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Abstract  

Our knowledge of disease genetics has advanced rapidly during the past decade, with the 

advent of high-throughput genotyping technologies such as genome-wide association studies 

(GWAS). However, few methodologies were developed and systemic studies performed to 

identify novel drug candidates utilizing GWAS data. In this study we focus on drug 

repositioning, which is a cost-effective approach to shorten the developmental process of new 

therapies. We proposed a novel framework of drug repositioning by comparing 

GWAS-imputed transcriptome with drug expression profiles from the Connectivity Map. The 

approach was applied to 7 psychiatric disorders. We discovered a number of novel 

repositioning candidates, many of which are supported by preclinical or clinical evidence. We 

found that the predicted drugs are significantly enriched for known psychiatric medications, 

or therapies considered in clinical trials. For example, drugs repurposed for schizophrenia are 

strongly enriched for antipsychotics (p = 4.69E-06), while those repurposed for bipolar 

disorder are enriched for antipsychotics (p = 2.26E-07) and antidepressants (p = 1.17E-05). 

These findings provide support to the usefulness of GWAS signals in guiding drug discoveries 

and the validity of our approach in drug repositioning. We also present manually curated lists 

of top repositioning candidates for each disorder, which we believe will serve as a useful 

resource for researchers. 
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INTRODUCTION 

The last decade has witnessed a rapid growth of genotyping technologies and genome-wide 

association studies (GWAS) have played in major role in unraveling the genetic bases of 

complex diseases. According to the latest GWAS catalog (www.ebi.ac.uk/gwas/, accessed 

22nd Dec 2016), more than 2600 GWAS studies have been performed to date. It is worth 

noting that many biobanks are also collecting genomic data, and the private genetics company 

23andMe has genotyped more than a million customers 

(mediacenter.23andme.com/fact-sheet/). It is clearly of great clinical and public interest to 

translate these findings into treatment for diseases. Nevertheless, compared to the large 

literature of GWAS studies, relatively few methodologies have been developed and 

systematic studies performed to identify novel drug candidates by using GWAS data. 

 

Psychiatric disorders carry significant burden on health globally1 and the current treatment 

strategies are far from perfect. Despite the heavy health burden and the increased awareness 

of mental health in many places, drug discovery in the field have largely been stagnant2. As 

argued by Hyman, the basic mechanisms of most antidepressants and antipsychotics, the most 

widely used drugs used in psychiatry, are relatively similar to their prototypes imipramine and 

chlorpromazine discovered in the 1950s2. On the other hand, in recent years GWAS studies 

have greatly advanced our knowledge of the genetic bases of many psychiatric disorders. 

Taking advantage of these developments, we proposed a new framework for identifying drug 

candidates based on GWAS results, and applied the method to a variety of psychiatric 

disorders. 

 

Here we focus on drug repositioning, that is, finding new indications for existing drugs. As 

conventional drug development is an expensive and lengthy process, repositioning serves as a 

useful strategy to hasten the development cycle3. It is worth noting that while we use the term 
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“drug repositioning” throughout this paper, the method is also applicable to any chemicals 

with known gene expression profiles.  

 

A few previous studies have investigated the use of GWAS data in drug repositioning. The 

most intuitive approach is to study whether the top genes identified in GWAS can serve as 

drug targets. Sanseau et al.4 searched for top susceptibility genes (with p < 1e-7) from the 

GWAS catalog and matched the results against the drug targets listed in the Pharmaprojects 

database, a commercial resource with information on global drug pipelines. In addition, they 

proposed a repositioning approach by identifying “mismatches” between drug indications and 

the original GWAS traits. In another study5, Cao et al. considered interacting partners of 

GWAS hits to discover new drug targets. Lencz and Malhotra6 compared schizophrenia 

GWAS results with drug target genes, and prioritized potential new drug targets for the 

disease. Another recent study investigated whether evidence from human genetic studies are 

useful to drug development in general. The authors found that the proportion of drugs with 

support from GWAS increased along the development pipeline7.  

 

While the approach of finding overlap between top GWAS hits and known drug target 

genes is useful, it has a number of limitations. Firstly, many of the top GWAS genes may not 

be easily targeted by a drug. Cao and Moult5 studied 856 drug target genes from DrugBank 

and found only 20 genes that were discovered in GWAS of the corresponding disease. While 

this number is likely to improve with increasing sample sizes, there will remain a number of 

GWAS hits which are not directly “druggable”. In addition, many of the GWAS top SNPs are 

within non-coding regions8 and do not encode for a drug target protein. The above approach 

might also miss “multi-target” drugs, a paradigm that has attracted increasing attention in 

recent years. It is argued that as complex diseases (like most psychiatric disorders) involve the 

interplay of multiple genetic and environmental factors, they may be more easily managed by 
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modulating multiple instead of single targets9. Lastly, as previous studies mainly focused 

mainly on the most significant hits, they ignored the contribution of genetic variants with 

smaller effect sizes. As shown in polygenic score analyses of many complex traits, often 

variants achieving lower significance levels also contribute to disease risks10.  

 

With the aforementioned limitations in mind, we developed a new strategy for drug 

repositioning by imputing gene expression profile from GWAS summary statistics and 

comparing it with drug-induced expression changes. Analysis of the transcriptome of drugs 

versus diseases is an established approach for drug repositioning and has previously been 

successfully applied for complex diseases11,12. For example, by examining drugs in the 

Connectivity Map (Cmap)13 which showed opposite patterns of expression to diseases, Sirota 

et al.11 derived candidates for repositioning and experimentally validated a prediction 

cimetidine for the treatment of lung adenocarcinoma. With a similar method, Dudley et al.12 

identified topiramate as a novel treatment for inflammatory bowel disease and validated it in 

an animal model. Other studies (e.g.14-16) also showed potential of this approach in 

repositioning.  

 

  Built on this repositioning strategy, we proposed a new approach by using imputed 

transcriptome from GWAS instead of expression data from microarray or RNA-sequencing 

studies. This approach has several advantages. Firstly, patients from expression studies are 

often medicated. This is particularly relevant for studies in neuro-psychiatry, as brain tissues 

can only come from post-mortem samples of patients, who were often on psychiatric 

medications17. History of medications might confound our results as our aim is to compare the 

expression patterns of disease and those of drugs. Imputed transcriptome on the other hand is 

not altered by medications or other environmental confounders. Secondly, current GWAS 

samples are usually orders of magnitude larger than expression studies (often 104 or more), 
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and GWAS summary statistics are widely available. In addition, for many diseases such as 

psychiatric disorders, the tissues of interest are not easily accessible. On the other hand, as we 

shall explain below, expression profiles can be readily imputed for over 90 tissues from 

GWAS data using appropriate statistical models.  

 

METHODS 

Imputation of expression profile from GWAS data 

Recently methods have been developed to impute expression from GWAS variants18-20. The 

main idea is to build a statistical model to predict expression levels from SNPs in a reference 

transcriptome dataset, and the prediction model can be applied to new genotype data. This 

approach estimates the component of gene expression that is contributed by (germline) 

genetic variations. The program PrediXcan18 was developed for this purpose based on models 

built from the Genotype-Tissue Expression (GTEx) project21 and the Depression Genes and 

Networks (DGN) cohort22. As most individual genotype data are not publicly available due to 

privacy concerns, we applied a recently developed algorithm called MetaXcan which allows 

imputation of expression z-scores (i.e. z-statistic derived from comparing gene expression in 

cases versus controls) based on summary statistics alone. The method was shown to be in 

excellent concordance with predictions made from raw genotype data19. Assuming that a set 

of SNPs (SNP1, SNP2 … , SNPk) contribute to the expression of gene g, the following formula 

can be used to compute the expression z-scores for the gene:  
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where giw is the weight given to SNPi for predicting the expression level of gene g, ˆ
i and 

ˆ
g denote the estimated variance of SNPi and gene g respectively (estimated from a reference 

genotype dataset), and ˆ ˆ/ ( )i iSE  denotes the summary z-statistic of SNPi of the disease 
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trait. The weights of SNPs giw were computed from reference datasets of expression 

quantitative trait loci (eQTL) studies. We downloaded pre-computed weights derived from an 

elastic net prediction model with GTEx as the reference transcriptome dataset, provided by 

the authors of MetaXcan. It is worth noting that the above methodology is similar to another 

transcriptome imputation algorithm TWAS20, but a different prediction method (based on a 

mixed model) is employed in TWAS. We used MetaXcan in this study as the program readily 

allows transcriptome imputation for a much larger variety of tissues.   

 

Transcriptome imputation of 7 psychiatric disorders  

GWAS summary statistics were obtained from the Psychiatric Genomics Consortium (PGC) 

website (www.med.unc.edu/pgc/results-and-downloads). We downloaded eight sets of GWAS 

summary statistics corresponding to seven psychiatric disorders, including schizophrenia 

(SCZ)23, major depressive disorder (MDD)24,25, bipolar disorder (BD)26, Alzheimer’s disease 

(AD)27, anxiety disorders (ANX)28, autistic spectrum disorders (ASD)29 and attention deficit 

hyperactivity disorder (ADHD)30. We employed two different sets of summary statistics for 

MDD; the first set was from the PGC group24, while the other was from the CONVERGE 

study which recruited more severe MDD cases from Chinese women only25. Details of 

individual studies are described in the respective references. Transcriptome of each disease 

was imputed for ten brain regions included in GTEx, using default parameters in MetaXcan.  

 

Drug-induced expression profiles 

Drug-induced expression profiles were derived from the Cmap database, a resource of 

genome-wide expression profile of cultured cell lines treated with 1309 different drugs or 

small molecules13. We downloaded raw expression data from Cmap, and performed 

normalization with the MAS5 algorithm. Expression levels of genes represented on more than 
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one probe sets were averaged. Differential expression between treated cell lines and controls 

was tested using the limma package31. We performed analyses on each combinations of drug 

and cell line, with a total of 3478 instances. Statistical analyses were performed in R3.2.1 

with the assistance of the R package “longevityTools”. 

 

Comparison of gene expression profiles of drugs versus diseases 

Next we compared the expression profiles (in z-scores) of drugs versus those of diseases. The 

original study on Cmap employed Kolmogorov–Smirnov (KS) tests13 to compare two 

expression patterns. In brief, the aim of the KS test is to evaluate whether a set of 

disease-related genes are ranked higher or lower than expected in a list of genes sorted by 

their drug-induced expression levels. The KS test was performed separately for upregulated 

and downregulated disease genes. For drug repositioning, we study whether there is an 

enrichment of genes that are upregulated for disease but downregulated on drug treatment, 

and vice versa. We adopted the same formulae described in original Cmap paper to calculate 

the “connectivity scores”.  

Reversed patterns of expression can also be tested by Spearman or Pearson correlations. 

Yet another approach is to use only the K most up- or down-regulated genes in computing the 

correlations32. In this study we employed all five methods (i.e. KS test, Spearman correlation 

with all or the most differentially expressed genes, Pearson correlation with all or the most 

differentially expressed genes) in our analyses and computed the average ranks. As there are 

no consensus methods to define K, we also set different values of K (50, 100, 250, 500) and 

averaged the results for each method. Drugs were then ranked in ascending order of their 

connectivity scores or correlation results (i.e. the most negative correlation or connectivity 

score ranked first).  

 

To assess the significance of the ranks, we performed permutation tests by shuffling the 
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disease expression z-scores and comparing it to drug transcriptomic profiles. One hundred 

permutations were performed for each drug-disease pair, and the distribution of ranks under 

the null was combined across all drug-disease pairs (such that the null distribution was 

derived from 347800 ranks under H0).  

 

Manual curations of the top repositioning candidates 

To assess the drug candidates found in our drug repositioning algorithm, we performed 

manual curations of the top 15 drugs (representing the top ~0.45% of all instances) identified 

for each disorder and brain region. Literature search was performed to look for evidence of 

therapeutic potential of the identified drug candidates.  

 

Tests for enrichment of known indicated drugs or drugs in clinical trial 

In addition to manually inspecting the top candidates, in order to validate our approach, we 

also tested for an enrichment of drugs that are (1) indicated for each disorder; or (2) included 

in clinical trials. The enrichment tests are similar in principle to gene-set analyses, but with 

gene-sets replaced by drug-sets. We employed two types of tests for enrichment. In the first 

approach, we tested whether a known drug-set, such as antipsychotics or antidepressants, 

were ranked significantly higher than by chance; this approach is also known as a 

“self-contained” test. In the second method, we compared medications in the drug-set against 

those outside the set, and tested whether the former group was ranked significantly higher. 

This is also known as a “competitive” test33,34. Details of the statistical methods are described 

in Supplementary Text.  

 

  We considered three sources of drug-sets in our analyses. The first set comes from the 

Anatomical Therapeutic Classification (ATC) drugs downloaded from KEGG. The ATC is an 

established system for the classification of medications and we extracted three groups of 
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drugs: (1) all psychiatric drugs (coded “N05” or “N06”); (2) antipsychotics (coded “N05A”); 

(3) antidepressants and anxiolytics (coded “N05B” or “N06A”). We grouped antidepressants 

and anxiolytics together in our analyses as many anti-depressants are indicated for anxiety 

disorders, and vice versa, anxiolytics are frequently prescribed to depressive patients 

clinically35. We did not specifically include drugs for dementia or psychostimulants as they 

are relatively few in number. Note that the ATC does not classify drugs specifically for some 

disorders, such as BD, autism and ADHD.  

 

The second source is from Wei et al.36 who complied a MEDication Indication resource 

(MEDI) from four public medication resources, including RxNorm, Side Effect Resource 2 

(SIDER2), Wikipedia and MedlinePlus. A random subset of the extracted indications was also 

reviewed by physicians. We used the MEDI high-precision subset (MEDI-HPS) which only 

include drug indications found in RxNorm or in at least 2 out of 3 other sources, with an 

estimated precision of 92%.  

 

As the aforementioned sources only include known drug indications, we also considered a 

wider set of drugs that are included for clinical trials on https://clinicaltrials.gov. These drugs 

represent promising candidates that are often supported by preclinical or human studies. We 

downloaded a precompiled list of these drugs (created in May 2016) from 

https://doi.org/10.15363/thinklab.d212.  

 

 For each disorder, we compiled a list of repositioning candidates using the imputed 

transcriptome profile of each brain region. We combined the drug-set analysis results across 

brain regions by meta-analyses of the respective p-values. We employed two different 

algorithms, Fisher’s method37 and Tippett’s minimum p approach38 to combine the p-values. 

Analyses were performed with the R package “metap”. Multiple testing correction was 
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performed by the false discovery rate (FDR) approach.  

 

RESULTS 

The sample sizes of the GWAS datasets we used are listed in Supplementary Table 1. The top 

15 repositioned drug candidates for each disorder and brain region (with manual curations of 

drug descriptions and potential therapeutic relationship to the disorder) are presented in full in 

Supplementary Tables 2-9. Selected drug candidates within the top lists are presented and 

discussed below.  

 

Drug candidates repositioned for different psychiatric disorders 

Schizophrenia  

Table 1 shows selected candidates for schizophrenia and bipolar disorder. For schizophrenia, 

it is interesting to note that we identified a number of known antipsychotics such as 

thioproperazine, droperidol, triflupromazine, thiethylperazine, spiperone and pimozide as top 

candidates. It is worth noting that our repositioning method is blind to any knowledge about 

existing psychiatric drugs or known drug targets. The results provide further evidence to the 

role of the dopaminergic system in the treatment of schizophrenia. Some top candidates have 

been shown to improve negative symptoms in clinical studies, such as the H2 antagonist 

ranitidine39 and the alpha 2 receptor antagonist idazoxan40. The antidepressant paroxetine was 

also tested in a double-blind clinical trial and shown to be efficacious in ameliorating negative 

symptoms in schizophrenia41. There are other drug candidate with preliminary support by 

preclinical or clinical studies with diverse mechanisms, such as the serotonin and dopamine 

antagonist metitepine42, the Na-K-Cl cotransporter 1 inhibitor bumetanide43 and the 

non-steroidal anti-inflammatory drug (NSAID) meclofenamic acid44. It is also noteworthy 

that a relatively large proportion of drugs with stronger literature support were derived from 

comparison with expressions in the frontal cortex, a brain region strongly implicated in 
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schizophrenia45.  

 

Bipolar disorder  

As for bipolar disorder, we found a number of antipsychotics among the top list (Table 2). 

Antipsychotics are well-known to be effective for BD overall and for the associated psychotic 

symptoms. Our analyses also revealed other candidates with known or potential 

antidepressant effects, such as imipramine, yohimbine, metyrapone46 and ketoconazole47. The 

latter two drugs are believed to exert antidepressant effects by reducing cortisol levels. 

Antidepressants are often used in the treatment of bipolar patients48. While there are 

controversies regarding its use, anti-depressants are included as valid treatment options in 

current guidelines, especially in bipolar II patients or when used with a mood stabilizer49. 

Interestingly, a few NSAIDs were also on the top list, such as aspirin and a cyclooxygenase-2 

(COX-2) inhibitor SC-58125, which is supported by the neuro-inflammatory hypothesis of 

BD50. In line with the observation of raised cardiovascular risks in bipolar patients and 

possible shared pathophysiology between these disorders51, simvastatin and metformin were 

also among the top list.  

 

Major depressive disorder  

Two sets of GWAS data for MDD were used in our analyses (Table 3). For the results using 

the MDD-PGC data, we observed that fluoxetine, a widely used selective serotonin reuptake 

inhibitor (SSRI), was among the top candidates. We also observed quite a few antipsychotic 

medications on the list, such as sulpride, promazine, perphenazine and loxapine. Other 

repositioning candidates are more diverse in their mechanisms, such as phosphodiesterase 

inhibitors (papaverine52), histamine receptor antagonists (thioperamide52), muscarinic 

antagonists (scopolamine53) and cortisol-lowering agents (ketoconazole47) etc.  

  As for the repositioning results from the MDD-CONVERGE study, a known SSRI 
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(zimeldine54), a norepinephrine-dopamine reuptake inhibitor (nomifensine55) and a 

monoamine oxidase (MAO) inhibitor (isocarboxazid) were ranked among the top, although 

the former two drugs have been withdrawn due to other unrelated adverse effects. Two 

antipsychotics sulpride and risperidone were also on the list. Sulpride was tested in a double 

blind randomized controlled trial (RCT) of 177 patients and shown to significantly improve 

depressive symptoms56. Risperidone was confirmed to be useful as adjunctive treatment for 

MDD57. Interestingly, we found three drugs with actions on the glutamatergic system among 

the top candidates58. Arcaine and ifenprodil are NMDA antagonists and cycloserine is a partial 

agonist at the glycine site of the NMDA glutamate receptor. Ifenprodil was shown to improve 

depression in a mouse model59 while cycloserine has been shown to be effective as an add-on 

therapy in an RCT60. 

 

Anxiety disorders 

For anxiety disorders, we found the SSRI paroxetine and the tricyclic antidepressant 

protriptyline were on the top list. Another drug on the serotonergic system, pirenperone acts 

as a 5-HT2 antagonist and was shown anxiolytic actions in a small clinical study61. Some 

other drugs with preliminary support by animal or clinical studies include bumetanide, a loop 

diuretic which also affects GABAA signaling62; ivermectin, an anti-parasitic and GABA 

agonist63; kawain, a kavalactone with anxiolytic properties shown in a number of clinical 

trials64; nimodipine, a calcium channel blocker with potential anxiolytic effects65 and 

piracetam, a nootropic drug which is also proposed for treatment of dementia66. 

 

Alzheimer disease 

AD is a relatively intense research area and we have found numerous drugs with some 

support by preclinical or clinical studies. Some of the drugs among the top candidates 

received have been tested in clinical trials. Naftidrofuryl is a vasodilatory agent which was 
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shown to be effective for functional outcomes, mood and cognitive function in a 

meta-analysis67. Vinpocetine is an alkaloid from a plant which showed some benefits in 

dementia according to a meta-analysis of three RCTs68. Some other interesting repositioning 

candidates include verapamil, a calcium channel blocker69; piribedil, a D2/D3 agonist70; 

luteolin kaempferol and quercetin, flavonoids with potential anti-dementia effects71; harmine, 

an alkaloid which may inhibit tau phosphorylation in AD72 etc. Interestingly, quite a number 

of NSAIDs appeared on our top list of drugs, such as meclofenamic acid, ketorolac, celecoxib, 

naproxen and acemetacin. NSAIDs have been tested in clinical studies for possible prevention 

or treatment of AD, although the results were inconsistent and further investigations are 

required73.  

 

Attention deficit hyperactivity disorder 

A few drugs on the top list have been tested in clinical trials. The anticonvulsant 

carbamazepine was analyzed in a meta-analysis which concluded preliminary evidence in 

treating ADHD. The alkaloid lobeline may improve working memory in adult ADHD74. 

Tranylcypromine, another MAOI among the top list, was effective in clinical trials although 

its side effects need to be considered75. Other drugs such as rolipram and reserpine were 

found to be effective for ADHD-like symptoms in animal models76,77.  

 

Autistic spectrum disorders 

A few drugs on the top list are worth mentioning. Risperidone is one of the two 

FDA-approved medication for treating irritability in ASD. Two drugs, pentoxylline 

(phosphodiesterase inhibitor) and amantadine (NMDA antagonist), have been tested in 

clinical trials of ASD as combination treatment with risperidone. Both showed effectiveness 

in ameliorating behavioral problems78,79. Another drug loxapine, a typical anti-psychotic, was 

effectiveness as an add-on therapy for irritability in ASD80. Ribavirin is another interesting 
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candidate. Recently autism was shown to be associated with eIF4E overexpression which in 

turn leads to excessive translation of neuroligins81. Ribavarin, an antiviral agent, was found to 

be an inhibitor of eIF4E82 and hence may serve as a potential treatment. Ribavarin was also 

listed in a patent for autism treatment (www.google.ch/patents/US5008251). 

 

Drug-set enrichment analyses 

Enrichment for drugs listed in the ATC classification system  

First we considered the enrichment test results from drugs listed in the ATC classification 

system. As shown in Table 4, antipsychotics were strongly enriched in the repositioning 

candidates for SCZ (lowest p across four tests = 4.69E-06) and BD (lowest p = 2.26E-07). 

Interestingly, antipsychotics were also enriched in the drug candidates (albeit less strongly) 

for MDD (lowest p = 0.0285), AD (lowest p = 0.0256) and anxiety disorders (lowest p = 

0.0054). We also observed antidepressants and anxiolytics to be enriched in drugs 

repositioned for bipolar disorder (lowest p = 1.17E-05). In addition we found a trend towards 

significance for AD (lowest p = 0.0507). When all psychiatric medications are combined as a 

drug-set, evidence of enrichment was found for SCZ, BD, AD, and ANX.  

 

Enrichment for drugs listed in MEDI-HPS 

The enrichment test results using MEDI-HPS drugs were in general consistent with those 

derived from the ATC drugs (Table 5). Again we observed that antipsychotics were highly 

enriched in the repositioning candidates for schizophrenia (lowest p = 2.24E-09). For the rest 

of the analyses with the antipsychotics drug-set, we found enrichment for BD and MDD; a 

nominally significant result was also observed for AD.  

  

 When the drug-set was limited to antidepressants and anxiolytics, enrichment was observed 

for SCZ (lowest p = 1.52E-03), BD (lowest p = 0.0143) and AD (lowest p = 0.0458). When 
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all psychiatric drugs were included, enrichment was found for SCZ, BD and AD.  

 

Enrichment for drugs listed in clinicalTrial.gov 

We tested for enrichment for drugs listed in clinicalTrial.gov for each of the corresponding 

disorders (Table 6). (We did not pursue tests of drugs across diagnoses as drugs listed in 

clinicalTrial.gov are less certain and well-defined as a “drug class” compared to the previous 

two sources). Evidence of enrichment was observed for SCZ (lowest p = 0.0116), BD (lowest 

p =0.0132), MDD (lowest p = 0.0396) and anxiety disorders (lowest p = 0.0066).   

 

DISCUSSION 

In this study we developed a novel framework for drug repositioning by linking two 

apparently disparate sources of information, GWAS and the Connectivity Map. We proposed 

to compare the GWAS-imputed transcriptome profiles with those derived from drugs. We 

applied the methodology to 7 psychiatric disorders and identified a number of interesting 

candidates for repositioning, many of which are supported by animal studies or clinical trials. 

The drug-set enrichment analyses further lend support to the validity of our approach.  

 

  There are a number of advantages of our repositioning framework. Firstly this approach is 

largely “hypothesis-free” in the manner that it does not assume any knowledge about known 

drug targets or drug-disease relationships. As a result the method may be able to find drugs of 

different mechanisms from the known treatments. This method may be particularly useful for 

diseases with few known treatments or if existing treatments are highly similar in their 

mechanisms. A related advantage is that it can be applied to any chemicals as long as the 

expression profile is available, such as traditional Chinese medicine (TCM) products with no 

known drug targets83. As described before, another important advantage when compared to 

conventional connectivity mapping is that GWAS-imputed transcriptome is relatively immune 
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to confounding by medication effects. With the availability of eQTL reference resources such 

as GTEx, imputation of expression profiles can be performed easily for close to a hundred 

tissues. In addition, only GWAS summary statistics are required as input for imputation, 

which obviates the difficulties in obtaining raw genotype data and makes the approach easily 

applicable to a wide variety of traits. The current method is also intuitive and computationally 

simple to implement. Moreover, we have considered all genetic variants instead of just the 

most significant hits in our repurposing pipeline. One alternative for inclusion of 

sub-threshold associations is to employ gene-set analysis to look for over-representation of 

genes acting as drug targets84, but here we proposed a different novel approach that does not 

rely on knowledge of known drug targets and takes into account the direction of genetic 

associations.  

 

  It is encouraging to observe that our repositioning results are in general supported by the 

drug-set enrichment analyses. In particular, antipsychotics, which are known to treat SCZ and 

BD, are also strongly enriched in the repositioning candidates of these two disorders. 

Similarly, antidepressant is an indicated treatment option of BD49, which was also 

significantly enriched for this disorder. For MDD (using the PGC data) and anxiety disorders, 

while we did not observe enrichment in ATC or MEDI-HPS drug-sets, there was some 

evidence that our approach preferentially picked up drugs included in clinical trials. These 

results suggest that GWAS results contain useful information for drug discovery or 

repositioning, and is concordant with the conclusion of a previous study that drugs supported 

by human genomic data increase along the development pipeline7.  

   

  Interestingly, our analyses also revealed possible enrichment of antipsychotics for MDD, 

anxiety disorders and AD. Antipsychotics have long been used for treatment of depression, 

especially in the more severe cases with psychotic symptoms. A recent meta-analysis also 
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demonstrated efficacy of a number of atypical antipsychotics as adjunctive treatment in 

depression85. Given the high co-morbidity of depression and anxiety86 and possibly shared 

pathophysiology87, it is not unexpected that antipsychotics may be useful for anxiety as well. 

Anti-psychotics are not infrequently prescribed for anxiety disorders, although its safety and 

efficacy warrant further investigations88. In a similar vein, we observed that antidepressants 

and anti-anxiety agents were over-represented in the top drug lists of SCZ and AD (with 

nominally significance for AD). Psychotic and depressive symptoms are very commonly 

seen89 in AD patients, hence the enrichment for antipsychotics and antidepressants are 

expected. Antidepressants have been tested in clinical trials for schizophrenia, especially for 

negative symptoms, although further studies are required in this area90. Our findings provide a 

genetic basis for the effectiveness of psychiatric drugs across diagnoses.   

   

We observed that for some of the psychiatric disorders there were no significant enrichment 

of known drug indications, or the enrichment came from another class of drugs. There are a 

few possible explanations. Firstly, the sample size may not be large enough to detect 

enrichment of known drugs. Among the eight datasets, the sample size of SCZ GWAS is the 

largest, reaching almost 80000. For the other traits, the sample sizes are mostly between 5000 

to 20000. Limited sample sizes imply that some true associations are not detected and the 

imputed transcriptome is less accurate, which will affect the ability to find drugs with 

matched (reversed) expression profiles. For any high-throughput studies with limited sample 

sizes, it is possible for some signals (here known drug indications) to be “missed”, although 

other associations may be detected. An analogy is that earlier SCZ GWAS with smaller 

sample sizes did not detect the DRD2 locus but revealed other loci such as ZNF804A91. With 

accumulation of samples, the latest GWAS meta-analysis did confirm DRD2 as a 

susceptibility gene23. Hence limited sample sizes may explain, for instance, the enrichment of 

antipsychotics for MDD but not antidepressants.  
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Secondly, many psychiatric disorders are known to be heterogeneous. For MDD, anxiety 

disorders and AD, the prevalences are relatively high92,93 and there may be a wider range of 

heterogeneity in clinical manifestations and the underlying pathophysiologies. The 

heterogeneity impairs study power and implies that a specific drug or drug class may only be 

effective for a certain group of patients. Third, there are limited available treatment for some 

disorders, especially AD, AUT and ADHD, which makes the detection of these known drug 

indications difficult.  

 

In addition to the above, we observed that enrichment analyses were mostly negative for 

the MDD-CONVERGE dataset. One possible explanation is that as the GTEx dataset from 

which transcriptome imputation is based is not well-matched to the MDD-CONVERGE 

sample. The latter sample is composed of Chinese women, while the GTEx project includes 

only 1.0% Asians and 34.4% of females to date 

(http://www.gtexportal.org/home/tissueSummaryPage, accessed 22nd Dec 2016). While we 

expect overlap in the genetics of expression regulation, the imputation quality may be affected. 

Notwithstanding some negative results in the drug enrichment analyses, many of the top 

candidates for repositioning are suggested in preclinical or clinical studies, and are still 

worthy of further investigations.  

 

  There are a few general limitations to our approach. It is worth noting that the 

GWAS-imputed transcriptome captures the genetically regulated part of expression, and 

expression changes due to other factors (e.g. environmental risk factors) cannot be modelled. 

The method of comparing expressions is largely “hypothesis-free” as mentioned previously, 

however it may be improved by incorporating knowledge on drug targets or drug-disease 

relationships, if such information is available. The drug expression profiles were not 
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measured in brain tissues in Cmap, although the original publication on Cmap showed that 

drugs on neuropsychiatric diseases such as Alzheimer’s disease or schizophrenia can still be 

reasonably modelled13. It should be emphasized that the best approach to verify the 

repositioning predictions should rest on careful and adequately-sized preclinical and clinical 

studies, and the current study does not provide confirmatory evidence for the repositioning 

candidates.    

 

   In conclusion, we have developed a novel framework for drug repositioning by linking up 

GWAS and drug expression profiling and applied the methodology to 7 psychiatric disorders. 

Our analyses also provide support that the psychiatric GWAS signals are enriched for known 

drug indications. We also present a list of repositioning candidates for each disorder, which 

will we believe will serve as a useful resource for preclinical and clinical researchers to 

pursue further studies.   
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Table 1   Selected drug repositioning candidates for schizophrenia  

Drug Cell line  Brain 

Region 

Rank p-value Brief Description 

Tremorine PC3 AC 7 3.19E-03 Affect amine levels in brain; a closely related drug oxotremorine  

was effective for SCZ in animal studies 

Scopolamine HL60 CAU 3 1.43E-03 Muscarinic antagonist; antidepressant properties 

Ranitidine MCF7 CAU 12 3.36E-03 H2 antagonist; shown to reduce negative symptoms in clinical study 

Paroxetine PC3 CAU 14 4.59E-03 SSRI; shown to improve negative symptoms in clinical study 

Droperidol HL60 CER 4 5.12E-04 D2 antagonist; antipsychotic properties 

Thioproperazine PC3 CEH 7 2.56E-03 First-generation anti-psychotic 

Tetrahydroalstonine PC3 COR 1 7.19E-05 Indole alkaloid; anti-psychotic properties in rodents; clinically used  

in Nigeria 

Hesperidin MCF7 COR 2 8.91E-05 Flavanones ; antioxidant 

Triflupromazine PC3 COR 5 8.40E-04 First-generation anti-psychotic 

Bumetanide MCF7 COR 6 8.57E-04 Na-K-Cl cotransporter 1 inhibitor; improved hallucinations in RCT 

Meclofenamic acid MCF7 FCOR 9 2.24E-03 NSAID; under clinical trial for cognitive symptoms 

Spiradoline PC3 FCOR 10 2.24E-03 Selective kappa-Opioid Agonist; effective in animal studies 

Thiethylperazine PC3 FCOR 13 3.40E-03 First-generation anti-psychotic 

Idazoxan PC3 FOCR 14 3.64E-03 Alpha 2 antagonist; clinical studies showed potential in improving 

negative symptoms 

Bromopride MCF7 HYP 4 1.46E-03 Dopamine antagonist 

Spiperone PC3 NUC 8 3.37E-03 First-generation antipsychotic 

Pimozide PC3 NUC 13 4.14E-03 First-generation antipsychotic 

Metitepine PC3 PUT 1 5.75E-06 5-HT and dopamine receptor antagonist with possible antipsychotic  

properties 

“Rank” refers to the rank within each brain region for the studied disorder. Please refer to the supplementary Table 2 for 

corresponding references. AC: Anterior cingulate cortex BA24; CAU: Caudate (of basal ganglia); CER: cerebellum; CEH: 

cerebellar hemisphere; COR: cortex; FCOR: frontal cortex (BA9); HIP, hippocampus; HYP, hypothalamus; NUC, nucleus 

accumbens (of basal ganglia); PUT, putamen (of basal ganglia). RCT: randomized controlled trial; NSAID, no-steroidal 

anti-inflammatory drugs. 
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Table 2  Selected drug repositioning candidates for bipolar disorder 

Drug Cell line Brain 

Region 

Rank  p-value Brief Description 

Norcyclobenzaprine PC3 CAU 1 3.31E-04 Structurally very similar to the antidepressant amitriptyline 

Acetylsalicylsalicylic acid PC3 CAU 2 3.65E-04 Closely related to aspirin, which may be useful for BD 

Thioridazine HL60 CAU 6 1.03E-03 First generation antipsychotic 

Acetylsalicylic.acid HL60 CEH 9 2.00E-03 Aspirin; clinical studies showed potential in BD treatment 

Mexiletine PC3 CER 6 2.25E-03 Class IB anti-arrthymic; may be useful for treatment  

resistant BD 

Dextromethorphan HL60 CER 11 4.23E-03 Morphinan class; may be effective for bipolar depression 

Imipramine HL60 CER 14 5.56E-03 Tricyclic antidepressant 

Simvastatin MCF7 COR 6 5.59E-03 Augmentation with lithium may be effective for BD 

Metyrapone HL60 FCOR 1 1.58E-04 Cortisol synthesis inhibitor; RCT showed effects in  

treatment-resistant MDD 

Prestwick-689 

(androsterone) 

MCF7 COR 13 2.53E-03 DHEA (precursor of this drug) may have anti-depressant  

effects 

Alpha yohimbine MCF7 HIP 1 3.82E-04 Alpha 2 antagonist; an RCT showed yohimbine hastened  

anti-depressant response if combined with fluoxetine 

Trifluoperazine MCF7 HIP 5 1.22E-03 Antipsychotic 

Molindone MCF7 HIP 12 3.72E-03 Antipsychotic 

Metformin MCF7 HIP 13 3.90E-03 Antidiabetic; being tested in clinical trial for refractory BD 

SC.58125 MCF7 HYP 4 1.12E-03 COX-2 inhibitor; a closely related drug celecoxib showed 

antidepressant actions in BD 

Ketoconazole PC3 HYP 7 2.27E-03 Case reports and open studies suggested efficacy for bipolar 

depression 

Thioproperazine MCF7 HYP 10 3.54E-03 First generation antipsychotic 

Mesoridazine PC3 NUC 6 1.99E-03 First generation antipsychotic 

Metitepine PC3 PUT 1 5.75E-06 5-HT and dopamine receptor antagonist with possible 

antipsychotic properties 

“Rank” refers to the rank within each brain region for the studied disorder. Please refer to the supplementary Table 

3 for corresponding references. Please refer to Table 1 for the abbreviations of brain regions. RCT: randomized 

controlled trial; BD, bipolar disorder; MDD, major depressive disorder.  
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Table 3  Selected drug repositioning candidates for major depressive disorder 

Drug Cell line Brain 

Region 

Rank  p-value Brief Description 

MDD-PGC      

Papaverine HL60 AC 3 2.93E-04 Cyclic nucleotide phosphodiesterase inhibitor; shown to be useful for depression 

in a case report 

Fluoxetine MCF7 CAU 3 6.87E-04 SSRI antidepressant 

Sulpiride PC3 CAU 12 4.46E-03 Antipsychotic with potential antidepressant properties 

Promazine MCF7 CAU 15 4.89E-03 Antipsychotic with potential antidepressant properties 

Sanguinarine HL60 CER 1 3.59E-04 A selective mitogen-activated protein kinase phosphatase-1 (Mkp-1)  

inhibitor; showed antidepressant effects in rats 

Thioperamide MCF7 CER 4 8.80E-04 Histamine H3 and H4 receptor antagonist; antidepressant effects in rats 

Pregnenolone PC3 CEH 4 1.09E-03 Endogenous steroid; shown to be useful in bipolar depression in RCT 

Scopolamine  HL60 CEH 13 4.44E-03 Anti-muscarinic agent which showed antidepressant effects in at least 2 RCTs 

Vitexin PC3 COR 7 2.00E-03 Flavone glucoside; antidepressant properties shown in mice 

Pirlindole MCF7 FCOR 9 2.85E-03 A reversible inhibitor of monoamine oxidase (MAO) A 

Palmatine HL60 HIP 10 2.06E-03 An alkaloid in plants, shown to have antidepressant properties in mice 

Perphenazine MCF7 HYP 1 2.59E-05 Typical antipsychotic with possible antidepressant properties 

Loxapine HL60 HYP 7 1.94E-03 Typical antipsychotic with possible antidepressant properties 

Pyridoxine PC3 NUC 5 1.07E-03 Vitamin B6; may have antidepressant effects in pre-menopausal women 

Ketoconazole PC3 NUC 14 2.75E-03 Antidepressant properties suggested in case series, possibly via  

cortisol-lowering effects 

Piroxicam HL60 PUT 10 2.46E-03 NSAID with possible antidepressant actions shown in mice 

 

MDD-CONVERGE 

     

Kawain PC3 AC 2  6.90E-04 Effective for treatment of anxiety shown in RCTs 

Doxycycline PC3 AC 6  1.79E-03 Antidepressant properties shown in mice 

Idazoxan PC3 CAU 5  1.10E-03 Alpha 2 antagonist; clinical studies showed effects in bipolar depression  

Nomifensine HL60 CER 4  1.56E-03 A norepinephrine-dopamine reuptake inhibitor, anti-depressant 

Arcaine HL60 COR 2  3.91E-04 NMDA antagonist; this drug class was shown to produce antidepressant  

effects in animal studies and RCT 

Zimeldine PC3 COR 6  1.94E-03 SSRI antidepressant 

Bromocriptine PC3 FCOR 1  3.16E-05 Dopamine agonist; antidepressant effects in a small open study 

Isocarboxazid HL60 FOCR 5  1.00E-03 MAO inhibitor 

Pioglitazone MCF7 FOCR 13  2.95E-03 Antidepressant properties when combined with citalopram in a RCT 

Sulpiride HL60 HIP 9  2.34E-03 Antipsychotic with potential antidepressant properties 

Risperidone HL60 HYP 7  2.25E-03 Atypical antipsychotic useful for augmentation as shown in RCT  

Cycloserine HL60 PUT 3  9.86E-04 Acts on NMDA receptor; clinical trial showed benefits in MDD 

Ifenprodil HL60 PUT 4  1.18E-03 NMDA antagonist; found to potentiate the effects of SSRI and TCA in mice  

“Rank” refers to the rank within each brain region for the studied disorder. Please refer to the supplementary Table 4-5 for corresponding 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 23, 2016. ; https://doi.org/10.1101/096503doi: bioRxiv preprint 

https://doi.org/10.1101/096503


25 
 

references. Please refer to Table 1 for the abbreviations of brain regions. RCT: randomized controlled trial; SSRI, selective serotonin 

reuptake inhibitor; TCA, tricyclic antidepressant. 
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Table 4  Drug enrichment analyses with drug-sets defined in the Anatomical Therapeutic Chemical (ATC) Classification System 

Disorder  Self (fisher) Compet (fisher) Self (minp) Compet (minp) 

Enrichment for ATC antipsychotics 
  

SCZ 6.78E-06 4.69E-06 0.0011  0.0010  

BD 4.14E-07 2.26E-07 0.0031  0.0025  

MDD 0.1634  0.1532  0.0322  0.0285  

MDD-CONVERGE 0.4484  0.4231  0.6674  0.6546  

AD 0.6849  0.6684  0.0294  0.0256  

ANX 0.0249  0.0241  0.0058  0.0054  

ADHD 0.9215  0.9209  0.7887  0.7939  

AUT 0.9956  0.9949  0.3816  0.3523  

     
Enrichment for ATC antidepressants or anxiolytics 

 
SCZ 0.1141  0.1075  0.1301  0.1264  

BD 1.64E-05 1.17E-05 0.0055  0.0050  

MDD 0.9911  0.9908  0.9448  0.9420  

MDD-CONVERGE 0.7199  0.7016  0.3904  0.3693  

AD 0.3475  0.3323  0.0564  0.0507  

ANX 0.1941  0.1953  0.2248  0.2173  

ADHD 0.9904  0.9904  0.9654  0.9641  

AUT 0.8343  0.8400  0.7034  0.6884  

     
Enrichment for all ATC psychiatric drugs 

 
SCZ 8.20E-05 4.22E-05 0.0160  0.0130  

BD 5.70E-09 1.20E-09 0.0033  0.0022  

MDD 0.7234  0.6935  0.1738  0.1482  

MDD-CONVERGE 0.6548  0.6130  0.6718  0.6329  

AD 0.1695  0.1360  0.0022  0.0013  

ANX 0.0061  0.0048  0.0129  0.0110  

ADHD 0.9981  0.9982  0.8358  0.8367  

AUT 0.9988  0.9988  0.9542  0.9406  

 

Self (fisher): self-contained test (one-sample t-test) combined across brain regions by Fisher’s method; Compet (fisher), competitive 

test (two-sample t-test) combined across brain regions by Fisher’s method; Self (minp), self-contained test (one-sample t-test) 

combined across brain regions by Tippett’s minimum p method; Compet (minp), competitive test (two-sample t-test) combined across 

brain regions by Tippett’s minimum p method. Test results with p < 0.05 and q-value < 0.2 are in bold. Full tables of q-values are 

presented in Supplementary Table 10-12.  

SCZ, schizophrenia; BD, bipolar disorder; MDD, major depressive disorder with GWAS data from the Psychiatric Genomics Consortium; 

MDD-CONVERGE, major depressive disorder with GWAS data from the CONVERGE Consortium; AD, Alzheimer’s disease; ANX, 

anxiety disorders; ADHD, attention deficit hyperactivity disorder; AU, autistic spectrum disorders. 
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Table 5   Drug enrichment analyses with drug-sets defined by MEDI-HPS 

Disorder  Self (fisher) 
Compet 

(fisher) 
Self (minp) 

Compet 

(minp) 

Enrichment for indicated drugs of each disorder 
 

SCZ 4.46E-09 2.24E-09 1.97E-02 1.70E-02 

BD 0.9962  0.9960  0.9982  0.9982  

MDD 0.4724  0.4545  0.4525  0.4210  

MDD-CONVERGE 0.5120  0.4787  0.7166  0.6945  

AD 0.5686  0.5646  0.1148  0.1140  

ANX 0.7188  0.7224  0.6363  0.6195  

ADHD 0.6374  0.6355  0.4404  0.4359  

AUT NA NA NA NA 

     
Enrichment for antispsychotics 

  
SCZ 4.46E-09 2.24E-09 0.0197  0.0170  

BD 5.82E-03 4.46E-03 0.0950  0.0890  

MDD 0.0850  0.0795  0.0293  0.0290  

MDD-CONVERGE 0.4266  0.3933  0.2645  0.2321  

AD 0.3318  0.3096  0.0546  0.0479  

ANX 0.2963  0.2949  0.2099  0.2061  

ADHD 0.6671  0.6578  0.2597  0.2419  

AUT 0.9311  0.9235  0.1326  0.1149  

     
Enrichment for antidepressants or anxiolytics 

 
SCZ 1.92E-03 1.52E-03 0.0316  0.0282  

BD 0.0173  0.0143  0.0214  0.0189  

MDD 0.4724  0.4545  0.4525  0.4210  

MDD-CONVERGE 0.5120  0.4787  0.7166  0.6945  

AD 0.3293  0.3104  0.0530  0.0458  

ANX 0.7188  0.7224  0.6363  0.6195  

ADHD 0.9975  0.9975  0.7589  0.7435  

AUT 0.9880  0.9879  0.8248  0.8112  

     
Enrichment for all psychiatric drugs 

  
SCZ 1.21E-07 4.41E-08 1.02E-03 7.44E-04 

BD 7.67E-04 4.13E-04 6.59E-03 5.03E-03 

MDD 0.2691  0.2471  0.2859  0.2878  

MDD-CONVERGE 0.5842  0.5316  0.2983  0.2422  

AD 0.2307  0.1921  0.0117  8.14E-03 

ANX 0.5701  0.5650  0.4802  0.4488  
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ADHD 0.9482  0.9455  0.6337  0.5999  

AUT 0.9778  0.9738  0.5533  0.4971  

 

Please refer to Table 4 for abbreviations. Test results with p < 0.05 and q-value < 0.2 are in bold. For AUT, results are not presented as 

there are only two matched instances. 

 

Table 6   Drug enrichment analyses with drug-sets defined by those listed in clinicalTrial.gov 

Disorder 
Self 

(fisher) 

Compet 

(fisher) 

Self 

(minp) 

Compet 

(minp) 

SCZ 0.0162  0.0116  0.5155  0.4949  

BD 0.0167  0.0132  0.0178  0.0158  

MDD 0.0448  0.0396  0.1085  0.1068  

MDD-CONVERGE 0.5465  0.4978  0.6540  0.5910  

AD 0.4371  0.4159  0.4969  0.4642  

ANX 0.0894  0.0783  0.0100  0.0066  

ADHD 0.1765  0.1728  0.2834  0.2691  

AUT 0.9502  0.9555  0.8904  0.9004  

Please refer to Table 4 for abbreviations. Test results with p < 0.05 and q-value < 0.2 are in bold. 
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