, which in our
setting means R2 < 0. The conditioning requires normalization
by the unconditional probability of two random mutations be-
ing beneficial, which is given by the square of Pb in Equation 1.
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Figure 3 Comparison of analytic results for the probability of
epistasis with simulations. Depicted are probabilities of simple
(PSSE) and reciprocal (PRSE) sign epistasis between two ran-
domly chosen mutations among nearest neighbor genotypes
of the wild type (A) as functions of n for fixed Fisher parame-
ter x = 0.5 and (B) as function of x for fixed phenotypic dimen-
sion n = 640. For each parameter set, 104 randomly generated
landscapes were analyzed. The asymptotic expressions pro-
vide accurate approximations even for moderate n > 10. The
non-monotonic behavior with respect to x means that the prob-
abilities are non-monotonic functions of Q for fixed n and vice
versa.

Hence

Pb
RSE =

2Pr(D1)

P2
b

≈ 4x2

πn erfc
(

x/
√

2
)2

e−x2
(18)

and

Pb
SSE =

2Pr(D5)

P2
b

≈ 4x

π
√

n erfc
(

x/
√

2
) e−x2/2, (19)

where Pr(Di) denotes the integral of the joint probability den-
sity over the domain Di in Figure 2 (see Appendix B).

As anticipated from the form of Equation 15, the fraction of
sign epistatic pairs of mutations decreases with increasing phe-
notypic dimension n, and this decay is faster for reciprocal sign
epistasis (∼ 1/n) than for simple sign epistasis (∼ 1/

√
n). At

first glance this might seem to suggest that FGM has little poten-
tial for generating rugged genotypic fitness landscapes. How-
ever, as we will see below, the results obtained in this section ap-
ply only to the immediate neighborhood of the wild type pheno-
type. They are modified qualitatively in the presence of a large
number of mutations that are able to substantially displace the
phenotype and allow it to approach the phenotypic optimum.

As a slight variation to the previous setting, one may con-
sider the fraction of sign epistasis conditioned on the two sin-
gle mutations to have the same selection strength, as recently
investigated by Schoustra et al. (2016). In our notation this im-
plies that R1 = R2 ≡ R̃, and it is easy to see that sign epistasis
is always reciprocal in this case. If the two mutations are bene-
ficial R̃ < 0, and the condition for (reciprocal) sign epistasis is
R > R̃. The corresponding probability is

P̃RSE(R̃) =

∫ ∞

R̃ P(R̃, R̃, R) dR∫ ∞

−∞
P(R̃, R̃, R) dR

=
1

2
erfc

(
−
√

nR̃

2
√

2

)
. (20)

Following the same procedure for deleterious mutations (R̃ >

0) one finds that the probability is actually symmetric around
R̃ = 0 and hence depends only on |R̃|.

In order to express P̃RSE in terms of the selection coefficient
of the single mutations we introduce a Gaussian phenotypic fit-
ness function of the form

W(~y) = W0 exp(−λ|~y|2), (21)
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Figure 4 Probability of reciprocal sign epistasis P̃RSE condi-
tioned on the selection coefficients S of the two single muta-
tions to be equal and positive. Here, the fitness of a phenotype
~y is assumed to be W(~y) = W0 exp(−λ|~y|2), where the param-
eter λ is related to the maximal beneficial selection coefficient
S0 through the relation S0 = λQ2. Dashed lines depict the
asymptotic expression Equation 23, and solid lines were ob-
tained numerically using the Gaussian approximation for the
distribution of epistasis developed by Schoustra et al. (2016).

where λ > 0 is a measure for the strength of selection. The

selection coefficient of a mutation with phenotypic effect ~ξ is
then given by

S = ln

[
W(~Q +~ξ)

W(~Q)

]
= −λ

(
|~Q +~ξ|2 − |~Q|2

)
= −λnR̃. (22)

To fix the value of λ we note that the largest possible selection
coefficient, which is achieved for mutations that reach the phe-
notypic optimum, is S0 = λQ2, and hence R̃ is related to the

selection coefficient through R̃ = − Q2

n
S
S0

. With this substitu-
tion the result in Equation 20 becomes

P̃RSE(S) =
1

2
erfc

(
n3/2

8
√

2x2

|S|
S0

)
. (23)

The probability of sign epistasis conditioned on selection

strength takes on its maximal value P̃RSE = 1
2 in the neutral

limit S → 0 and decreases monotonically with |S|. Similar to
the results of Equation 16, Equation 17 and Equation 18 for un-
constrained mutations, it also decreases with increasing pheno-
typic dimension n when S and x are kept fixed.

In a previous numerical study carried out at finite Q and n
it was found that P̃RSE varies non-monotonically with S for the
case of beneficial mutations, and displays a second peak at the
maximum selection coefficient S = S0 (Schoustra et al. 2016).
The two peaks were argued to reflect the two distinct mecha-
nisms giving rise to sign epistasis within FGM (Blanquart et al.
2014). Mutations of small effect correspond to phenotypic dis-
placements that proceed almost perpendicular to the direction
of the phenotypic optimum, and sign epistasis is generated
through antagonistic pleiotropy. On the other hand, for mu-
tations of large effect the dominant mechanism for sign epis-
tasis is through overshooting of the phenotypic optimum. Be-
cause of the Fisher scaling implemented in this section with
Q, n → ∞ at fixed x = n/(2Q), the second class of mutations
cannot be captured by our approach and only the peak at small
S remains. Figure 4 (A) shows the full two-peak structure for a
few representative values of n, and Figure 4 (B) illustrates the
convergence to the asymptotic expression Equation 23 for the
left peak. Using the results of Schoustra et al. (2016), it can be
shown that the right peak becomes a step function for n → ∞,
displaying a discontinuous jump from P̃RSE = 0 to P̃RSE = 1 at
S/S0 = 8/9 = 0.888 . . . .
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Figure 5 Illustration of the condition for a genotype to be a
local fitness maximum. The black circle encloses phenotypes
that have higher fitness than the focal phenotype~z(τ). For τ
to be a genotypic fitness maximum, both a phenotype with a
further mutation (dash-dotted green arrow) and a phenotype
without one of the mutations in τ (red segment and blue dot-
ted arrows) should lie outside the circle.

Summary 1. When the phenotypic dimension n is large and the
Fisher parameter x is moderate, the probability of reciprocal
sign epistasis decays as 1/n, while that of simple sign epistasis
decays as 1/

√
n. Although these probabilities decrease mono-

tonically with n at fixed x, they have a non-monotonic behavior
as a function of x: For small x they increase with x and for large
x they decrease with x (see Figure 3). Under the pleiotropic scal-
ing adopted in this work this implies that the probabilities are
non-monotonic function of the wild type distance Q at fixed n
and vice versa. In contrast, under the total effect model, where
both the wild type distance Q and x scale as

√
n, the probabili-

ties decrease monotonically and exponentially with n.

Genotypic complexity at fixed phenotypic dimension

In this section, we are interested in the number of local maxima
in the genotypic fitness landscape. We focus on the expected
number of maxima, which we denote by N , and analyze how
this quantity behaves in the limit of large genotypic dimension,
L → ∞, when the phenotypic dimension n is fixed. For the sake
of clarity, the (unique) maximum of the phenotypic fitness land-
scape will be referred to as the phenotypic optimum throughout.

The number of local fitness maxima. Since fitness decreases
monotonically with the distance to the phenotypic optimum, a
genotype τ is a local fitness maximum if the corresponding phe-
notype defined by Equation 3 satisfies

|~z(τ)| < |~z(τ) + (1 − 2τi)~ξi|, (24)

for all 1 ≤ i ≤ L. The phenotype vector appearing on the right
hand side of this inequality arises from~z(τ) either by removing
a mutation vector that is already part of the sum in Equation 3
(τi = 1) or by adding a mutation vector that was not previously
present (τi = 0). The condition Equation 24 is obviously always
fulfilled if~z(τ) = 0, that is, if the phenotype is optimal, and we
will see that in general the probability for this condition to be
satisfied is larger, the more closely the phenotype approaches
the origin. A graphical illustration of the condition Equation 24
is shown in Figure 5.

The ability of a phenotype~z(τ) to approach the origin clearly

depends on the number s = ∑
L
i=1 τi of mutant vectors it is com-

posed of, and all phenotypes with the same number of muta-
tions are statistically equivalent. The expected number of fit-

ness maxima can therefore be decomposed as

N =
L

∑
s=0

(
L

s

)
Rs(L), (25)

where (L
s) is the number of possible combinations of s out of L

mutation vectors and Rs(L) is the probability that a genotype
with s mutations is a fitness maximum. The latter can be written
as

Rs(L) =
∫

n
d~z

[
L

∏
i=s+1

∫

D(−~z)
d~ξi p(~ξi)

]
×

[
s

∏
i=1

∫

D(~z)
d~ξi p(~ξi)

]
δ

(
~z − ~Q −

s

∑
i=1

~ξi

)
, (26)

with

D(~y) ≡
{
~ξ ∈ R

n
∣∣∣ |~ξ −~y| > |~y|

}
. (27)

Here and below,
∫

n stands for the integral over R
n.

Equation 26 can be understood as follows. First, the delta

function δ
(
~z − ~Q − ∑

s
i=1

~ξi

)
constrains ~z to be the phenotype

of τ as defined in Equation 3. Next, the integration domains of

the ~ξi’s reflect the condition in Equation 24. Assuming without
loss of generality that the L genetic loci are ordered such that
τi = 1 for i ≤ s and τi = 0 for i > s, the maximum condition for
i ≤ s requires |~z| < |~z − ~ξi|, so the integration domain should

be D(~z), whereas for i > s the condition is |~z| < |~z + ~ξi|, corre-
sponding to the integration domain D(−~z). Using the integral
representation of the delta function

δ(~y) =
1

(2π)n

∫

n
d~k exp

(
i~k ·~y

)
, (28)

we can write

Rs(L) =
∫

n

∫

n

d~zd~k

(2π)n
exp

[
i~k ·
(
~z − ~Q

)]
F(~k,~z)s F(0,−~z)L−s,

(29)

where

F(~k,~z) ≡
∫

D(~z)
d~ξ p(~ξ) exp

(
−i~k ·~ξ

)
. (30)

It was argued on qualitative grounds in Model that phenotypes
that approach arbitrarily close to the origin are easily generated
when the scaled wild type distance q is small, but they become
rare for large q. As a consequence, it turns out that the main
contribution to the integral over ~z in Equation 29 comes from
the region around the origin ~z = 0 for small q but shifts to a

distance z ∼ L along the ~Q-direction for large q. To account
for this possibility, it is necessary to divide the integral domain
into two parts |~z| < z0 and |~z| > z0, where z0 is an arbitrary
non-zero number with z0/L → 0 as L → ∞. Thus, we write
Rs(L) as

Rs(L) = R<
s (L) +R>

s (L), (31)

where

R<
s (L) =

∫

|~z|<z0

d~z
∫

n

d~k

(2π)n ei~k·(~z−~Q)F(~k,~z)sF(0,−~z)L−s,

R>
s (L) =

∫

|~z|>z0

d~z
∫

n

d~k

(2π)n
ei~k·(~z−~Q)F(~k,~z)sF(0,−~z)L−s, (32)
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Figure 6 Plots of mean number of local maxima N as a func-
tion of the genotypic dimension L for q = 0, 0.2, 0.4, and 0.6
with n = 1 on a semi-logarithmic scale. Data from numerical
simulations are represented as dots, and the analytical predic-
tion Equation 42 is shown as solid lines. Each dot represents
the average over 105 realizations of landscapes. In this parame-
ter regime, N grows exponentially with L and the growth rate
(i.e., the slopes of the lines) decreases with increasing q.

and correspondingly define N< and N> as

N< = ∑
s

(
L

s

)
R<

s (L), N> = ∑
s

(
L

s

)
R>

s (L). (33)

The total number of local maxima is then N = N< +N>.

Regime I. We first consider R<
s (L). Expanding F(~k,~z) around

the origin~z = 0, we show in Appendix C that

R<
s (L) ≈ s−n/2 exp

[−Q2/(2s)
]

s exp[−Q2/(2s2)] + L − s
. (34)

For an interpretation of Equation 34 it is helpful to refer to Fig-

ure 5. Note first that the probability that~z = ~Q + ∑
s
i=1

~ξi lies in
the ball |~z| < ζ with radius ζ ≪ 1 is

Prob(|~z| < ζ) ≈ Vn

(2π)n/2
s−n/2 exp

[
−Q2/(2s)

]
, (35)

where Vn(ζ) ∼ ζn is the volume of the ball. We need to es-
timate how small ζ has to be for τ to be a local fitness maxi-
mum with an appreciable probability. Since the s random vec-
tors contributing to ~z are statistically equivalent, it is plausi-

ble to assume that their average component parallel to ~Q is

ξ
‖
i ≈ −Q/s. We further assume that the conditional probabil-

ity density p̃s(~ξ) of these vectors, conditioned on their sum ~z
reaching the ball around the origin, can be approximated by a
Gaussian, which consequently has the form

p̃s(~ξ) ≈
1

(2π)n/2
exp


− 1

2

∣∣∣∣∣
~ξ +

~Q

s

∣∣∣∣∣

2

 . (36)

For ~z to be a phenotype vector of a local maximum, all these
random vectors should lie in the region D(~z) and the remaining
(unconstrained) L − s vectors should lie in D(−~z). This event
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Figure 7 Comparison of simulation results (symbols) of the
mean number of local maxima N with analytic approxima-
tions (lines) for q > qc. Each symbol is the result of averaging
over 2 × 106 realizations. (A) N is shown to increase with n for
fixed q. (B) N is shown to decrease with q for fixed n. (C) De-
viation of the analytic expression from the simulation results,

defined as 1 − Ndata
Ntheory

, is depicted as a function of L on a double

logarithmic scale. The phenotypic dimension for this panel is
n = 4, where the largest deviations are observed in panel A.
The deviation decreases inversely with L as indicated by the
black dashed line with slope −1.

happens with probability

(∫

D(~z)
d~ξ p̃s(~ξ)

)s (∫

D(−~z)
d~ξ p(~ξ)

)L−s

≈
{

1 − Vn

(2π)n/2
exp[−Q2/(2s2)]

}s (
1 − Vn

(2π)n/2

)L−s

≈ exp

[
− Vn

(2π)n/2

{
s exp[−Q2/(2s2)] + L − s

}]
. (37)

Thus, we can estimate the typical value of ζ as the solution of

Vn(ζ)

(2π)n/2
≈
[
s exp[−Q2/(2s2)] + L − s

]−1
, (38)

which, combined with Equation 35, indeed gives Equation 34.
To find the asymptotic behavior of N< for large L, we use

Stirling’s formula in Equation 33 and approximate the summa-
tion over s by an integral over ρ ≡ s/L. This yields

N< ≈
∫ 1

0
dρ

1

Ln/2ρn/2

eLΣ(ρ)
√

2πLρ(1 − ρ)

1

1 − ρ + ρe
− q2

2ρ2

, (39)

where the exponent Σ(ρ) is given by

Σ(ρ) ≡ −ρ ln ρ − (1 − ρ) ln(1 − ρ)− q2

2ρ
. (40)

Under the condition L ≫ 1, the remaining integral with re-
spect to ρ can be performed by expanding Σ(ρ) to second order
around the saddle point ρ∗ determined by the condition

0 =
∂

∂ρ
Σ(ρ)

∣∣∣∣
ρ=ρ∗

=
q2

2(ρ∗)2
− ln

ρ∗

1 − ρ∗
. (41)
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Performing the resulting Gaussian integral with respect to ρ one
finally obtains

N< ≈ 1

L1+n/2

√
1

1 + (1 − ρ∗) (q/ρ∗)2

(ρ∗)−n/2eLΣ(ρ∗)

1 − ρ∗ + ρ∗e
− q2

2(ρ∗)2
, (42)

where ρ∗ = ρ∗(q) is the solution of Equation 41, which is
the (scaled) mean number of mutations in a local maximum.
We will call ρ∗ the mean genotypic distance. This solution is
not available in closed form, but it can be shown that ρ∗ =
1
2 +

q2

2 + O(q4) and Σ(ρ∗) = ln 2 − q2 + O(q4) for small q. Fig-
ure 6 compares Equation 42 with the mean number of local max-
imum obtained by numerical simulations for various q’s with
n = 1, to show an excellent agreement even for L = 10.

It is obvious that Σ(ρ) will eventually be negative as q in-
creases for any value of ρ, and this must be true also for
the maximum value Σ(ρ∗). Indeed, we found the threshold
qc ≈ 0.924 809, above which Σ(ρ∗) is negative. This signals
a phase transition in the landscape properties. Inspection of
Equation 40 shows that the transition is driven by a competi-
tion between the abundance of genotypes with a certain num-
ber of mutations and their likelihood to bring the phenotype
close to the optimum. The first two terms in the expression
for Σ(ρ) are the standard sequence entropy [see, for exam-
ple, (Schimitt and Herzel 1997)] which is maximal at ρ = 1/2
(s = L/2), whereas the last term represents the statistical cost
associated with “stretching” the phenotype towards to origin.
With increasing q, the genotypes contributing to the formation
of local maxima become increasingly atypical, in the sense that
they contain more than the typical fraction ρ = 1/2 of muta-
tions, and ρ∗ increases. For q > qc the cost can no longer be
compensated by the entropy term and Σ(ρ∗) becomes negative.
In this regime N< decreases exponentially with L, and therefore
the total number of fitness maxima N , which by construction
cannot be smaller than 1, must be dominated by the second con-
tribution N>.

Regime II. We defer the detailed derivation of N> to
Appendix C and here only report the final result obtained in
the limit L → ∞, which is independent of L and reads

N> ≈
(

q − q0

q
exp

[
1

q/q0 − 1

])n−1

. (43)

This expression is valid for q > q0 = 1√
2π

≈ 0.399, but it dom-

inates the contribution N< for large L only when q > qc. Fig-
ure 7 indeed shows that Equation 43 approximates the mean
number of local maxima for q > qc, that is, N converges to N>

for large L. This figure also shows, as is clear by Equation 43,
that N is a increasing (decreasing) function of n (q) for fixed
value of q (n). The expected number of maxima is small in abso-
lute terms in this regime, which can be attributed to the fact that
the expression inside the parentheses in Equation 43 takes the
value 1.214 . . . at q = qc and decreases rapidly towards unity
for larger q.

To understand the appearance of q0, we refer to Model,
where it was argued that 2q0s is the maximal distance towards
the origin, which can be covered by a phenotype made up of
s typical mutation vectors. Correspondingly, the analysis in
Appendix C shows that the main contribution to R>

s (L) comes
from phenotypes located at distance z = 2s(q − q0) from the
origin, i.e., at distance 2sq0 from the wild type. The sum over s
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Figure 8 Plot of the genotypic complexity Σ∗ as a function of
the scaled phenotypic wild type distance q. Here the pheno-
typic dimension n is kept finite while taking the genotypic di-
mension L to infinity. The complexity vanishes at the phase
transition point q = qc ≈ 0.924 809. Inset: Plot of the mean
genotypic distance ρ∗ of local maxima from the wild type as a
function of q. Starting from 1/2, ρ∗ increases with q for q < qc

and remains at 1
2 for q > qc.

in Equation 33 is dominated by typical genotypes with s = L/2,
and therefore the main contribution to N> comes from pheno-
types at distance z = (q − q0)L from the origin. The seeming
divergence of N> as q → q+0 is an artifact of the approxima-
tion scheme, which assumes that the main contribution comes
from the region where z ∼ O(L); clearly this assumption be-
comes invalid when q → q+0 . We note that for very large q and
large n Equation 43 reduces to the expression Nwt obtained in
Equation 11 on the basis of Fisher’s formula for the fraction of
beneficial mutations from the wild type phenotype.

Phase transition. To sum up, the leading behavior of N is

N =

{
N<, q < qc,

N>, q ≥ qc
(44)

with N< and N> given by Equation 42 and Equation 43, re-
spectively. Since N< decreases to zero with L in a power-law
fashion at q = qc, the dominant contribution at this value is
N>. At q = qc the mean genotypic distance ρ∗ jumps discon-
tinuously from ρ∗(qc) ≈ 0.7035 to ρ∗ = 1/2, and the mean
phenotypic distance z∗ which is defined as the averaged magni-
tude of phenotype vectors for local maxima jumps from z∗ ≈ 0
to z∗ = (qc − qo)L. The genotypic complexity Σ∗ defined in
Equation 13 is given by

Σ∗ =

{
Σ(ρ∗), q < qc,

0, q ≥ qc,
(45)

where ρ∗ is the solution of Equation 41, and hence vanishes con-
tinuously at q = qc. These results are graphically represented
in Figure 8. Recall that the value Σ∗ = ln 2 attained at q = 0
is the largest possible, because the total number of genotypes is
2L = exp(L ln 2). Remarkably, these leading order results are
independent of the phenotypic dimension. A dependence on n
emerges at the subleading order, and it affects the number of fit-
ness maxima in qualitatively different ways in the two phases.
For q < qc the pre-exponential factor in Equation 42 is a power
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Figure 9 Coexistence of the two mechanisms I and II for q0 < q < qc. (A) Two dimensional histogram of the number of fitness max-
ima and the average phenotypic distance of the maxima to the optimum within a single realization. Here L = 15 and n = 2 are
used and 104 different landscapes are randomly generated for each value of q. Only a small number of realizations have a small av-
erage distance but these contribute an exceptionally large number of fitness peaks. (B) Two examples of genotype-phenotype maps
selected from realizations with q = 0.5, L = 6, and n = 2. The wild type phenotype is marked by a green triangle and local fit-
ness maxima by red squares. When the phenotypes of the local fitness maxima are close to (far away from) the origin, the number
of maxima is large (small), which corresponds to mechanism I (II).

law in L with exponent 1 + n/2 and hence decreases with in-
creasing n, whereas the expression in Equation 43 describing
the regime q > qc increases exponentially with n.

Interpretation. The phase transition reflects a shift between two
distinct mechanisms for generating genotypic complexity in
FGM, which are analogous to the two origins of pairwise sign
epistasis that were identified by Blanquart et al. (2014) and dis-
cussed above in Sign epistasis. In regime I (q < qc) the mu-
tant phenotype closely approaches the origin and multiple fit-
ness maxima are generated by overshooting the phenotypic op-
timum. By contrast, in regime II (q > qc) the phenotypic op-
timum cannot be reached and the genotypic complexity arises
from the local curvature of the fitness isoclines. These two situa-
tions are exemplified by the two panels of Figure 1. For the sake
of brevity, in the following discussion we will refer to the two
mechanisms as mechanism I and mechanism II, respectively.

The approach to the origin in regime I is a largely one-
dimensional phenomenon governed by the components of the
mutation vector along the direction of the wild type pheno-

type ~Q, which explains why the leading order behavior of the
genotypic complexity is independent of n. For q < qc, the n-
dependence of the pre-exponential factor in Equation 42 arises
from the increasing difficulty of the random walk formed by
the mutational vectors to locate the origin in high dimensions.
By contrast, mechanism II operating for q > qc relies on the ex-
istence of the transverse dimensions, which is the reason why
N> in Equation 43 is an increasing function of n with N> = 1
for n = 1.

When q0 < q < qc, both mechanisms seem to be present si-
multaneously. As our analysis is restricted to the average num-
ber of local maxima, at this point we cannot decide whether
both mechanisms appear in a single realization of the fitness
landscape, or if one of them dominates for a given realization.
To answer this question, we generated 104 fitness landscapes
randomly for given parameter sets and identified all local max-
ima for each landscape. We then determined the number of
local maxima and averaged the phenotypic distance of the lo-
cal maxima to the optimum for each realization. This mean

distance will be denoted by z̃ and is itself a random variable;
it should not be confused with the mean phenotypic distance
z∗, which is calculated by taking an average over all fitness
peaks in all realizations, giving the same weight to each peak.
The results are depicted as a two-dimensional histogram in Fig-
ure 9(A).

The figure shows that the marginal distribution of z̃ displays
a pronounced peak around z̃/L ≈ q − q0, which corresponds
to the behavior that is typical of mechanism I. For most real-
izations z̃/L deviates significantly from zero, and only a small
number of landscapes have local maxima near z = 0. How-
ever, these landscapes have many more maxima than typical
landscapes and therefore dominantly contribute to the mean
number of maxima N . This shows that within a single realiza-
tion the two mechanisms are not operative together and only a
single mechanism exists. Since most realizations exhibit mecha-
nism II, whereas the mean number of local maxima grows expo-
nentially as expected for mechanism I, we conclude that mech-
anism I occurs rarely but once it does, it generates a huge num-
ber of local maxima, which compensates the low probability of
occurrence. We may thus say that both mechanisms coexist for
q0 < q < qc and q0 can be regarded as the threshold of co-
existence. Two fitness landscape realizations generated for the
same value of q located in the coexistence region that exemplify
the two mechanisms are shown in Figure 9(B).

Summary 2. If the dimension n of phenotypic space is much
smaller than the dimension L of genotypic space, there exists
a threshold qc of the scaled wild distance q to the phenotypic
optimum below which the mean number N of local maxima
in a genotypic fitness landscape increases exponentially with L
and above which it saturates to a finite value. The genotypic
complexity Σ∗, which is defined as the exponential growth rate
of N with L, is a decreasing function of q but does not depend
on n. On the other hand, N decreases with n for q < qc yet
increases with n for q > qc. Figure 8 depicts Σ∗ and the mean
genotypic distance ρ∗ as functions of q. For q0 < q < qc, where

q0 = 1/
√

2π, N is dominated by a small fraction of landscape
realizations that display an exceptionally large number of max-
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Figure 10 Phase diagrams in the parameter space (q, α). Here,
q = Q/L is the scaled distance of the wildtype phenotype
from the origin and α = n/L is the ratio of phenotypic dimen-
sion to genotypic dimension. Dashed lines are phase bound-
aries at which the mean genotypic and phenotypic distances
change discontinuously. (A) The phase boundary separating
regimes I and II starts at (q, α) ≃ (0.925, 0) and continues to
exist until approximately α ≃ 0.18. (B) The phase boundary
separating regimes II and III starts at (q, α) ≃ (0, 2.38) and
continues to exist until approximately q ≃ 0.62.

ima. If the pleiotropic scaling is assumed to follow the total
effects model, we need to specify how the unscaled wild type
distance d in Equation 2 depends on L. Assuming that d = d0L
where d0 is independent of n (Orr 2000), the scaled wild type
distance q = Q/L = d0

√
n becomes an increasing function of n,

and therefore the relation q < qc for regime I is never realized
when n is sufficiently large.

Genotypic complexity in the joint limit

In the previous subsection, we have calculated the mean num-
ber of local fitness maxima N at a fixed phenotypic dimension
n, assuming that the genotypic dimension L is much larger
than n (L ≫ n). However, in applications of FGM one often
expects that both L and n are large and possibly of compara-
ble magnitude. In this case the results derived above can be
unreliable for large n, as exemplified by the fact that the sub-
leading correction to Equation 42 is of the order of O(L−1/n)
(see Appendix C).

To obtain a reliable expression for N that is valid when both
n and L are large, we now consider the joint limit n, L → ∞ at
fixed ratio α = n/L. This will allow us to find the leading be-
havior of the mean number of local maxima with a correction of
order O(1/L). Furthermore, we will clarify the role of the phe-
notypic dimension in the two phases described in the previous
subsection, and we will uncover a third phase that appears at
large α (see Figure 10).

The number of local fitness maxima. We relegate the detailed
calculation to Appendix D and directly present our final expres-
sion for the mean number of local maxima,

N = C(a∗ , b∗, g∗)eLΣred(a∗,b∗,g∗)
(

1 + O

(
1

L

))
, (46)

where the function Σred(a, b, g) in the exponent is given by

Σred(a, b, g) = − α

2
ln

(
α (α + g)

2 (ac(g) + b2)

)
+

α + 2b + g

2
− ln 2

+ ln

(
e−2c(g)

[
erf

(
α + 2b√

2a

)
+ 1

]
+ erf

(
α√
2a

)
+ 1

)
(47)
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Figure 11 Convergence of the complexity to the fixed n case
for small α. (A) The solid lines depict numerical solutions
of Equation 48 for values of α belonging to regime I. The
convergence to Equation 42 (dashed line) is clearly seen as
α → 0. (B) The blue solid line depicts the numerical solution
of Equation 48 for α = 0.1 belonging to regime II. Except for a
slight devitation detectable when q is close to q0, Equation 49
(dashed line) remains a good approximation.

with c(g) =
α2−g2

16q2 . As before, the starred variables a∗, b∗ and

g∗ denote the solution of the extremum condition

∇Σred(a, b, g)|(a,b,g)=(a∗,b∗,g∗) = (0, 0, 0), (48)

where ∇ is the gradient with respect to the three variables
(a, b, g). When several solutions of Equation 48 exist, the
one giving the largest value of Σred is chosen. The prefactor
C(a∗, b∗, g∗), which is independent of L, can be determined
from Equation D17 presented in Appendix D. Even though the
variables (a, b, g) lack a direct intepretation in terms of the origi-
nal setting of FGM, we show in Appendix E that a∗ is related to

the mean phenotypic distance z∗ by the equation z∗ = L
√

a∗/2.

An immediate consequence of Equation 46 is that the num-
ber of local maxima increases exponentially in L for any value
of q and α without algebraic corrections of the kind found in
Equation 42. Obtaining closed form solutions of Equation 48,
which ultimately determine the functional dependence of the
complexity Σ∗ on α and q, seems to be a formidable task. In-
stead, we resort to numerical methods by sweeping through
the most interesting intervals, q ∈ (0, 2) and α ∈ (0, 3). Sur-
prisingly, we find three independent branches of solutions that
correspond to distinct phases. In order to acquire a qualitative
understanding of these branches, it is instructive to first focus
on the small α behavior, where one expects a smooth continua-
tion to the results of Equation 42 and Equation 43 as α → 0.

Small α behavior. In contrast to the fixed n case where two sep-
arate analyses were carried out for the two regimes q < qc and
q > qc, the present approach yields a single expression describ-
ing the genotypic complexity for arbitrary values of q and α.
Consistently with the fixed n analysis, only two out of the three
branches of solutions that were found in the numerical analysis
exist for sufficiently small α, and they are separated by a phase
transition as shown in the phase diagram in Figure 10(A). By
extrapolating the behavior of Σ∗ towards α → 0 as shown in
Figure 11, we are able to identify the correct counterparts for
each of the two previously found regimes.

The extrapolation is straightforward in regime II, where the
replacement n → αL in Equation 43 yields an exponential de-
pendence of N on L with the growth rate

Σ
∗(II)
approx = α ln

(
q − q0

q
exp

[
(q/q0 − 1)−1

])
. (49)
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Figure 12 Plots of scaled mean phenotypic distance z∗/L (left column), mean genotypic distance ρ∗ (middle column), and geno-
typic complexity Σ∗ (right column) against q for fixed α (top row) and against α for fixed q (bottom row). The curves in the top (bot-
tom) panels are drawn along the arrows in the inset of panel C (F). Top row (A,B,C): When α is small, the landscape behaves similar
to the fixed n case which effectively corresponds to α = 0. In this case z∗ and ρ∗ for large q are well approximated by q − q0 and
1/2, respectively. As α increases beyond the transition line, the first order transition visualized by the red dashed lines disappears
and all quantities change smoothly with q. Bottom row (D,E,F): As α increases for small q, another phase transition with discontinu-
ities in z∗ and ρ∗ (blue dashed lines) signals the appearance of regime III. The genotypic maxima in regime III are located very close
to the wild type position, z∗/L ≃ q and ρ∗ ≃ 0. This transition ceases to exist when q exceeds approximately 0.62. Note that the
dependence of Σ∗ on α is non-monotonic for q = 0.7 (panel F).

This crude approximation turns out to be remarkably accurate
even at α = 0.1, as illustrated in Figure 11(B). By contrast, in
regime I the naive replacement of n by αL in Equation 42 yields
an expression that vanishes faster than exponential in L, as
exp[−(α/2)L ln L]. This reflects the fact that the mean pheno-
typic distance z∗ moves away from the origin for any α > 0
and hence the complexity cannot be derived only by inspecting
Equation 26 around z = 0 (see Figure 12 (A, D)). At the same
time the mean genotypic distance ρ∗ decreases with increasing
α and eventually falls below the value ρ∗ = 1/2 favored by the
sequence entropy (Figure 12 (B, E)).

Both trends can be attributed to the increasing role of the per-
pendicular mutational displacements that make up the second
term on the right hand side of Equation 5. Under the scaling of
the joint limit, this term is of order ρL(n − 1) ≈ ραL2 and hence
comparable to the first term originating from the parallel dis-
placements. The perpendicular displacements always increase
the phenotypic distance to the origin, and they are present even
when q = 0. The additional cost to reduce the perpendicular
contribution results in a smaller value of Σ∗ compared to the
case of fixed n. Moreover, whereas the parallel contribution is
minimized (for q > q0) by making ρ as large as possible, the
reduction of the perpendicular displacements requires small ρ.

In the fixed n analysis the number of fitness maxima was
found to decrease (increase) with n in regime I (II) and this ten-
dency is recovered from the joint limit case when α is not too
large (Figure 12 (C)). Because of these opposing trends of Σ∗

in the two regimes, the location of the phase transition separat-
ing them is expected to decrease with increasing α, as can be
seen in Figure 10(A). If one ignores the contribution from the

perpendicular displacements, the phenotypic position of the fit-
ness maxima is expected to jump from z∗ = 0 to z∗ = qc − q0 at
the transition, and thus the jump size should decrease as qc de-
creases. This observation suggests that the two branches should
merge into one when qc reaches q0. With the additional contri-
bution of perpendicular dimensions, we numerically found that
this critical end point at which the phases I and II merge occurs
even earlier, at α ≃ 0.18 and q ≃ 0.62 > q0 (Figure 10). For α
larger than 0.18, ρ∗ does not show any discontinuity for any q
as long as the parameters are in the regime II.

Large α behavior and regime III. In order to develop some in-
tuition about the FGM fitness landscape in the regime where
α = n/L ≫ 1, we revisit the results obtained in Sign epistasis,
where pairs of mutations were considered. Two conclusions can
be drawn about the typical shape of these small genotypic land-
scapes (of size L = 2) in the limit n → ∞. First, the probability
that the wild type is a genotypic maximum tends to unity ac-
cording to Equation 10. Second, the joint distribution given in
Equation 15 enforces additivity of mutational effects for large n,
and correspondingly the probability for sign epistasis vanishes.
Thus for large n the two-dimensional genotypic landscape be-
comes smooth with a single maximum located at the wild type.
Assuming that this picture holds more generally whenever the
limit n → ∞ is taken at finite L, we expect the following asymp-
totic behaviors of the quantifiers of genotypic complexity for
large α: (i) N → 1, Σ∗ → 0 (unique genotypic optimum); (ii)
z∗/L → q, ρ∗ → 0 (location of the maximum at the wild type
phenotype and genotype).

This expectation is largely borne out by the numerical results
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shown in the bottom panels of Figure 12. However, depending
on the value of q, the approach to the limit of a smooth land-
scape can be either continuous (for large q) or display character-
istic jumps indicated by the blue dashed lines in Figure 12 (D)
and (E). These jumps as well as the discontinuity in the slope
of Σ∗ as a function of α in Figure 12 (F) are hallmarks of the
phase transition to the new regime III, which is represented by
the dashed line in Figure 10 (B).

Fortunately, the solution of Equation 48 describing the new
phase can be obtained analytically from Equation 47 or Equa-
tion F3 as a series expansion. The derivation presented in
Appendix G yields

a∗ = 4q2 −



16
√

2
π q3

α2
+O(q4/α3)



 ǫ + O(ǫ2),

b∗ = −α +
αǫ√
2πq

+ O(ǫ2),

g∗ = α + O(ǫ2), and ρ∗ =

√
2
π qǫ

α
+O(ǫ2), (50)

where the expansion parameter ǫ = e
− α2

8q2 decays rapidly with
increasing α/q. The corresponding genotypic complexity can
also be evaluated in a series expansion,

Σ(III)(a∗, b∗, c∗) =
αǫ2

4πq2
+ O(ǫ3), (51)

which shows that Σ∗ is positive but vanishingly small in this
regime. We note that using Equation E5, the expression for a∗

in Equation 50 amounts to

z∗

L
≃ q −

2
√

2
π q2

α2
ǫ, (52)

implying that the small number of local maxima that exist in
this phase are located very close to the wild type phenotype.

To first order in ǫ, the results for ρ∗ and z∗ in Equation 50 and
Equation 52 can be easily derived from the idea that mutational
effects become approximately additive for large α, thus provid-
ing further support for this assumption. If mutational effects
are strictly additive, the probability for a genotype contaning s
mutations to be a local fitness maximum is given by

Radd
s = Ps

b(1 − Pb)
L−s, (53)

where Pb is the probability for a mutation to be beneficial. Equa-
tion 53 expresses the condition that reverting any one of the s
mutations contained in the genotype as well as adding one of
the unused L − s mutations should lower the fitness. Using
Fisher’s Equation 1, the probability for a beneficial mutation is

Pb ≈
√

2
π (q/α)ǫ for large α. Thus to linear order in ǫ or Pb, the

expected number of mutations contributing to such a genotype

is LPb = Lρ∗ = L
√

2
π (q/α)ǫ, which is consistent with Equa-

tion 50.
The phenotypic location of a local maximum deviates from

~Q in those rare instances where one of the mutations from the
wild type is beneficial, which happens with probability Pb. To
estimate the corresponding shift in z∗, we refer to the results of
subsection Sign epistasis, where it was shown that the squared
phenotypic displacement R1 defined in Equation 14 has a Gaus-
sian distribution with mean 1 and variance 1/x2 = 4q2/α2 for
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Figure 13 Semi-logarithmic plots of the mean number of lo-
cal maxima N vs. the genotypic dimension L for (A) α = 0.2
and (B) α = 2.5 and for various values of q. Each symbol rep-
resents the average over 105 randomly generated landscapes,
and lines depict the analytic approximation of Equation D17.
The approximation is good even for moderate L.

large n. Using this, it is straightforward to show that the ex-
pected value of R1 conditioned on the mutation to be beneficial
(R1 < 0) is R̄1 = −4q2/α2 to leading order. Multiplying this by
the expected number of mutations LPb we obtain the relation

Lρ∗R̄1 ≈ (z∗)2 − Q2

n
, (54)

which yields the same leading behavior for z∗/L as in Equa-
tion 52.

As previously observed for the transition between regimes I
and II, the phase boundary separating regimes II and III termi-
nates at a point where the two solutions defining the regimes
merge (Figure 10 (B)). Beyond this point the jumps in z∗ and
ρ∗ seen in Figure 12 (D) and (E) disappear and all quantities
approach smoothly to their asymptotic values. A surprising
feature of the large α behavior that persists also for larger q is
that the complexity becomes an increasing function of q when
α > 1.7 (Figure 12 (F)). In Figure 13 we verify this behavior
using direct simulations of FGM. These simulations also show
that the predictions based on Equation 47 are remarkably accu-
rate already for moderate values of L and n.

Summary 3. When the dimension n of the phenotypic trait
space and the dimension L of the genotypic space are large and
comparable, the genotypic complexity Σ∗ is always nonzero
and depends on the ratios α = n/L and q = Q/L. There are
three regimes where the behavior of the genotypic complexity
and the mean genotypic distance ρ∗ (the average number of mu-
tations in a local maximum divided by L) are qualitatively dif-
ferent. In regime I which is roughly characterized by small q
and small α, there are many local maxima in the region located
far away from the wild type but close to the phenotypic opti-
mum, and the fitness landscape is quite rugged. In regime II
which is roughly characterized by large q and small α, there is
an appreciable number of local maxima, though smaller than
in regime I, and typically half of the L mutations contribute to
the corresponding genotypes. In regime III which is roughly
characterized by large α, the genetic complexity is very small,
though nonzero. Also ρ∗ is close to zero, which means that the
wild type has a high probability to be the global fitness maxi-
mum. An overview of the three regimes is found in Table 2.

Discussion

Fisher’s geometric model (FGM) provides a simple yet
generic scenario for the emergence of complex epistatic in-
teractions from a nonlinear mapping of an additive, mul-
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Table 2 Characteristics of the three regimes in the joint limit

Regime Condition Σ∗ ρ∗ landscape

I q ≪ 1, α ≪ 1 > 0 > 1/2 rugged

II q ≫ 1, α ≪ 1 ≃ 0 ≈ 1/2 intermediate

III α ≫ 1 ≃ 0 ≃ 0 almost smooth

tidimensional phenotype onto fitness. Its role in the
theory of adaptation may be aptly described as that of
a “proof of concept model” (Servedio et al. 2014), and as
such it is widely used in fundamental theoretical stud-
ies (Blanquart et al. 2014; Chevin et al. 2010; Fraïsse et al. 2016;
Gros et al. 2009; Martin 2014; Moura de Sousa et al. 2016) as
well as for the parametrization and interpretation of em-
pirical data (Bank et al. 2014; Blanquart and Bataillon 2016;
Martin et al. 2007; Perfeito et al. 2014; Schoustra et al. 2016;
Velenich and Gore 2013; Weinreich and Knies 2013). Rather
than tracing the mutational effects and their interactions to the
underlying molecular basis, the model aims at identifying ro-
bust features of the adaptive process that can be expected to be
shared by large classes of organisms.

To give an example of such a feature that is of central
importance in the present context, it was pointed out by
Blanquart et al. (2014) that pairwise sign epistasis is generated
in FGM through two distinct mechanisms. In one case the
mutational displacements overshoot the phenotypic optimum,
whereas in the other case the displacements are directed approx-
imately perpendicular to the direction of the optimum and sign
epistasis arises because the fitness isoclines are curved. The first
mechanism is obviously operative also in a one-dimensional
phenotype space, but in the second case [termed antagonis-
tic pleiotropy by Blanquart et al. (2014)] at least two pheno-
typic dimensions are required. Interestingly, both mechanisms
have been invoked in empirical studies where a nonlinear
phenotype-fitness map was used to model epistatic interac-
tions between multiple mutations. In one study, Rokyta et al.
(2011) explained the pairwise epistatic interactions between 9
beneficial mutations in the ssDNA bacteriophage ID11 by as-
suming that fitness is a single-peaked nonlinear function of a
one-dimensional additive phenotype. In the second study the
genotypic fitness landscapes based on all combinations of two
groups of four antibiotic resistance mutations in the enzyme β-
lactamase were parametrized by a nonlinear function mapping
a two-dimensional phenotype to resistance (Schenk et al. 2013).
The fitted function was in fact monotonic and did not possess a
phenotypic optimum, which makes it clear that the epistatic in-
teractions arose solely from antagonistic pleiotropy in this case.

In this work we have shown that the two mechanisms de-
scribed by Blanquart et al. (2014) lead to distinct regimes or
phases in the parameter space of FGM, where the genotypic fit-
ness landscapes display qualitatively different properties (Fig-
ure 10(A)). When the phenotypic dimension n is much smaller
than the genotypic dimension L, the two regimes are separated
by a sharp phase transition where the average number and lo-
cation of genotypic fitness maxima changes abruptly as the dis-
tance q of the wild type phenotype from the optimum is varied.
In regime I (q < qc) the phenotypic optimum is reachable at
least by some combinations of mutational displacements. Over-
shooting of the optimum is therefore possible and sign epistasis
is strong, leading to rugged genotypic landscapes with a large

5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

Figure 14 The logarithm of the number of local fitness maxima
divided by the number of loci L is shown as a function of L
for FGM with the parameter values n = 19.3, Q = 6.89 and
n = 34.8, Q = 9.81 obtained by Schoustra et al. (2016) for the
fungus A. nidulans growing in complete (CM) and minimal
medium (MM), respectively. For the evaluation of N Equa-
tion 47 was used.

number of local fitness maxima that grows exponentially with
L. By contrast, in regime II (q > qc) only antagonistic pleiotropy
is operative and the number of fitness maxima is much smaller.
More precisely, for finite n the number tends to a finite limit
for L → ∞, but the limiting value is an exponentially growing
function of n.

An important consequence of our results is that the depen-
dence of the fitness landscape ruggedness on the phenotypic
dimension n is remarkably complicated. For n ≪ L, landscapes
become less rugged with increasing n in regime I (q < qc) but
display increasing ruggedness in regime II (q > qc). When
n ≫ L the ruggedness decreases with n for all q and the land-
scapes become approximately additive (regime III). In particu-
lar, the probability of sign epistasis vanishes algebraically with
n in this regime. Thus n cannot in general be regarded as a mea-
sure of “phenotypic complexity”, as a larger value of n does
not imply that the corresponding fitness landscape is more com-
plex.

This observation is relevant for the interpretation of ex-
periments where the parameters of FGM are estimated from
data. In recent work, FGM was used to analyze data on
pairwise epistasis between beneficial mutations in the filamen-
tous fungus Aspergillus nidulans growing in two different me-
dia (Schoustra et al. 2016). The estimates obtained for the phe-
notypic dimension and the distance of the wildtype pheno-
type from the optimum were n = 19.3, Q = 6.89 in complete
medium and n = 34.8, Q = 9.81 in minimal medium, which,
surprisingly, may seem to suggest a higher “phenotypic com-
plexity” in the minimal medium. Using the results derived in
this paper we can translate the estimated parameter values into
the average number of maxima that a genotypic fitness land-
scape of a given dimension L would have. As can be seen in
Figure 14, with respect to this measure the fitness landscape
of the fungus growing in complete medium is actually more
rugged. This is consistent with experiments using Escherichia
coli, which found a greater heterogeneity of fitness trajectories
in complete medium (Rozen et al. 2008), and indicates that the
complete medium allows for a greater diversity of paths to
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adaptation than the minimal medium.

We hope that the results presented here will promote the
use of FGM as part of the toolbox of probabilistic models
that are currently available for the analysis of empirical fit-
ness landscapes (Bank et al. 2016; Blanquart and Bataillon 2016;
de Visser and Krug 2014; Hayashi et al. 2006; Neidhart et al.
2014; Szendro et al. 2013). Compared to purely genotype-based
models such as the NK and Rough-Mount-Fuji (RMF) models,
FGM is arguably more realistic in that it introduces an explicit
phenotypic layer mediating between genotypes and fitness
(Martin 2014). Somewhat similar to the RMF model, the fitness
landscapes of FGM are anisotropic and display a systematic
change of properties as a function of the distance to the optimal
phenotype (FGM) or the reference sequence (RMF), respectively
(Neidhart et al. 2014). The idea that fitness landscape rugged-
ness increases systematically and possibly abruptly when ap-
proaching the optimum has been proposed previously in the
context of in vitro evolution of proteins (Hayashi et al. 2006). If
this is indeed a generic pattern, it may have broader implica-
tions. For example, de Visser et al. (2009) showed that the evo-
lutionary benefits of recombination are severely limited by the
presence of multiple peaks. If such peaks are rare far away from
the optimum, the benefits of recombination would be most pro-
nounced for particularly maladapted populations.

A recent investigation of 26 published empirical fitness land-
scapes using Approximate Bayesian Computation concluded
that FGM could account for the full structure of the landscapes
only in a minority of cases (Blanquart and Bataillon 2016). One
of the features of the empirical landscapes that prevented a
close fit to FGM was the occurrence of sign epistasis far away
from the phenotypic optimum. Our analysis confirms that this
is an unlikely event in FGM, and precisely quantifies the cor-
responding probability through Equation 16 and Equation 17.
Blanquart and Bataillon (2016) also found that the phenotypic
dimension is particularly difficult to infer from realizations of
genotypic fitness landscapes, which matches our observation
that the structure of the landscape depends only weakly on n
when n ≪ L. We expect that our results will help to further
clarify which features of an empirical fitness landscape make it
more or less amenable to a phenotypic description in terms of
FGM or some generalization thereof.

We conclude by mentioning some open questions that
should be addressed in future theoretical work on FGM. First, a
significant limitation of our results lies in their restriction to the
average number of local fitness maxima. The number of maxima
induced by a given realization of mutational displacements is a
random variable, and unless the distribution of this variable is
well concentrated, the average value may not reflect the typi-
cal behavior. The large fluctuations between different realiza-
tions of fitness landscapes generated by FGM were noticed al-
ready by Blanquart et al. (2014) on the basis of small-scale simu-
lations, and they clearly contribute to the difficulty of inferring
the parameters of FGM from individual realizations that was
reported by Blanquart and Bataillon (2016). In the light of our
analysis this pronounced heterogeneity can be attributed to the
existence of multiple phases in the model, and it is exemplified
by the simulation results in Figure 9. To quantitatively char-
acterize the fluctuations between different realizations a better
understanding of the distribution of the number of fitness max-
ima and its higher moments is required.

Second, the consequences of relaxing some of the assump-
tions underlying the formulation of FGM used in this work

should be explored. The level of pleiotropy can be reduced by
restricting the effects of mutational displacements to a subset
of traits (Chevin et al. 2010; Moura de Sousa et al. 2016), and it
would be interesting to see how this affects the ruggedness of
the fitness landscape. However, the most critical and empir-
ically poorly motivated assumption of FGM is clearly the ab-
sence of epistatic interactions on the level of phenotypes. It
would therefore be important to understand how robust the
results presented here are with respect to some level of pheno-
typic epistasis, which should ideally arise from a realistic model
of phenotypic networks (Martin 2014).

Third, a natural extension of the present study is to consider
multi-allelic genetic sequences. An immediate generalization
keeping the additivity of mutational effects on the level pheno-
types is to consider the following genotype-phenotype map

~z(τ) = ~Q +
L

∑
i=1

A

∑
k=1

τik
~ξik, (55)

where A is the size of the alphabet from which the sequence el-
ements are drawn (e.g., A = 4 for DNA or RNA and A = 20 for

proteins), τik = 1 (0) if the allele at site i is (is not) k, and the ~ξik

are uncorrelated random vectors. Clearly, our results for pair-
wise epistasis remain the same for this generalized model be-
cause they only concern mutations at different sites. However,
the condition for a local fitness maximum now involves muta-
tions to different alleles at the same site, which may lead to a
non-trivial dependence on A. On the basis of a recent study of
evolutionary accessibility in multi-allelic sequence spaces one
may expect the fitness landscapes to become less rugged with
increasing A (Zagorski et al. 2016), but this conjecture would
have to be corroborated by a detailed analysis.

Finally, whereas the present work focused on the structure
of the fitness landscapes induced by FGM, it is of obvious im-
portance to understand how the adaptative process actually
proceeds on such a landscape (Orr 2005). A simple frame-
work that allows to address this question is provided by adap-
tive walks following Gillespie’s strong selection/weak muta-
tion dynamics (Gillespie 1983, 1984; Orr 2002). In a pioneer-
ing study, Orr (1998) considered adaptive walks in FGM assum-
ing that the number L of possible mutations is unlimited. In
this setting, any population not located precisely at the phe-
notypic optimum has a nonzero probability of generating an-
other beneficial mutation and the adaptive walker never stops;
see Park and Krug (2008) for a related analysis of adaptation
in the house-of-cards landscape. For finite but large L, an in-
teresting question concerns the number of steps until the pop-
ulation finds a local fitness maximum when the adaptive dy-
namics is random (Kauffman and Levin 1987; Park et al. 2015;
Park and Krug 2016) or greedy (Orr 2003; Park et al. 2016). This
problem is currently under investigation.
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Appendix A: Derivation of the joint probability density P(R1, R2, R)

For the purpose of this calculation it will turn out to be convenient to locate the wild type phenotype on the diagonal of the trait

space, i.e. to set ~Q = Q√
n
(1, 1, 1, . . . , ). The probability density P(R1, R2, R) can then be formally defined as

P(R1, R2, R) = n3

〈
δ

(
nR1 −

n

∑
i=1

[
(ξi + Qi)

2 − Q2
i

])
δ

(
nR2 −

n

∑
i=1

[
(ηi + Qi)

2 − Q2
i

])
δ

(
nR −

n

∑
i=1

[
(ξi + ηi + Qi)

2 − Q2
i

])〉

~ξ,~η

,

(A1)

where Qi = Q/
√

n and 〈· · ·〉~ξ,~η
stands for the average over the distribution of ~ξ and ~η. Using the integral representation of the delta

function, we can write

P(R1, R2, R) =
n3

(2π)3

∫
d~keik1nR1+ik2nR2+iknR ∏

i

〈
e−ik1(ξ i+Qi)

2−ik2(ηi+Qi)
2−ik(ξ i+ηi+Qi)

2+iQ2
i (k1+k2+k3)

〉
~ξ,~η

, (A2)

where d~R and d~k stand for dR1dR2dR and dk1dk2dk, respectively and we factorized the average by taking into account that the ξi’s
and ηi’s are all independent and identically distributed. The average in Equation A2 is readily calculated as

1

2π

∫ ∞

−∞
dξ
∫ ∞

−∞
dη exp

[
− η2

2
− ξ2

2
− ik1ξ2 − ik2η2 − ik(ξ + η)2 − 2ik1

Q√
n

ξ − 2ik2
Q√

n
η − 2ik

Q√
n
(ξ + η)

]

=

√
1

(1 + 2ik1)(1 + 2ik2)− 4k(k1 + k2 − i)
exp

[
2Q2

n

2i(k + k1)(k + k2)(k1 + k2 − i) + (k1 − k2)
2

4k(k1 + k2 − i) + (2k1 − i)(2k2 − i)

]
, (A3)

which gives

P(R1, R2, R) =
n3

(2π)3

∫
d~k

eik1nR1+ik2nR2+iknR

[(1 + 2ik1)(1 + 2ik2)− 4k(k1 + k2 − i)]n/2
exp
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2

4k(k1 + k2 − i) + (2k1 − i)(2k2 − i)

]
. (A4)

In the limit n → ∞, the integral is dominated by contributions from the vicinity of the extremum of the exponent, which can be
algebraically determined to be k = k1 = k2 = 0. By expanding the argument of the exponential function up to the second order
around this point and performing the Gaussian integral, we obtain

P(R1, R2, R) ≈ n3

(2π)3

∫
d~k exp

[
− n2

2x2

{
(k1 + k2 + k)2 − 2k1k2
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}]
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nx2

4
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[
− n

8
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2
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(R1 − 1)2 + (R2 − 1)2

}]
, (A5)

which is Equation 15.

Appendix B: Probability of sign epistasis

In this appendix, we present the mathematical details of the derivation of the probabilities Pr and Ps of observing reciprocal sign epis-
tasis (RSE) and simple sign epistasis (SSE), respectively. As in the main text, let us assume R1 < R2. In calculating the probabilities,
the integral over R takes one of three forms

∫ R1

−∞

√
n

8π
e−

n
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. (B1)

First, we consider RSE which corresponds to the two domains

D1 = {(R1, R2, R)|R1 < R2 < R, R2 < 0}, D2 = {(R1, R2, R)|R < R1 < R2, R1 > 0}, (B2)

as illustrated in Figure 2. The probability of being in D1 is

Pr(D1) =
∫ 0

−∞
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where we have changed variables Ri 7→ −Ri. Since erfc(y) ∼ e−y2
/(y

√
π) for y ≫ 1, the above integral is dominated by the region

R1 ≪ 1 for large n. Thus, it is sufficient to approximate exp[−x2((R1 − 1)2 + (R2 − 1)2)/2] ≈ e−x2
, which yields

Pr(D1) ≈
x2e−x2

4π

∫ ∞

0
dR1

∫ R1

0
dR2erfc

(√
nR1

2
√

2

)
≈ x2e−x2

4π

∫ ∞

0
dR1R1erfc

(√
nR1

2
√

2

)
=

2x2e−x2

nπ

∫ ∞

0
dy yerfc(y) =

x2

2nπ
e−x2

. (B4)

The probability of being in D2 has the same leading behavior,

Pr(D2) =
∫ ∞

0
dR2

∫ R2

0
dR1

∫ R1

−∞
dRP(R1, R2, R3) =

x2

2π

∫ ∞

0
dR2

∫ R2

0
dR1 exp

[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

]
erfc

(√
nR2

2
√

2

)

≈ x2

2π

∫ ∞

0
dR1

∫ R1

0
dR2e−x2

erfc

(√
nR1

2
√

2

)
=

x2

2nπ
e−x2

, (B5)

where we have exchanged the variables R1 ↔ R2. Due to the symmetrical roles of R1 and R2, the total probability of RSE is

Pr ≡ 2
2

∑
i=1

Pr(Di) ≈
2x2

nπ
e−x2

. (B6)

We can use a similar approximation scheme to calculate the probability of SSE. There are four domains contributing to SSE (see
Figure 2),

D3 = {(R1, R2, R)|R < R1 < 0 < R2}, D4 = {(R1, R2, R)|R1 < 0 < R2 < R},

D5 = {(R1, R2, R)|R1 < R < R2 < 0}, D6 = {(R1, R2, R)|0 < R1 < R < R2}. (B7)

As we will see, all integrals can be represented by the functions

G1(a, b) =
x2

4π

∫ ∞

0
dR1

∫ R1

0
dR2 exp

[
− x2

2
(R1 + a)2 − x2

2
(R2 + b)2

]
erfc

(√
nR2

2
√

2

)
, (B8)

G2(a, b) =
x2

4π

∫ ∞

0
dR1

∫ R1

0
dR2 exp

[
− x2

2
(R1 + a)2 − x2

2
(R2 + b)2

]
erfc

(√
nR1

2
√

2

)

=
x

4
√

2π
erfc

(
bx√

2

) ∫ ∞

0
dR1 exp

[
− x2

2
(R1 + a)2

]
erfc

(√
nR1

2
√

2

)
− G1(b, a), (B9)

where a, b = ±1 and we have used that
∫ ∞

0
dy
∫ ∞

y
dz f (y, z) =

∫ ∞

0
dy
∫ y

0
dz f (z, y). (B10)

To be specific, we write the probabilities of being in each domain as

Pr(D3) =
x2

4π

∫ 0

−∞
dR1

∫ ∞

0
dR2 exp

[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

]
erfc

(√
nR2

2
√

2

)
= G1(1,−1) + G2(−1, 1),

Pr(D4) =
x2

4π

∫ 0

−∞
dR1

∫ ∞

0
dR2 exp

[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

]
erfc

(
−
√

nR1

2
√

2

)
= G1(−1, 1) + G2(1,−1),

Pr(D5) =
x2

4π

∫ 0

−∞
dR1

∫ 0

R1

dR2 exp

[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

] [
erfc

(√
nR1

2
√

2

)
− erfc

(√
nR2

2
√

2

)]
= G1(1, 1)− G2(1, 1),

Pr(D6) =
x2

4π

∫ ∞

0
dR1

∫ ∞

R1

dR2 exp

[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

] [
erfc

(√
nR1

2
√

2

)
− erfc

(√
nR2

2
√

2

)]
= G1(−1,−1)− G2(−1,−1),

where we have changed negative integral domains into positive domains and made use of Equation B10. Using the approximation
scheme explained above, we get

G1(a, b) =
x

4
√

2π

∫ ∞

0
dR2e−x2(R2+b)2/2erfc

(√
nR2

2
√

2

)
erfc

(
x(R2 + a)√

2

)

≈ x

4
√

2π
erfc

(
ax√

2

)
e−x2/2

∫ ∞

0
dR2erfc

(√
nR2

2
√

2

)
=

x

2
√

nπ
erfc

(
ax√

2

)
e−x2/2 + O(1/n). (B11)

Since

x

4
√

2π
erfc

(
bx√

2

) ∫ ∞

0
dR1 exp

[
− x2

2
(R1 + a)2

]
erfc

(√
nR1

2
√

2

)
≈ x

2
√

nπ
erfc

(
bx√

2

)
e−x2/2 + O(1/n), (B12)

we conclude that G2(a, b) = O(1/n). Using erfc(y) + erfc(−y) = 2, we finally obtain

Ps ≡ 2
6

∑
i=3

Pr(Di) ≈
4x√
nπ

e−x2/2. (B13)
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Appendix C: Large L behavior of Rs(L) for fixed n

In this appendix, we calculate the asymptotic behavior of the probability Rs(L) for a genotype with s mutations to be a local fitness
maximum in the limit where L is large and the phenotype dimensions n is fixed. As explained in the main text, this probability has

two contributions which arise from expanding the function F(~k,~z) defined in Equation 30 near |~z| = 0 and |~z| = z∗ ∼ L, respectively
(see Equation 31).

First, we consider the contribution from the region |~z| ≪ 1. In this case, we can approximate F(~k,~z) as

F(~k,~z) =
∫

n
e−i~k·~ξ p(~ξ)d~ξ −

∫

Dc(~z)
e−i~k·~ξ p(~ξ)d~ξ ≈ e−k2/2 −

∫

Dc(~z)
p(0)d~ξ = e−k2/2 − Anzn ≈ exp

[
− k2

2
− Anznek2/2

]
, (C1)

where k = |~k|, z = |~z|, Dc(~z) = {~y||~y −~z| ≤ z} which is the complement of D(~z), An = p(0)Sn−1/n with Sn−1 = 2πn/2/Γ(n/2)
being the surface area of the unit sphere in (n − 1) dimensions, and p(0) = (2π)−n/2. Note that the error of the above approximation
is O(zn+1). Thus, setting ρ ≡ s/L we can approximate

R<
s (L) ≈

∫

n

d~zd~k

(2π)n
exp

[
i~k ·~z + LH1(~k,~z)

]
, H1(~k,~z) ≡ −i~k ·~q − ρ

k2

2
− ρAnznek2/2 − (1 − ρ)Anzn, (C2)

where~q = ~Q/L. Since L is large, we can employ the saddle point approximation. One can easily see that the saddle point solving the
equations ∂k j

H1 = ∂zk
H1 = 0 is at~z = 0 and kj = −iqj/ρ. Around the saddle point, we expand

H1 ≈ − q2

2ρ
− ρ

2

(
~k + i~q/ρ

)2
− Anzn

[
ρe−q2/(2ρ2) + (1 − ρ)

]
, (C3)

which gives

R<
s (L) ≈ exp

(
−L

q2

2ρ

) ∫

n
d~z exp

[
−LAnzn

{
ρe−q2/(2ρ2) + (1 − ρ)

}] ∫

n

d~k

(2π)n
exp

[
− Lρ

2

(
~k + i~q/ρ

)2
]

=
exp

(
−L

q2

2ρ

)

(2πLρ)n/2

∫ ∞

0
Sn−1zn−1dz exp

[
−LAnzn

{
ρe−q2/(2ρ2) + (1 − ρ)

}]
=

s−n/2 exp
[−Q2/(2s)

]

s exp[−Q2/(2s2)] + L − s

[
1 + O(L−1/n)

]
, (C4)

and the last step involves a change of variables z → t = Sn−1zn/n. Since L appears in the integrand in the combination Lzn, the error
that arises from neglecting terms of O(zn+1) is L−1/n. The leading order of Equation C4 was reported in Equation 34.

Now we move on to the calculation of R>
s (L), where the dominant contribution to F(~k,~z) comes from a region where z ∼ O(L).

Using
∫

d~ξ p(~ξ) exp(−i~k ·~ξ) = exp(−k2/2), we calculate the integral I ≡ exp(−k2/2)− F(~k,~z) as

I =
1

(2π)n/2

∫ 2z

0
dξne−iknξn−ξ2

n/2
∫

B(2z,ξn)
d~ξ⊥e−i~k⊥·~ξ⊥−~ξ2

⊥/2

=
1

(2π)n/2

∫ 2z

0
dξne−iknξn−ξ2

n/2

[∫

Rn−1
d~ξ⊥e−i~k⊥·~ξ⊥−~ξ2

⊥/2 −
∫

Bc(2z,ξn)
d~ξ⊥e−i~k⊥·~ξ⊥−~ξ2

⊥/2

]

=
e−~k

2
⊥/2

√
2π

[∫ ∞

0
dξne−iknξn−ξ2

n/2 −
∫ ∞

2z
dξne−iknξn−ξ2

n/2

]
− 1

(2π)n/2

∫ 2z

0
dξne−iknξn−ξ2

n/2
∫

Bc(2z,ξn)
d~ξ⊥e−i~k⊥·~ξ⊥−~ξ2

⊥/2

=
e−k2/2

2

(
1 − erf

(
ikn√

2

))
− e−~k

2
⊥/2

√
2π

∫ ∞

2z
dξne−iknξn−ξ2

n/2 − C1(~k, z), (C5)

where we set ~z = z~en, ~ξ⊥ = ~ξ − ξn~en and ~k⊥ = ~k − kn~en with ~en = (0, . . . , 0, 1), B(2z, ξn) is an (n − 1) dimensional ball with
radius

√
ξn(2z − ξn) whose center is located at the origin, Bc is the relative complement of B with respect to R

n−1, and erf(z) =

2
∫ z

0 e−t2
dt/

√
π is the error function. The definition of C1 is self-explanatory. Since

∣∣∣∣
∫ ∞

2z
dξne−iknξn−ξ2

n/2

∣∣∣∣ ≤
∫ ∞

2z
dξne−ξ2

n/2 = 2z
∫ ∞

1
dye−2z2y2 ≈ e−2z2

2z
, (C6)

where we used the Laplace method for the asymptotic expansion, the leading finite z correction is expected to come from C1 for n > 1.
Note that C1 is identically zero for n = 1. Thus we get

F(~k,~z) ≈ 1

2
e−k2/2

(
1 + erf

(
i~k ·~z√

2z

))
+ C1(~k, z), (C7)

where kn is written as a projection of~k along the~z direction, kn =~k ·~z/z. Since

∣∣∣C1(~k, z)
∣∣∣ ≤ 1

(2π)n/2

∫ 2z

0
dξne−ξ2

n/2
∫

Bc(2z,ξn)
d~ξ⊥e−~ξ

2
⊥/2 = C1(0, z), (C8)
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it is sufficient to find an approximate formula for C1(0, z) to determine the z dependence of C1(~k, z). Using spherical coordinates in
R

n−1, we get

C1(0,z) =
Sn−2

(2π)n/2

∫ 2z

0
dye−y2/2

∫ ∞

√
y(2z−y)

dxxn−2e−x2/2

=
Sn−2

(2π)n/2

[∫ 2z

0
dye−y2/2

∫ ∞

z
dxxn−2e−x2/2 +

∫ z

0
dxxn−2e−x2/2

{∫ M−(x,z)

0
dye−y2/2 +

∫ z

M+(x,z)
dye−y2/2

}]
, (C9)

where Sn−2 = 2π(n−1)/2/Γ[(n − 1)/2] is the surface area of the unit (n − 2)-sphere. In the second term on the second line the order

of integration was reversed and the integration boundaries M±(x, z) = z ±
√

z2 − x2 were introduced. Since the first integral (
∫ ∞

z dz)

and the third integral (
∫ z

M+
dy) decrease exponentially with z, the main contribution to C1(0, z) comes from the second integral. Thus,

C1(0, z) ≈ Sn−2

(2π)n/2

∫ z

0
dxxn−2e−x2/2

∫ M−(x,z)

0
dye−y2/2 =

Sn−2zn

(2π)n/2

∫ 1

0
dxxn−2e−z2x2/2

∫ M−(x,1)

0
dye−z2y2/2

=
Sn−2zn−1

(2π)n/2

√
π

2

∫ 1

0
dxxn−2e−z2x2/2erf(M−(x, 1)z/

√
2). (C10)

Since the last integral is dominated by the region xz ≤ 1, we can approximate M−(x, 1)z ≈ x2z/2 ∼ O(1/z) and

erf(M−(x, 1)z/
√

2) = x2z/
√

2π. Finally, we get

C1(0, z) ≈ Sn−2zn

(2π)n+1/2

√
π

2

∫ 1

0
dxxne−z2x2/2 ≈ Sn−2zn

(2π)n+1/2

√
π

2

∫ ∞

0
dxxne−z2x2/2 =

n − 1

2
√

2πz
, (C11)

which also implies that C1(~k, z) ∼ O(z−1).
If we write

F(~k,~z) =
1

2
e−k2/2

(
1 + erf

(
i~k ·~r√

2r

))(
1 +

1

L
f (~r,~k) + O(z−2)

)
, (C12)

where~r = ~z/L and r = z/L, then comparison with Equation C7 and Equation C11 shows that f (~r, 0) = (n − 1)/(
√

2πr). Inserting
Equation C12 into Equation 32, it follows that

R>
s (L) ≈ Ln

2L

∫
d~rd~k

(2π)n
exp

[
ρ f (~r,~k) + (1 − ρ) f (~r, 0)

]
exp

[
LH2(~k,~r)

]
, (C13)

with

H2(~k,~r) = i~k · (~r −~q)− ρ
k2

2
+ ρ ln

(
1 + erf

(
i~k ·~r√

2r

))
. (C14)

Now we employ the steepest descent method. For convenience, we set~q = (q, 0, . . . , 0). The saddle point satisfies the equations

∂H2

∂rj
= ikj + i

√
2ρ√

πr3
exp

(
(~k ·~r)2

2r2

) [
kjr

2 − rj(~k ·~r)
] (

1 + erf

(
i~k ·~r√

2r

))−1

= 0, (C15)

∂H2

∂kj
= i(rj − qδj1)− ρkj + i

√
2ρ√
πr

exp

(
(~k ·~r)2

2r2

)
rj

(
1 + erf

(
i~k ·~r√

2r

))−1

= 0, (C16)

with the solution~k∗ = 0 and~r∗ = (q − ρ
√

2/π, 0, . . . , 0). Note that there is no solution if q < ρ
√

2/π, so the valid range of ρ has the

upper boundary ρc(q) = min(1,
√

π/2q). The matrix of second derivatives around the saddle point~k∗,~r∗ is

∂2 H2

∂rl∂rj

∣∣∣∣∣
∗
= 0,

∂2H2

∂km∂kj

∣∣∣∣∣
∗
= −ρδmj

(
1 − 2

π
δl1

)
,

∂2H2

∂rm∂kj

∣∣∣∣∣
∗
= iδjl

[
1 + (1 − δm1)

√
2ρ√

πq −
√

2ρ

]
. (C17)

Thus, we get

R>
s (L) ≈ Ln

2L
e f (~r∗,0)

∫
d~yd~k

(2π)n
exp

[
−L

ρ

π
(π − 2)k2

1 − Lρ~k2
⊥ + iLk1y1 + iL

√
πq√

πq −
√

2ρ
~k⊥ ·~y⊥

]
, (C18)

where ~y =~r −~r∗, ~y⊥ = (0, y2, . . . , yn), and~k⊥ = (0, k2, . . . , kn). If we perform the integration over ~y first, we obtain delta functions

which make the integral over~k trivial. Finally, we arrive at

R>
s (L) ≈ 2−Lθ (ρc − ρ)

(
q − 2ρ/

√
2π

q
exp

(
1√

2πq − 2ρ

))n−1

(C19)
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where θ(x) is the Heaviside step function defined by θ(x ≥ 0) = 1 and θ(x < 0) = 0.

To evaluate the corresponding contribution to the number of fitness maxima, N>, we replace the summation over s in Equation 33
by an integral over ρ = s/L and use Stirling’s formula to approximate the binomial coefficients. This yields

N> =
√

L
∫ 1

0
dρ

exp[L{−ρ ln ρ − (1 − ρ) ln(1 − ρ)− ln 2}]√
2πρ(1 − ρ)

(
q − 2ρ/

√
2π

q
exp

(
1√

2πq − 2ρ

))n−1

θ(ρc − ρ). (C20)

If ρc <
1
2 or q <

√
2π

−1
= q0, the integral is dominated around ρ ≈ ρc, which results in an exponential decrease with L. On the other

hand, if ρc >
1
2 , the integral is dominated around ρ ≈ 1

2 , which gives

N> ≈
√

2L

π

∫ ∞

−∞
dxe−2Lx2

[
q − 1/

√
2π

q
exp

(
1√

2πq − 1

)]n−1

=

[
q − 1/

√
2π

q
exp

(
1√

2πq − 1

)]n−1

(C21)

as reported in Equation 43.

Appendix D: Derivation of Equation 47

In this appendix, we calculate the average number of fitness maxima N in the limit n, L → ∞ at fixed ratio α ≡ n/L. To this end, we
write Iτ, the probability for the genotype τ to be a local fitness maximum, using the Heaviside step function as

Iτ =
∫ L

∏
k=1

[
d~ξk p(~ξk)θ

(
1

L
(~z + (1 − 2τk)~ξk)

2 − 1

L
|~z|2
)]

≡
∫

Dξ ∏
k

θ (Ek) , (D1)

where~z is determined by τ through Equation 3,
∫
Dξ ≡

∫
∏k d~ξk p(~ξk), and Ek is defined as

Ek =
1

L

(
~z +~ξk(1 − 2τk)

)2
− 1

L
|~z|2 =

1

L

(
2~z ·~ξk(1 − 2τk) +

∣∣∣~ξ
∣∣∣
2
)

=
1

L



2



~Q + ∑
j

~ξ jτj



 ·~ξk(1 − 2τk) + |~ξk|2


 . (D2)

Note that the prefactor 1/L is introduced to make Ek finite in the limit L → ∞ and we have used that (1 − 2τk)
2 = 1. Applying the

identity (Tanaka and Edwards 1980; Bray and Moore 1980)

θ(Ek) =
∫ ∞

0
dλkδ (λk − Ek) =

∫ ∞

0
dλk

∫ ∞

−∞

dφk

2π
exp [iφk (λk − Ek)] (D3)

to Equation D1, the expected number of local fitness maxima reads

N = ∑
τ

∫
Dξ

L

∏
k=1

[∫ ∞

0
dλk

∫ ∞

−∞

dφk

2π
eiφk(λk−Ek)

]
= ∑

τ

∫
DξDλDφ exp




L

∑
k=1



iφkλk +

i

L
φk



2~ξk ·
L

∑
j=1

~ξ jτj + 2~ξk · ~Q − |~ξk|2












= ∑
τ

∫
DξDλDφ exp

[
L

∑
k=1

{
iφkλk +

i

L
φk

(
2~ξk · ~Q − |~ξk|2

)}]
exp



 i

L

L

∑
k=1

φk
~ξk ·

L

∑
j=1

~ξ j

(
2τj

)


 , (D4)

where
∫
Dλ ≡

∫ ∞

0 ∏k dλk,
∫
Dφ ≡

∫ ∞

−∞ ∏k
dφk

2π , and we made the change of variables (2τk − 1)~ξk 7→ ~ξk to arrive at the second
equality. Using the identity

exp

(
i

L
~X · ~Y

)
= Ln

∫

n
d~νδ

(
L~ν − ~X

)
exp

(
i~Y ·~ν

)
=

(
L

2π

)n ∫

n
d~µd~ν exp

[
iL~µ ·~ν − i~X ·~µ + i~Y ·~ν

]
(D5)

which is valid for any n-dimensional real vectors ~X and ~Y, we can write the last term of Equation D4 as

exp



 i

L ∑
k

φk
~ξk · ∑

j

~ξ j(2τj)



 =

(
L

2π

)n ∫

n
d~µd~ν exp

[
iL~µ ·~ν + i ∑

k

~ξk · (−φk~µ + 2τk~ν)

]
, (D6)

which gives

N = ∑
τ

∫
DλDφDµDνeiφ·λ+iL~µ·~ν

L

∏
k=1

n

∏
s=1

∫
dξks√

2π
exp

[
i

{
1

L
φk

(
2ξksQs − ξ2

ks

)
+ ξks(−φkµs + 2τkνs)

}
− ξ2

ks

2

]
, (D7)
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where
∫
DµDν ≡

(
L

2π

)n ∫
n d~µd~ν, φ · λ ≡ ∑

L
k=1 φkλk, and ξks, Qs, µs, νs are the s-th components of the vectors ~ξk, ~Q, ~µ,~ν, respectively.

Note that the integrals over the ξks’s become independent of each other. If we choose Qs = Q/
√

n = q
√

L/α for all s and define
χ ≡ 2Qs/L, the integral over ξks becomes

∫ ∞

−∞

dξks√
2π

exp

[
− ξ2

ks

2
(1 + 2iφk/L) + iξks {φk(χ − µs) + 2τkνs}

]
=

1√
1 + 2iφk/L

exp

[
−{2νsτk + (χ − µs)φk}2

2(1 + 2iφk/L)

]

=
1√

1 + 2iφk/L
exp

[
−(µs − χ)2φ2

k + 4τk(µs − χ)νsφk − 4ν2
s τk

2(1 + 2iφk/L)

]
, (D8)

which, in turn, gives

N = ∑
τ

∫
DλDφDµDνeiφ·λ+iL~µ·~ν

L

∏
k=1

1

(1 + 2iφk/L)n/2
exp

[
−φ2

k ∑s(µs − χ)2 + 4τkφk ∑s(µs − χ)νs − 4τk ∑s ν2
s

2(1 + 2iφk/L)

]
. (D9)

If we now insert the identity

1 =
∫ ∞

0
da
∫

dbdcδ

(
a − ∑

s

(µs − χ)2

)
δ

(
b − ∑

s

(µs − χ)νs

)
δ

(
c − ∑

s

ν2
s

)

=
∫ ∞

0
da
∫

dbdc
∫

dA

2π/L

dB

2π/L

dC

2π/L
exp

[
iAL

{
a − ∑

s
(µs − χ)2

}
+ iBL

{
b − ∑

s
(µs − χ)νs

}
+ iCL

{
c − ∑

s
ν2

s

}]
, (D10)

we can write

N =∑
τ

∫
DλDφDµDνeiφ·λ+iL~µ·~ν

∫ ∞

0
da
∫

dAdbdBdcdC

(2π/L)3 ∏
k

(1 + 2iφk/L)−Lα/2 exp

[
−aφ2

k + 4bτkφk − 4cτk

2(1 + 2iφk/L)

]

× exp

[
iAL

{
a − ∑

s
(µs − χ)2

}
+ iBL

{
b − ∑

s
(µs − χ)νs

}
+ iCL

{
c − ∑

s
ν2

s

}]
(D11)

where we have replaced n by Lα. The integral domain of a is restricted to the positive real axis in order to ensure that the integral
with respect to φk in Equation D9 continues to be well-defined after the substitution. Performing the integrals over µs and νs, we get

L

2π

∫
dµsdνseiLµsνs−iLA(µs−r)2−iLB(µs−r)νs−iLCν2

s = exp

[
− 1

2

(
Ln

{(
(B − 1)2 − 4AC

)

Ai

}
+ Ln(Ai)

)
+

i4q2A/α

4AC − (B − 1)2

]
, (D12)

where Ln(x) is the principal value of the logarithm with argument in the interval (−π, π] and the branch cut lies on the negative real
axis.

Subsequently, the remaining integral over φi and λi can be readily evaluated as follows:

1

2π

∫ ∞

0
dλk

∫
dφk(1 + 2iφk/L)−Lα/2 exp

[
− aφ2

k + 4bτkφk − 4cτk

2(1 + 2iφk/L)
+ iφkλk

]
= T(a, bi, c, τk) +

1

L
U(a, bi, c, τk) + O(1/L2), (D13)

where

T(a, b, c, τ) =
1

2
e−2cτ

(
erf

(
α + 2bτ√

2a

)
+ 1

)
,

U(a, b, c, τ) =− 4acτ + a + 2bτ(α + 2bτ)√
2πa3/2

exp

[
− (α + 2bτ)2

2a
− 2cτ

]
. (D14)

After summing over the τk’s, we arrive at the equation

N =
∫ ∞

0
da
∫

dAdbdBdcdC

(2π/L)3
exp

[
U(a, bi, c, 1) + U(a, bi, c, 0)

T(a, bi, c, 1) + T(a, bi, c, 0)

]
exp (LΣ(a, bi, c, Ai, B, Ci)) (D15)

where

Σ(a, b, c, A, B, C) = aA + bB + cC − 1

2
α ln

(
4AC + (B − 1)2

)
− 4Aq2

4AC + (B − 1)2
+ ln(T(a, b, c, 1) + T(a, b, c, 0)). (D16)

The remaining integrals are hard to evaluate analytically. Instead, we resort to the saddle point method to obtain an asymptotic
expansion of the integral. Since Σ is the exponential growth factor of the number of local maximam which must be a real number, one
expects that the saddle points of Equation D16 are formed for the real arguments of Σ. This suggests that we should make the changes
of variables b → b/i, A → A/i and C → C/i. For large L, the integrals are then dominated by the saddle point (a∗, b∗, c∗, A∗, B∗, C∗)
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of Σ(a, b, c, A, B, C). If there is more than one saddle point, the one giving the largest value of Σ(a, b, c, A, B, C) has to be chosen. Then,
the leading behavior of the number of maxima can be expressed in terms of the saddle point as

N =
1√

|det H(Σ)|
exp

[
U(a∗, b∗, c∗, 1) + U(a∗, b∗, c∗, 0)

T(a∗, b∗, c∗, 1) + T(a∗, b∗, c∗, 0)

]
exp (LΣ(a∗, b∗, c∗, A∗, B∗, C∗)) , (D17)

where H(Σ) is the Hessian matrix around the saddle point. The reader may have noticed that the two principal values of the
logarithm defined in Equation D12 are replaced by a real-valued logarithm in Equation D16, which can be dangerous in general.
However, it can be shown that this substitution is indeed correct by verifying that (B∗ − 1)2 + 4A∗C∗ is always positive for all saddle
points of Equation D16, and thus the imaginary arguments always cancel each other out.

Now, let us evaluate the saddle point conditions. The derivatives of Σ with respect to A, B, C are

∂Σ

∂A
= a − 2

αC[4AC + (B − 1)2] + 2q2(B − 1)2

[4AC + (B − 1)2]2
,

∂Σ

∂B
= b − (B − 1)[α(B − 1)2 + A(4Cα − 8q2)]

[4AC + (B − 1)2]2
,

∂Σ

∂C
= c − 2A[α(B − 1)2 + A(4Cα − 8q2)]

[4AC + (B − 1)2]2
. (D18)

By requiring that the above three equations are zero at the saddle point, we get

A =
αc

2 (ac + b2)
, B − 1 =

αb

ac + b2
, C =

1

4

(
2aα

ac + b2
+

−α ±
√

α2 − 16cq2

c

)
. (D19)

The two solutions of C force us to perform a two-fold analysis for the remaining integrals since we cannot a priori determine which

solution will yield the correct saddle point. Instead, we introduce another real number g = ±
√

α2 − 16cq2 which is allowed to take

both signs. Then, by imposing the functional relation c(g) =
α2−g2

16q2 , both solutions are covered by a single analysis. In this way, the

saddle point is obtained in terms of g instead of c. Finally, substituting this solution into Equation D17 gives Equation 47.

Appendix E: Mean phenotypic distance z∗ in the joint limit

In this appendix, we will associate the fixed point value a∗ of the variable a entering the complexity function Equation 47 with the
mean phenotypic distance z∗. To this end, we first consider the probability density P(τ, a) that a genotype τ whose phenotypic vector
is of squared magnitude L2a/4 is a local maximum. Formally, we can write

P(τ, a) =
∫

Dξ ∏
k

θ(Ek)δ


a − 4

L2

(
~Q + ∑

k

~ξkτk

)2

 =

∫
L

2π
dA

∫
Dξ ∏

k

θ(Ek) exp


iLaA − i

4A

L

(
~Q + ∑

k

~ξkτk

)2



=
L

2π

∫
dA

∫
Dξ ∏

k

θ(Ek)
∫

Dψ exp

[
iLaA + i

L

16A
~ψ2 + i~ψ ·

(
~Q + ∑

k

~ξkτk

)]
, (E1)

where we have used the identity
∫ ∞

−∞
dx exp(ipx2 + iqx) =

√
π/pe−iπ/4 exp[−iq2/(4p)] for p > 0, Dψ = ∏s(

√
Leiπ/4dψs)/(4

√
πA),

and the notation is the same as in Appendix D. Following the same procedure in the previous appendix, we get

P(τ, a) =
∫

DξDλDφDµDνeiφ·λ+iL~µ·~ν exp

[

∑
k

i

L
φk

(
2~ξk · ~Q − |~ξk|2

)
+ i ∑

k

~ξk · (−φk~µ + 2τk~ν)

]

× L

2π

∫
dA

∫
Dψ exp

[
iLaA + i

L

16A
~ψ2 + i~ψ · (~Q + ∑

i

~ξiτi)

]
. (E2)

By shifting~ν → ~ν − ~ψ/2 and integrating over ~ψ, we have

P(τ, a) =
∫

DξDλDφDµDνeiφ·λ+iL~µ·~ν exp

[

∑
k

i

L
φk

(
2~ξk · ~Q − |~ξk|2

)
+ i ∑

k

~ξk · (−φk~µ + 2τk~ν)

]

× L

2π

∫
dA

∫
Dψ exp

[
iLaA + i

L

16A
~ψ2 + i~ψ · (~Q − L~µ/2)

]

=
∫

DξDλDφDµDνeiφ·λ+iL~µ·~ν exp

[

∑
k

i

L
φk

(
2~ξk · ~Q − |~ξk|2

)
+ i ∑

k

~ξk · (−φk~µ + 2τk~ν)

]

×
∫

dA

2π/L
exp




iLA


a −

(
2~Q

L
−~µ

)2






 . (E3)
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Since we have set Qs = Q/
√

n for s = 1, . . . , n, the last integral becomes

∫
dA

2π/L
exp



iLA



a −
(

2~Q

L
−~µ

)2






 =

∫
dA

2π/L
exp

{
iLA

[
a − ∑

s

(µs − χ)2

]}
. (E4)

Since N = ∑τ

∫ ∞

0 daP(τ, a), by applying the manipulations of Appendix D to Equation E3 we arrive at the same integral form as in
Equation D10. Since ∑τ P(τ, a) is the mean number of local maxima whose phenotypic vectors have squared magnitude a, we see
that the saddle point a∗ of Equation D16 determines the mean phenotypic distance z∗ through

z∗ = L

√
a∗

2
. (E5)

This shows in particular that z∗ is linear in L.

Appendix F: Mean genotypic distance ρ∗ in the joint limit

To have access to the information about the typical value of the genotypic (Hamming) distance of a local fitness maximum from the
wild type, we rewrite Equation D15 as

N =
∫ ∞

0
da
∫

dAdbdBdcdC

(2π/L)3

L

∑
s=0

(
L

s

)(
T(a, b, c, 1) +

U(a, b, c, 1)

L

)s (
T(a, b, c, 0) +

U(a, b, c, 0)

L

)L−s

≈
∫ ∞

0
da
∫

dAdbdBdcdC

(2π/L)3

∫ 1

0
dρ

eLΣ(a,b,c,A,B,C,ρ)

√
2πLρ(1 − ρ)

exp

[
ρ

(
1 +

U(a, b, c, 1)

T(a, b, c, 1)

)
+ (1 − ρ)

(
1 +

U(a, b, c, 0)

T(a, b, c, 0)

)]
, (F1)

where we have rearranged the summation ∑τ as ∑
L
s=0 (

L
s) taking advantage of the inherent permutation symmetry, Stirling’s formula

has been used to evaluate the binomial coefficients, ∑s is approximated as L
∫ 1

0 dρ with s = Lρ, and

Σ(a, b, c, A, B, C, ρ) ≡aA + bB + cC − 1

2
α ln

(
4AC + (B − 1)2

)
− 4Aq2

4AC + (B − 1)2

+ ρ ln T(a, b, c, 1) + (1 − ρ) ln T(a, b, c, 0)− ρ ln ρ − (1 − ρ) ln(1 − ρ). (F2)

The saddle point equations for this expression involve seven variables including ρ. Since the saddle point equations for A, B, C are
the same as Equation D18, we may again insert Equation D19 into Equation F2, which yields

Σred(a, b, g, ρ) =− ln 2 +
α

2

[
1 − ln

α

2

]
− α

2
ln

(
α + g

ac(g) + b2

)
+ b +

g

2
− ρ ln ρ − (1 − ρ) ln(1 − ρ)

+ (1 − ρ) ln

(
erf

(
α√
2a

)
+ 1

)
+ ρ

(
ln

[(
erf

(
α + 2b√

2a

)
+ 1

)]
− 2c(g)

)
. (F3)

Since

∂Σ

∂ρ
= ln

T(a, b, c, 1)

T(a, b, c, 0)
− ln ρ + ln(1 − ρ), (F4)

the saddle point value of ρ∗ is

ρ∗ =
T(a∗, b∗, c∗, 1)

T(a∗ , b∗, c∗, 1) + T(a∗ , b∗, c∗, 0)
=



1 + e2c∗




erf
(

α/
√

2a∗
)
+ 1

erf
(
(α + 2b∗)/

√
2a∗
)
+ 1








−1

. (F5)

By inserting ρ∗ into the saddle point equations for a, b, c, one can easily see that the final equations are the same as those derived from
Equation D16.

Appendix G: Derivation of Equation 50

The determination of the solution describing regime III relies on the intuition that as α becomes large, the fitness landscape is asymp-
totically linear with the wild type being the global fitness maximum, as demonstrated in Sign epistasis for L = 2. This suggests an
ansatz where a∗ is close to 4q2, which corresponds to the wild type phenotypic distance as shown in Equation E5. Given this clue,
one can additionally find that

∂

∂a
Σred(a, b, g) = 0 (G1)
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is solved by a = 4q2, b = −α and g = α. Furthermore, if we evaluate the remaining saddle point conditions around this point, we
find that this solution fails to solve them by a slight margin,

∂

∂b
Σred(a, b, g)

∣∣∣∣
a=4q2, b=−α, g=α

=
e
− α2

8q2

√
2πq

(G2)

and

∂

∂c
Σred(a, b, g)

∣∣∣∣
a=4q2, b=−α, g=α

=
α

8q2
erfc

(
α

2
√

2q

)
. (G3)

Given the fact that erfc(x) = e−x2
(

1√
πx

+ O
(
x−3

))
, these non-vanishing terms are seen to be of the order of ǫ = e

− α2

8q2 . Hence, it

is sufficient to consider an expansion around the zeroth order solution of the form Σred(4q2 + A1ǫ,−α + A2ǫ, α + A3ǫ) to show that
Equation 50 satisfies the saddle point conditions Equation 48. To this end, we first focus on the derivatives with respect to A1 and A2,

1

ǫ

∂

∂A1
Σred(4q2 + A1ǫ,−α + A2ǫ, α + A3ǫ) = − A3ǫ

16q2
+ O(ǫ2),

1

ǫ

∂

∂A2
Σred(4q2 + A1ǫ,−α + A2ǫ, α + A3ǫ) =

(
1√
2πq

− 2A2 + A3

2α

)
ǫ + O(ǫ2). (G4)

The vanishing contributions in ǫ imply that the zeroth order solution (4q2,−α, α) satisfies the first two saddle point conditions.
Additionally, we find that the corrections of the order O(ǫ) are A3 = 0 and A2 = α√

2πq
. Since A3 = 0 to leading order, the saddle

point equation with respect to g should be evaluated to order O(ǫ2). This yields

1

ǫ2

∂

∂B3
Σred(4q2 + A1ǫ,−α + A2ǫ, α + B3ǫ2) =


− A1

16q2
−

√
2
π q

α2
+ O

(
q3

α4

)
 ǫ +O(ǫ2), (G5)

and subsequently, A1 is solved to be A1 =

(
16
√

2
π q3

α2 + O(q4/α3)

)
ǫ + O(ǫ2). Finally, by inserting the solutions A1, A2 and A3 as

well as the zeroth order solutions into Equation F5, the solution for ρ∗ is found to be

ρ∗ =





√
2
π qǫ

α
+ O

(
q3

α3

)

+ O(ǫ2). (G6)
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