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Abstract

We introduce new statistical methods for analyzing genomic datasets that
measure many effects in many conditions (e.g. gene expression changes under
many treatments). These new methods improve on existing methods by allowing
for arbitrary correlations among conditions. This flexible approach increases
power, improves effect-size estimates, and facilitates more quantitative
assessments of effect-size heterogeneity than simple “shared/condition-specific”
assessments. We illustrate these features through a detailed analysis of
locally-acting (“cis”) eQTLs in 44 human tissues (data from GTEx project).
Our analysis identifies more eQTLs than existing approaches, consistent with
improved power. More importantly, although eQTLs are often shared broadly
among tissues, our more quantitative approach highlights that effect sizes can
vary considerably among tissues: some shared eQTLs show stronger effects in a
subset of biologically-related tissues (e.g. brain-related tissues), or in only a
single tissue (e.g. testis; transformed-fibroblasts). Our methods are widely
applicable, computationally tractable for many conditions, and available at
https://github.com/stephenslab/mashr.
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Introduction

Genomic studies often involve estimating and comparing many effects across
multiple conditions or outcomes. Examples include studying changes in
expression of many genes under multiple treatments [1]; or differences in histone
methylation at many genomic locations in multiple cell lines [2]; or the effects of
many genetic variants on risk of multiple diseases [3]; or the impact of many
eQTLs in multiple cell-types or tissues [4–6]. In these settings an initial goal is
often to identify “significant” non-zero effects. Another important goal is to
compare effects, and to identify differences in effect among conditions –
sometimes referred to as “interactions”. For example, in eQTL studies,
researchers are often interested in identifying tissue-specific effects, in the belief
that they may have particular biological relevance.

The simplest, and perhaps most common, analysis strategy for such studies
involves analyzing the data in different conditions one at a time, and then
comparing the overlap of “significant” results in different conditions. Although
appealingly simple, this “condition-by-condition” approach is unsatisfactory in
several respects. For example, it can substantially under-represent sharing of
effects among conditions, because many shared effects will be insignificant in
some conditions just by chance. And when effects are shared among conditions
it completely fails to exploit this, limiting its overall power [5].

To address these deficiencies of condition-by-condition analyses, several
groups have developed methods for joint analysis of effects in multiple conditions
(e.g. [2, 5–13]). Many of these methods are reasonably flexible. For example, [5]
explicitly allows for condition-specific effects, for sharing of effects among
subsets of conditions, and even for heterogeneity in the shared effects. Further,
the extent of this sharing and heterogeneity are learned from the data, using a
hierarchical model, which makes the approach adaptive to the data at hand.

Nonetheless, existing methods remain limited in important ways. First, all of
them make relatively restrictive assumptions about the correlations among
non-zero effects. For example, [5] assumes correlations are non-negative, and
that the non-zero effects are equally correlated among all conditions. In some
applications correlations may be negative: for example, genetic variants that
increase one trait may tend to decrease another. And, often, some subsets of
conditions will be more correlated than others: for example, in our eQTL
application later effects in brain tissues are more correlated with one another
than with effects in non-brain tissues. Second, the most flexible methods are
computationally intractable for moderate numbers of conditions (e.g. 44 tissues
in our eQTL application), and existing solutions to this problem substantially
reduce flexibility. For example, [5] solves the computational problem by
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restricting effects to be shared in all conditions, or specific to a single condition.
Alternatively, [12] allows for all possible patterns of sharing in an elegant
computationally-tractable way, but only under the more restrictive assumption
that the non-zero effects are uncorrelated among conditions, which will often not
hold in practice. Finally, existing methods typically focus only on testing for
significant effects in each condition, and not on estimating effect sizes. As we
illustrate here, estimating effect sizes can be essential to assessing heterogeneity
of effects among conditions.

Here we introduce more flexible statistical methods that combine the most
attractive features of existing approaches, while overcoming their major
limitations. The methods, which we refer to as “multivariate adaptive shrinkage”
(mash), build on recent work in [14] for testing and estimation of effects in a
single condition, and extend them to multiple conditions. Key features of mash
include: i) It is flexible, allowing for both shared and condition-specific effects,
and capable of capturing stronger correlations in effects among some conditions
than others; ii) It is computationally tractable for hundreds of thousands of tests
in (at least) dozens of conditions; iii) it provides not only measures of
significance, but also estimates of effect sizes, together with measures of
uncertainty; iv) It is adaptive, meaning that its behaviour adapts to the patterns
present in the particular data set being analyzed; and v) It is generic, requiring
only a matrix containing the observed effects in each condition, and a matrix of
their corresponding standard errors. (Indeed mash can work with just a matrix
of Z scores, although that reduces the ability to estimate effect sizes.) Together
these features make mash the most flexible and widely-applicable method
available for estimating and testing multiple effects in multiple conditions.

As its name suggests, mash is built on the statistical concept of “shrinkage”.
Here shrinkage refers to modifying estimates towards some value – often towards
zero – to improve accuracy. There are many good justifications for shrinkage,
and it is widely viewed as a powerful statistical tool. However, it is seldom used
in genomics applications. This may be due to the difficulty of deciding precisely
how much to shrink. The “adaptive shrinkage” method in [14] solves this
problem in univariate settings by learning from the data how much to shrink.
Here we extend this to multivariate settings. Shrinkage in the multivariate
setting is more complex than in the univariate setting, but also potentially more
useful. In particular, the multivariate setting provides the opportunity not only
to shrink estimates towards zero (which improves accuracy if most effects are
small), but also to shrink effects in related conditions towards one another
(which improves accuracy when effects are similar among conditions). This focus
on multivariate shrinkage estimation, and more generally on joint estimation of
effects across multiple conditions, distinguishes mash from existing approaches
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that focus primarily on testing for non-zero effects. Estimation is particularly
useful in settings where, as in our eQTL application here, there is considerable
sharing of effects among conditions, but where effect sizes also vary considerably.

To demonstrate the potential for mash to provide novel insights we apply it
here to analyse (cis) eQTL effects in 16,069 genes across 44 human tissues.
Compared with previous analyses of human eQTLs among multiple tissues [4–6],
our analysis involves many more tissues, and provides more insight into sharing
of effects by examining variation in eQTL effect sizes among tissues. Focussing
on the strongest “cis” eQTLs in each gene – which are the easiest to reliably
assess – we find that the majority are shared among large numbers of tissues, in
that their effects tend to be consistent in sign (positive or negative) across
tissues. However, at the same time, effect sizes can vary considerably among
tissues. Reassuringly, biologically-related tissues tend to show more correlated
effects; for example, effects are often quite similar among the different brain
tissues. Our analyses of variation in estimated effects among tissues suggest that
assessments of “tissue-specific” vs “tissue-consistent” effects should pay
attention to effect sizes, and not only to tests of significance.
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Methods Overview

Multivariate adaptive shrinkage (mash)

Our method, mash, is designed to estimate the effects of many units in many
conditions (n units in R conditions say). It takes as its input two n×R
matrices, one containing “effect” estimates and the other containing their
corresponding standard errors. For example, in the GTEx data analyzed here
we consider the effects of hundreds of thousands of potential eQTLs (rows) in
R = 44 tissues (columns). The method assumes that the true effects are
centered on 0, and indeed allows that many effects – possibly the vast majority –
may be at, or very near, zero. That is, the true effect matrix may be sparse. It
also allows that some of the non-zero effects may be ‘shared’, being similar
(though not necessarily identical) among conditions, while others may be
‘specific’ to only a subset of conditions. Although we illustrate mash on an eQTL
application, it is sufficiently flexible to apply to most contexts involving many
multivariate effects.

The mash method is an Empirical Bayes method with two steps: i) use all
the observed data to learn typical patterns of sparsity, sharing and correlations
among effects; ii) use these learned patterns to produce improved effect
estimates, and corresponding measures of significance, for each unit in each
condition. Step ii) is reasonably straightforward: it involves applying Bayes
theorem to combine the background information (learned patterns of sharing
from Step i)) with the observed data for each effect (the estimates and standard
errors in every condition). Step i) is the difficult part, and where the primary
innovations of our work lie. Specifically, we introduce a flexible model that
allows for sparsity of effects and correlations among non-zero effects, and
introduce a novel and efficient two-step approach to fitting this model.

Our flexible model uses a mixture of multivariate normal distributions that
allows for a range of effect sizes and patterns of correlation. Specifically, each
R-vector of effects across conditions, b, is assumed to come from a mixture
distribution,

p(b;π,U) =

K∑
k=1

L∑
l=1

πk,l NR(b; 0, ωlUk), (1)

where NR(·;µ,Σ) denotes the multivariate normal density in R dimensions with
mean µ and variance covariance matrix Σ; each Uk is a covariance matrix that
captures some common “pattern” of (potentially-correlated) effects; each ωl is a
scalar scaling coefficient that corresponds to a different “size” of effect; and the
mixture proportions πk,l determine the relative frequency of each pattern-size
combination. The scaling coefficients ωl take values on a fixed dense grid that
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spans “very small” to “very large”, to capture the full range of effects that could
occur (the goal is that the grid is sufficiently large and dense that adding more
values to it will not change results; see [14]).

To fit this model, we use a novel two-step procedure illustrated in Figure 1:

i-a) Generate a large list of candidate covariance matrices Uk = (U1, . . . , UK).
This list includes both “data-driven” estimates, and “canonical” matrices
that have simple interpretations. The data-driven estimates are obtained
by applying covariance estimation methods [15], and dimension reduction
techniques (e.g. Principal components analysis, and sparse factor
analysis [16]) to a subset of the effects matrix, specifically the rows of the
effect matrix that have the largest (univariate) effects. The canonical
matrices we use include the identity matrix (representing independent
effects across conditions); a matrix of all 1s (representing effects that are
equal in all conditions); and R matrices that represent effects that are
specific to condition r (r = 1, . . . , R). See Detailed Methods for details.

i-b) Given this list, estimate π by maximum likelihood (using all observed
effects, not only those used in Step i-a)).

The intuition is that Step i-a) can be relatively ad hoc, with the goal of
producing a large list of matrices, only some of which may effectively capture
key patterns in the data. Step i-b) is more formal, being based on the principle
of maximum likelihood, and can rescue imperfections in Step i-a) by giving very
low weight to covariance matrices that are not well supported by the data. Step
i-b) is also the place where the overall sparsity of effects is taken account of: if
most effects are zero, or very small, then this step will put most weight on very
small effects (i.e. small scaling coefficients, ω). This modular approach has
several attractive features. For example, Step i-b) is a convex optimization
problem, and so can be solved efficiently and reliably for large problems. And if
researchers have ideas for additional ways to generate candidate matrices in Step
i-a), these are easily plugged into the procedure.

The model (1) is quite flexible, and includes many existing methods for this
problem as special cases (Detailed Methods). One potential drawback of flexible
models is the possibility of “overfitting”. To address this we used a
cross-validation procedure which trains the model on a random subset of the
data (rows of the matrix) and then assesses its fit on the remaining data (“test
data”). In practice we found overfitting not to be a major concern - that is, in
general, we found that using more Uk typically improved, or at least did not
harm, test set performance. Thus, although mash is flexible, it is not too flexible.
A still more flexible model could be obtained by estimating the means of the
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MVNs in (1), rather than setting them to 0, but this would substantially
increase the potential for overfitting.
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Figure 1. Overview of fitting procedure in mash, which estimates the
multivariate distribution of effects present in the data. The data
(right) consist of a matrix of effect size estimates for a large number of units
(rows) in multiple conditions (columns), together with their corresponding
standard errors (here assumed to be 1 for each effect for simplicity). Colors
(red/blue) indicate the sign of the effects (positive/negative), with shading
intensity indicating size of effect. First, using the rows containing the strongest
signals (left), we apply covariance estimation and dimension-reduction methods
to estimate candidate “data-driven” covariance matrices (here U2, . . . , U9). To
these we add several “canonical” covariance matrices, including the identity
matrix, and matrices representing condition-specific effects. Each covariance
matrix represents a “pattern” of effects that may occur in the data (summarized
visually here by the first eigenvector, although each matrix is actually R×R).
We then scale each covariance matrix by a grid of scaling factors ωl, varying
from “very small” to “very large”, which allow for effect sizes to range from very
small to very large. Finally, using the whole data set (right), we use maximum
likelihood estimation to estimate weights (relative frequencies) πk,l for each
(ωl, Uk) combination; this corresponds to estimating how commonly each
pattern–effect size combination occurs.

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2016. ; https://doi.org/10.1101/096552doi: bioRxiv preprint 

https://doi.org/10.1101/096552
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

Improved effect size estimates

An important contribution of our method, mash, is its ability to flexibly combine
information among conditions to improve accuracy of estimated effects. In
particular, the flexibility of mash improves performance in settings with complex
(but realistic) patterns of sharing, while not hurting performance in settings
where simpler models would suffice. To illustrate this we conducted simulations
under two scenarios:

1. “Shared, structured effects”: data were simulated using the model (1),
based on the fit of this model to the GTEx eQTL data below (see
Methods for details). In this scenario effects tend to be shared among
many conditions, and furthermore these shared effects are highly
“structured”, in that they are often similar in size (or at least sign). This
scenario will arise frequently in practice, and an important goal of our
work is to provide methods that perform well here.

2. “Shared, unstructured effects”: in this scenario effects are shared among
all conditions (i.e. either every condition shows an effect, or no condition
shows an effect), but the effect sizes and directions of the non-zero effects
are independent across conditions. In this “unstructured” setting the
ability of mash to learn structure should have no advantage over simpler
multivariate approaches, but we aim to demonstrate that mash remains
competitive in this setting.

In each case we simulate a 20,000 by 44 matrix of data B̂ containing 20,000
estimated effects in each of 44 conditions (and their associated standard errors).
We assume that non-null effects are rare: of the 20,000 effects, only 400 are
non-null. Thus the matrix of effects is sparse, with non-zero values concentrated
in a small number of rows.

We analyzed each scenario using three methods

1. mash, the method we describe here.

2. A simpler multivariate method, bmalite, which is similar to the BMAlite
method from [5], but which we extended to output effect size estimates.
bmalite allows for condition-specific effects (i.e. effects that occur in only
one condition) and shared effects (i.e. effects that occur in all conditions),
and allows for “structured effects” by allowing for correlations of effects
among conditions. This makes it among the most flexible of existing
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methods. However, it is less flexible than mash due to its reliance on
canonical (rather than data-driven) patterns of sharing. For example,
bmalite assumes all pairs of conditions are equally correlated in their
effects, whereas mash can learn from the data that some pairs are more
correlated than others.

3. ash [14], which is a univariate analogue of mash. Results from ash are
obtained by applying it separately to each condition, and so represent
what can be achieved by a simple “condition-by-condition” analysis. This
is included as a baseline against which to quantify the benefits of
multivariate analysis.

Figure 2a (See also Supplementary Table 1) compares the accuracy of effect
size estimates, as measured by the relative root mean squared error (RRMSE)
(19), which is the RMSE of the estimates, divided by the RMSE achieved by
simply using the original observed estimates B̂ for the effects. Thus an RRMSE
< 1 indicates that the method produces estimates that are more accurate than
the original observations B̂. As expected, the joint (multivariate) methods
outperform the univariate method in both scenarios, due to their combining
information across conditions. Furthermore, mash substantially outperforms the
other methods in the “structured effects” scenario, while performing as well as
bmalite in the unstructured case.

In all settings, all three methods have RRMSE< 1, indicating a substantial
improvement in accuracy compared with the original observed effects B̂. This
improvement can come from two sources: i) the methods shrink estimated
effects towards zero, which improves average accuracy because most effects are
indeed null; ii) in the presence of “structured effects”, the multivariate methods
can share information across conditions to improve accuracy. For example, if a
particular effect is shared, and similar in size, across a subset of conditions then
averaging the observed effects in those conditions will improve estimation
accuracy. Both these factors help explain the strong performance of mash in the
structured effects setting (Supplementary Table 1).

As a check on implementation we also applied the three methods to data
simulated under an “Independent effects” scenario, in which all effects are
entirely independent across conditions, with no greater sharing then expected by
chance. (Note that this is very different from the “shared, unstructured”
scenario, where only the non-zero effects are independent.) One would not
typically apply multivariate methods in settings where one suspected effects to
be completely independent, with no sharing of effects among conditions.
However, we used it to confirm the intuition that in such settings the univariate
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method that analyzes each condition independently should perform best, as
indeed it does (Supplementary Table 1).

Improved detection of significant effects

In addition to effect estimates, mash also provides a measure of significance for
each effect. Specifically mash estimates the “local false sign rate” (lfsr) [14],
which is the probability that the estimated effect has the incorrect sign. The lfsr
is analogous to the local false discovery rate [17], but more stringent in that it
insists that effects be correctly signed to be considered “true discoveries”.
Similarly bmalite can estimate the lfsr , but under its less flexible model; and
ash can estimate the lfsr separately in each condition.

We used the simulations above to illustrate the gains in power to detect
significant effects that come from the flexible joint model in mash. Figure 2b
shows the trade-off between false positive and true positive discoveries for each
method as the significance threshold is varied. The relative performance of the
methods precisely mirrors the RRMSE results: multivariate methods perform
best, and mash outperforms other methods for detecting shared structured
effects.

GTEx cis-eQTL analysis

To illustrate the benefits and flexibility of mash in a substantive application we
applied it to analyse expression Quantitative Trait Loci (eQTLs) across 44
human tissues/cell-types, using data from the Genotype Tissue Expression
(GTEx) project [18]. The GTEx project aims to provide insights into the
mechanisms of gene regulation by studying human gene expression and
regulation in multiple tissues from health individuals. One fundamental question
is which SNPs are eQTLs (i.e. associated with expression) in which tissues.
Answering this could help distinguish regulatory regions and mechanisms that
are specific to a few tissues vs shared among many tissues. It could also help
with analyses that aim to integrate eQTL results with GWAS results to help
identify the tissues that are most relevant to any specific complex disease
(e.g. [18, 19]).

As input to mash we use a matrix of eQTL effect estimates b̂jr, and
corresponding standard errors ŝij , where the rows j index different SNP-gene
pairs and the columns r index tissues (or cell types). We used the effect
estimates and standard errors for candidate local (“cis”) eQTLs for each gene,
distributed by the GTEx project (v6 release). These were obtained by
(univariate) single-SNP analyses in each tissue by applying MatrixEQTL [20] on
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(a) Accuracy of effect estimates (RRMSE).

(b) Detection of non-null effects (ROC curves).

Figure 2. Comparison of performance of mash, bmalite and ash on
simulated data. Results are shown for two simulation scenarios: “shared
structured” effects, where the non-zero effects are shared among the 44
conditions in complex structured ways similar to patterns we see in the GTEx
data; and “shared unstructured” effects, where the non-zero effects are shared
among the 44 conditions, but with effect sizes that are independent among
conditions. In both scenarios the multivariate methods (mash and bmalite)
outperform the univariate method (ash) in both effect estimation (a) and
detection (b). However, mash outperforms bmalite for estimating and detecting
“shared structured” effects, a scenario expected to be common in genomics
applications.
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expression levels that have been rank-transformed to the corresponding
quantiles of a standard normal distribution. Thus the effect size estimates are in
units of standard deviations on this transformed scale. Because, like most eQTL
analyses, these estimates were obtained by single-SNP analysis, the estimated
effects for each SNP actually reflect the effects of both the SNP itself and other
SNPs in LD with it (see Supplementary Text for discussion). We analysed the
16,069 genes for which univariate effect estimates were available for all 44 tissues
we considered; the filtering criteria used ensure that these genes show at least
some indication of expression in all 44 tissues.

Increased flexibility of mash improves model fit

Since the true effects are unknown we cannot compare models based on
accuracy of effect estimates. Therefore, we instead illustrate the gains of the
more flexible mash model using cross-validation: we fit each model to a random
subset of the data (“training set”) and assessed model fit by its log-likelihood
computed on the remaining data (“test set”). Comparing mash and bmalite in
this way we found that mash improved the test set likelihood by 15,215
log-likelihood units, indicating a very substantial improvement in fit. Further,
mash placed 97.5% of the mixture component weights on the data-driven
covariance matrices, indicating that these matrices capture most effects better
than the canonical matrices used by bmalite and other methods.

Identification of data-driven patterns of sharing

The increased flexibility of mash comes from its use of “data-driven”
components to capture the main patterns of sharing (actually, covariance) of
effects. This is illustrated in Figure 3, which shows the majority component that
mash identifies in these data (relatively frequency 66%). The main patterns
captured by this component are: i) effects are positively correlated among all
tissues; ii) the brain tissues (and, to some extent, testis and pituitary) are
particularly strongly correlated with one another, and less correlated with other
tissues; iii) effects in whole blood tend to be somewhat less correlated with other
tissues. Other components identifed by mash are shown in Supplementary
Figure 2. Some of these components also have positive correlations among all
tissues and/or highlight heterogeneity between brain tissues and other tissues,
confirming these as very common features in these data. However, other
components also capture rarer patterns, such as effects that are appreciably
stronger in one tissue than others (Supplementary Figure 5).
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Figure 3. Summary of primary patterns identified by mash in GTEx
data. Shown are the heatmap of the correlation matrix, and barplots of the
first 3 eigenvectors, of the covariance matrix Uk corresponding to the dominant
mixture component identified by mash. This component accounts for 0.66 of all
weight in the GTEx data. In all cases, tissues are color-coded as indicated in the
heatmap legend. The first eigenvector reflects broad sharing among tissues, with
all effects in the same direction; the second eigenvector captures differences
between brain (and, to a less extent, testis and pituitary) vs other tissues; the
third eigenvector primarily captures effects that are stronger in whole blood
than elsewhere.
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Patterns of sharing inform effect size estimates

Having estimated patterns of sharing from the data, mash exploits these
patterns to improve effect estimates at each putative eQTL. Although we cannot
directly demonstrate improved average accuracy of effect estimates in the real
data (for this, see simulations above), individual examples can provide helpful
intuition into the way that mash achieves improved accuracy. In this vein,
Figure 4 shows three illustrative examples, which we discuss in turn.

In the first example, the vast majority of effect estimates are positive in each
tissue, with the strongest signals in a subset of brain tissues. Based on the
patterns of sharing learned in the first step, mash estimates the effects in all
tissues to be positive – even those with negative observed effects. This is
because the few modest negative effects at this eQTL are outweighed by the
strong background information that effects are highly correlated among tissues.
Humans are notoriously bad at weighting background information against
specific instances [21] – they tend to underweight background information when
presented with specific data – so this behavior may or may not be intuitive to
the reader. But mash performs this weighting using Bayes rule, which is ideally
suited to this job. The mash effect estimates are also appreciably larger in brain
tissues than in other tissues. Again, this is the result of using Bayes rule to
combine the effect estimates for this eQTL with the background information on
heterogeneity among brain and non-brain effects learned from all eQTLs.

In the second example, the effect estimates in non-brain tissues are mostly
(30/34) positive, but modest in size, and only one effect is, individually,
nominally significant (p < 0.05). However, combining information among tissues,
mash effect estimates in non-brain tissues are all positive, and mostly
“significant” (lfsr< 0.05). In contrast the data in brain tissues are inconsistent,
with a mix of both positive and negative effect estimates. mash concludes that
we cannot be confident of the eQTL effect sign in brain tissues. This example
illustrates how mash can learn from the data how to group conditions, rather
than treating them equally. In this case mash has learned that effects in brain
tissues are sometimes different from the other tissues, and hence avoids jumping
to strong conclusions in the brain based on signal in other tissues.

In the final example, effect estimates vary in sign, and are modest except for
a very strong signal in whole blood. While whole-blood-specific effects are
estimated to be rare, mash (again, through Bayes theorem) recognizes that the
strong data at this eQTL outweigh this background information, and estimates
a strong effect in blood with insignificant effects in other tissues. This illustrates
how mash, although focussed on combining information among tissues, can still
recognize – and clarify – tissue-specific patterns when they exist.
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Figure 4. Examples illustrating of how mash uses patterns of sharing
to inform effect estimates in the GTEx data. In panel a) each colored
dot shows the raw effect estimate for a single tissue (color-coded as in Figure 3),
with grey bar indicating ± 2 standard errors. These are the data input into
mash. Panel b) shows the corresponding estimates output by mash (posterior
mean, ± 2 posterior standard deviations). In each case mash combines
information across all tissues, using the background information – patterns of
sharing – it has learned from data on all eQTLs, to produce more precise
estimates. Together, these three examples illustrate the flexibility of mash in
combining information across different subsets of tissues for different eQTLs,
depending on how their data match different patterns of sharing identified in the
overall data. See main text for detailed discussion.
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Increased identification of significant effects

Our simulations demonstrated that the more flexible model behind mash can
increase power to detect significant effects. To illustrate the effects of this here
we compare the number of significant eQTLs detected by mash with those
detected by our modified bmalite and ash. To avoid double-counting of eQTLs
in the same gene that are in LD with one another we assess the significance of
only the “top SNP” in each gene, which we define to be the SNP with the largest
(univariate) |Z|-statistic across all tissues. Thus we focus on 16,069 putative
eQTLs, each with effect estimates in 44 tissues, for a total of 707,036 effects.

The vast majority of top SNPs show a very strong signal in at least one
tissue (97% have a maximum |Z| score exceeding 4), consistent with most of
these genes containing at least one eQTL in at least one tissue. However, the
univariate tissue-by-tissue analysis (ash) identifies only 13% of these effects as
“significant” at lfsr<0.05; that is, the univariate analysis is highly confident in
the sign of the effect in only 13% of cases. In comparison bmalite identifies 45%
as significant at the same threshold, and mash identifies 55%. Thus, the
multivariate methods identify the most significant effects, with mash identifying
the most.

Overall, mash found 87% (13,954/16,069) of the top SNPs to be significant in
at least one tissue. We refer to these as the “top eQTLs” in subsequent sections.

Sharing of effects among tissues

In analyses of effects in multiple conditions, it is often desired to identify effects
that are shared across many conditions, or, conversely, those that are specific to
one or a few conditions. This turns out to be a particularly delicate task. For
example, [5] emphasize that the simplest approach – first identifying significant
signals separately in each condition, and then examining the overlap of the
significant effects – can very substantially under-estimate sharing. This is due to
incomplete power: by chance, a shared effect can easily be significant in one
condition and not in another. To address this [5, 6] estimate sharing among
conditions as a parameter in a joint hierarchical model, which takes account of
incomplete power. While these approaches are infeasible for R = 44, even for
smaller values of R they have some drawbacks. In particular they are based on a
“binary” notion of sharing, i.e. whether or not an effect is non-zero in each
condition, and so do not capture differences in magnitude, or even signs, of
effects among conditions. If effects that are shared among conditions actually
differ greatly in magnitude – for example, being very strong in one condition
and weak in all others – then this would seem important to know. For this, a
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more quantitative approach to sharing is required.
The effect sizes estimated from mash enable a more quantitative approach to

assessing sharing. Here, we assess sharing in two ways: i) “sharing by sign”
(estimates have the same sign); and ii) “sharing by magnitude” (effects are
similar in magnitude, here defined as being both the same sign and within a
factor of 2 of one another, although other thresholds could be used).

Table 1 and Figure 5 summarizes sharing of the top eQTLs among tissues in
the GTEx data by both sign and magnitude. Because a major feature of these
data is that brain tissues generally show more similar effects than non-brain
tissues we also show results separately for these subsets of tissues. The results
confirm extensive eQTL sharing among tissues, particularly among the brain
tissues. Sharing in sign exceeds 85% in all cases, and is as high as 98% among
the brain tissues. (Furthermore, these numbers may underestimate the sharing
in sign of actual causal effects, because of the potential effects of multiple
eQTLs per gene in LD; see Supplementary Text.) Sharing in magnitude is
inevitably lower, because sharing in magnitude implies sharing in sign. Overall,
on average 37% of tissues show an effect within a factor of 2 of the strongest
effect at each top eQTL. However, within brain tissues this number increases to
78%. That is, not only do eQTLs tend to be shared among the brain tissues, but
the effect sizes tend to be quite homogeneous.

Of course, some tissues share eQTLs more than others. Figure 6 summarizes
eQTL sharing by magnitude between all pairs of tissues (see Supplementary
Figure 4 for sharing by sign). In addition to strong sharing among brain tissues,
mash also identifies increased sharing among other biologically-related groups,
including: arteries (tibial, coronary and aortal), two groups of gut tissues (one
group containing esophagus and sigmoid colon; the other containing stomach,
terminal ilium of the small intestine and transverse colon), skin (sun-exposed
and non-exposed), adipose (Subcutaneous and Visceral-Omentum) and heart
(left ventricle and atrial appendage). This figure also reveals that the main
source of heterogeneity in effect sizes among brain tissues is in cerebellum vs
non-cerebellum tissues, and also emphasizes sharing between the pituitary and
brain tissues.

Different levels of effect sharing among tissues means that effect estimates in
some tissues gain more precision than others from the joint analysis. To quantify
this we computed an “effective sample size” (ESS) for each tissue that reflects
the typical precision of its effect estimates (Supplementary Figure 1). The ESS
values are smallest for tissue that show more “tissue-specific” behaviour
(e.g. testis, whole blood; see below), and are largest for coronary artery,
reflecting its stronger correlation with other tissues.
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Tissue-specific eQTLs

Despite high average levels of sharing of eQTLs among tissues, mash also
identifies eQTLs that are relatively “tissue-specfic”. Indeed, the distribution of
the number of tissues in which an eQTL is shared by magnitude has a mode at 1
(Figure 5), representing a subset of eQTLs that have much stronger effect in one
tissue than in any other (henceforth “tissue-specific” for brevity). Breaking
down this group by tissue (Figure 5) identifies Testis as the tissue with the most
tissue-specific effects. Testis also stands out, with whole blood, as having lower
pairwise sharing of eQTLs with other tissues (Figure 6). Other tissues showing
stronger-than-average tissue specificity (in either Figure 5 or 6) include skeletal
muscle, thyroid, and transformed cell lines (fibroblasts and LCLs).

One possible explanation for tissue-specific eQTLs is tissue-specific
expression. That is, if a gene is strongly expressed only in one tissue this could
explain why an eQTL for that gene might show a strong effect only in that
tissue. Whether or not a tissue-specific eQTL is due to tissue-specific expression
could considerably impact biological interpretation. Thus we assessed whether
tissue-specific eQTLs identified here could be explained by tissue-specific
expression. Specifically, we took genes with tissue-specific eQTLs, and examined
the distribution of expression in the eQTL-affected tissue relative to expression
in other tissues. We found this distribution to be similar to genes without
tissue-specific eQTLs (Supplement, Figure 6). Thus most tissue-specific eQTLs
identified here are not simply reflecting tissue-specific expression.

Table 1. Summary of sharing among top eQTLs

Data All Tissues Non-Brain Brain

Shared by Sign (b̃ > 0) 0.85 0.86 (0.88) 0.96 (0.98)

Shared by Magnitude: (b̃ > 0.5) 0.37 0.42 (0.44) 0.78 (0.85)

Summary of sharing among top eQTLs. Numbers show the proportion of
effects meeting a given sharing criterion. “Shared by sign” requires that the
effect has the same sign as the strongest effect among tissues. “Shared by
Magnitude” requires that the effect is also within a factor of 2 of the strongest
effect. Numbers in parentheses are obtained by a secondary mash analysis of
subsets of tissues.
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Figure 5. Histogram showing estimated number of tissues in which top eQTLs
are “shared” by two different definitions, a) sign and b) magnitude. Sharing by
sign means that eQTL have the same sign of effect; Sharing by magnitude
means that they also have similar effect size (within a factor of 2). Left: All
tissues; Center: non-brain tissues; Right: brain tissues.
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Figure 6. Pairwise sharing by magnitude of eQTL among tissues. For
each pair of tissues we consider the top eQTLs that are significant in at least
one of the two tissues, and plot the proportion of these that are “shared in
magnitude” – that is, have effect estimates that are the same sign and within a
factor of 2 of one another.
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Discussion

The statistical benefits of joint multivariate analyses compared with univariate
analyses are well documented, and increasingly widely appreciated. But we
believe this potential nonetheless remains under-exploited in practice. Our aim
here is to provide a set of flexible and general tools to help in such analyses, and
we designed mash with this aim in mind. In particular, mash is generic and
adaptive. It is generic in that it can take as input any matrix of Z scores (or,
better, a matrix of effect estimates and their corresponding standard errors)
testing many effects in many conditions. For example, the effect estimates we
used in our GTEx analysis came from a simple linear regression, but it would be
perfectly possible to use mash with estimates from other approaches, such as
generalized linear models or linear mixed models for example. And mash is
adaptive in that it learns patterns of sharing of multivariate effects from the
data, allowing it to maximize power and precision for each setting.
Consequently mash should be very widely applicable. Indeed, although genomics
applications form our primary motivation, mash could be useful in any setting
involving testing and estimation of multivariate effects.

At its core, mash uses an Emprical Bayes hierarchical model, and so is related
to other methods that use this approach, including [5, 6, 12]. Indeed, the mash

framework essentially includes these previous methods as special cases (as well
as simpler methods such as “fixed effects” and “random effects”
meta-analyses [9, 22]). However, one key feature that distinguishes mash from
these previous methods is that mash puts greater focus on quantitative
estimation and assessment of effects. More specifically, whereas previous
methods have focussed on “binary” models for effects – that is, effects are either
present or absent in each condition – mash focusses instead on allowing for and
assessing quantitative variation among effects. This move away from
binary-based models has at least two advantages. First, allowing for all possible
binary configurations can create computational challenges. Second, in practice
we have found that data often show widespread sharing of effects among many
conditions, and that in such settings binary-based methods tend to conclude
that effects are non-zero in most or all conditions, even when the signal is very
modest in some conditions. This conclusion may not be technically incorrect –
for example, in our GTEx analysis it is not impossible that all eQTLs are
somewhat active in all tissues. However, as our analysis here illustrates, a more
quantitative focus can reveal variation in effect sizes that may be of considerable
biological importance.

One potentially powerful extension of mash would be to allow for the
patterns of each effect to depend on covariates. For example, in an eQTL
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context, one might wish to allow functional annotations – such as the distance of
the SNP from the transcription start site, or its coding/non-coding status – to
affect the prior distributions on patterns of sharing or sizes of effects.
Furthermore, one would want to estimate the effects of these covariates from the
data [23,24]. One possible way forward here would be to allow the mixture
proportions π in mash to depend on covariates through a logistic link. However,
this appears a challenging problem, and a fully satisfactory solution may require
considerable further ingenuity.

Dealing with multiple tests is often described as a “burden”. This description
likely originates from the fact that controlling family-wise error rate (the
probability of making even one false discovery) requires more and more stringent
thresholds as the number of tests increases. However, most modern analyses
prefer to control the false discovery rate (FDR) [25], which (under weak
assumptions) does not depend on the number of tests [26]. Consequently the
term “burden” is inaccurate and unhelpful. Indeed, we believe that the
availability of results of many tests in many conditions should be viewed not as
a burden, but an opportunity: specifically, an opportunity to learn about the
relationships among underlying effects, and consequently to make data-driven
decisions that help improve both power to detect effects and precision of effect
estimates. Approaches along these lines will inevitably, it seems, involve
modelling assumptions, and the goal should be flexible models that are capable
of dealing with a wide range of situations that can occur in practice. The
methods presented here represent a substantial step towards this goal.

Software implementing our method is available at
http://github.com/stephenslab/mashr. Scripts for generating results from
the paper are at https://github.com/surbut/gtexresults_mash.
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Materials and Methods

Model and Fitting

Let bjr (j = 1, . . . , J ; r = 1, . . . , R) denote the true value of effect j in condition

r. Further let b̂jr denote the (observed) estimate of this effect, and ŝjr the

standard error of this estimate (so b̂jr/ŝjr is the usual z statistic for testing
whether bjr is zero). Let B, B̂ and S denote the corresponding J ×R matrices,
and let bj (respectively b̂j) denote the jth row of B (respectively B̂).

The estimates b̂jr are assumed to be independent and normally distributed
about the true effects, and the true effects are assumed to follow (1), yielding

p(b̂j |bj , Vj) = NR(b̂j ; bj , Vj), (2)

p(bj |π,U) =
K∑
k=1

L∑
l=1

πk,l NR(bj ; 0, ωlUk). (3)

where NR(·;µ,Σ) denotes the density of the R-dimensional multivariate normal
(MVN) distribution with mean µ and covariance matrix Σ, and the scaling
parameters ω1, . . . , ωL are fixed on a dense grid; see details below. Here Vj
denotes the R×R diagonal matrix with diagonal elements s2j1, . . . , s

2
jR.

Assuming Vj to be diagonal in (2) is not strictly necessary: the methods
implemented here apply for any user-supplied values for Vj , which represents the
covariance matrix of the estimates b̂j . However, reliably estimating the large
number of off-diagonal elements of these covariance matrices raises statistical
challenges, and our preliminary attempts to incorporate them into our GTEx
data analysis did not lead to improved model fit in cross-validation experiments
(described below). We therefore report results based on diagonal Vj here.

The two steps of mash are:

i) Estimate U ,π. This involves two substeps:

a) Create a list of both data-driven and canonical covariance matrices,
Û .

b) Given Û , estimate π by maximum likelihood. (A key idea here is that
if some matrices generated in a) do not help capture patterns in the
data then they will receive little weight.) Let π̂ denote this estimate.

ii) Compute, for each j, the posterior distribution p(bj |b̂j , Û , π̂, Vj).

These steps are now detailed in turn.
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Generate data-driven covariance matrices Uk

We first identify rows j of the matrix B̂ that likely have an effect in at least one
condition. For example, in the GTEx data we chose the rows corresponding to
the “top” SNP for each gene, which we define to be the SNP with the highest
value of Zmax

j where

Zmax
j := max

r
b̂jr/ŝjr. (4)

(We used max here, rather than, say, the sum, to try to include effects that are
very strong in a single condition and not only effects that are shared among
conditions.) For the simulated data we ran the univariate adaptive shrinkage
method ash on the data in each condition r separately, and computed lfsr jr for
each effect j. We then chose the rows j for which at least one of the conditions
showed a significant effect in this univariate analyses (minr lfsr jr < 0.05).

Next we fit a mixture of MVN distributions to these strongest effects, using
methods from [15]. Specifically results in [15] provide an EM algorithm for
fitting a model very similar to (3)− (2) with the crucial difference that there is
no scaling parameters on the covariances. That is,

p(bj |π,U) =
∑
k

πkNR(bj ; 0, Uk). (5)

The absence of the scaling factors ωl means that, compared with mash, the
model (5) is less well suited to capture effects that have similar patterns
(relative sizes across conditions) but vary in magnitude. However, by applying it
here to only the largest effects we seek to sidestep this issue. Estimates of Uk

from this EM algorithm are sensitive to initialization. Furthermore, we noticed
an interesting feature of the EM algorithm: each iteration preserves the rank of
the matrices Uk, so the ranks of the estimated matrices are the same as the
ranks of the matrices used to initialize the algorithm. We exploited this fact by
including low-rank matrices in our initialization to ensure that some of the
estimated Uk are low-rank matrices. This helps stabilize the estimates since
rank-penalization is one way to regularize covariance matrix estimation.

To describe the initialization in detail, let J̃ denote the number of “strongest
effects” selected above, and let Z̃ denote the column-centered J̃ ×R matrix of Z
scores for these “strong effects”. To attempt to extract the main patterns in Z̃
we perform dimension reduction on Z̃: specifically we apply Principal
Component Analysis (through Singular Value Decomposition, SVD) and Sparse
Factor Analysis (SFA; [16]) to Z̃. SVD yields a set of eigenvalues and
eigenvectors of Z̃. Let λp, vp denote the pth eigenvalue and corresponding (right)
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eigenvector. (So vp is an R vector for t = 1, . . . , R.) SFA yields a representation

Z̃ = LF + E (6)

where L is a sparse J ×Q matrix of loadings, and F is a Q×R matrix of
factors. Here we used Q = 5.

Given this we initialized the EM with K = 3 and

• Ũ1 = 1
J̃
Z̃ ′Z̃, the empirical covariance matrix of Z̃.

• Ũ2 = 1
J̃

∑P
p=1 λ

2
pvpv

′
p, which is a rank P approximation of the covariance

matrix of Z̃.

• Ũ3 = 1
J̃

(LF )′(LF ) which is a rank Q approximation of the covariance

matrix of Z̃.

In addition to the covariance matrices obtained from this EM algorithm, we
added some more matrices based on the SFA results, specifically

• The Q matrices F ′qL
′
qLqF

′
q, which are each rank 1 matrices that reflect the

effects captured by the qth factor in the SFA analysis.

The rationale here is that the factors in the factor analysis may directly reflect
effect patterns in the data, and if so then these matrices will be a helpful
addition. (We view such additions as a low-risk, because If they are not helpful
then they will receive little weight when we estimate π).

Generate canonical covariance matrices Uk

To these “data-driven” covariance matrices we add the following “canonical”
matrices:

1. The matrix IR. This represents the situation where the effects in different
conditions are independent, which may be unlikely in some applications
(like the GTEx application here), but seems useful to include if only to
exclude it.

2. The R rank-1 matrices ere
′
r where er denotes the unit vector with 0s

everywhere except for element r which is a 1. These represents effects that
occur only in a single condition.

3. The rank-1 matrix 11′ where 1 denotes the R-vector of 1s. That is, the
matrix of all 1s. This represents effects that are identical among all
conditions.
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The user can, if desired, add additional canonical matrices. For example, if R is
moderate then one could consider adding the 2R canonical matrices that
correspond to shared (equal) effects in each of the 2R subsets of conditions.

Standardize covariance matrices

Since (3) uses the same grid of scaling factors ω we standardize the matrices Uk

obtained above so that they are similar in scale. Specifically, for each k, we
divide every element of Uk by the maximum diagonal element of Uk (so that the
maximum diagonal element of the rescaled matrix is one). These rescaled
matrices provide the Û , completing step i)-a of mash.

Define grid of ωl values

We choose a dense grid of ωl ranging from “very small” to “very large”. [14]
provides a specific way to select suitable limits (ωmin, ωmax) for this grid in the
univariate case; we simply apply this method to each condition r in turn and
take the smallest ωmin and the largest of the ωmax as the grid limits. The
internal points of the grid are then obtained as in the univariate case [14], by
setting ωl = ωmax/m

l−1, for l = 1, . . . , L, where m > 1 is a user-tunable
parameter that affects the grid density and L is chosen to be just large enough
so that ωL < ωmin. Our default choice of grid density is m =

√
2. In principle

the grid should be made sufficiently dense that increasing its density would not
change the answers obtained. In the GTEx data we found results with m =

√
2

provided similar results to m = 2, supporting this choice.

Estimate π by maximum likelihood

Given Û , ω, we estimate the mixture proportions π by maximum likelihood.
To simplify notation, let Σk,l := ωlÛk, and replace the double index k, l with

a single index p which ranges from 1 to P := KL. Thus the prior (3) becomes:

p(bj |π,Σ) =
∑
p

πpNR(bj ; 0,Σp). (7)

Combining the prior (7) with the likelihood (2), we have that each row of B̂
comes from a mixture of MVNs:

p(b̂j |π, V,Σ) =
P∑
p

πpNR(b̂j ; 0,Σp + Vj). (8)

This essentially comes from the fact that the sum of two MVNs is MVN.
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Assuming independence of rows of B̂, the likelihood is given by

L(π) := p(B̂|π, V,Σ)

=

J∏
j=1

p(b̂j |π, V,Σ)

=
J∏

j=1

P∑
p

πpNR(b̂j ; 0,Σp + Vj).

(9)

If the rows of B̂ are not independent then this may be interpreted as a
“composite likelihood” [27]. By conditioning on V here, rather than treating it as
part of the data, we are using a multivariate analogue of the approximation
in [28].

Maximising this likelihood over π is a convex optimization problem, which
here we solve using an EM algorithm [29], accelerated using SQUAREM [30].
This optimization problem is identical to the optimization over π in the
univariate setting (R = 1) in [14], but involves a much larger number of
components. If the matrix B̂ has many rows then to reduce computation time
we can fit the model using a random subset of rows. For example, we used
20, 000 rows in our GTEx application. (It is important that this is a random
subset, and not the J̃ rows of strong effects used to generate the data-driven Ûk;
use of the strong effects in this step would be a mistake as it would bias
estimates of π towards large effect sizes.)

Posterior Calculations

To specify the posterior distributions, recall the following standard result for
Bayesian analysis of an R-dimensional MVN. If b ∼ NR(0, U), and
b̂|b ∼ NR(b, V ) then

b|b̂ ∼ NR(µ̃, Ũ), (10)

where:

Ũ = Ũ(U, V ) := (U−1 + V −1)−1, (11)

µ̃ = µ̃(U, V, b̂) := Ũ(U, V )V −1b̂. (12)

This result is easily extended to the case where the prior on b is a mixture of
MVNs (3). In this case the posterior distribution is simply a mixture of MVNs:

p(bj |b̂j , V̂j , π̂) =
P∑
p

π̃jpNR(bj ; µ̃jp, Ũjp) (13)
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where µ̃jp = µ̃(Σp, Vj , b̂j) (equation (12)), Ũjp = Ũ(Σp, Vj) (equation (11)), and

π̃jp =
π̂pNR(b̂j ; 0,Σp + Vj)∑P
p=1 π̂pNR(b̂j ; 0,Σp + Vj)

. (14)

From this is is straightforward to compute the posterior mean

E(bj |b̂j , V̂j , π̂) =
P∑
p

π̃jpµ̃jp (15)

and posterior variance

Var(bjr|b̂j , V̂j , π̂) =
P∑

p=1

π̃p (Ũjp,rr + µ̃2
jp,r)− [

P∑
p

π̃jpµ̃jp,r]
2 (16)

as well as the local false sign rate.

Local False Sign Rate

To measure “significance” of an estimated effect βjr we use the “ local false sign
rate” [14]:

lfsr jr := min[Pr(βjr ≥ 0|D),Pr(βjr ≤ 0|D)] (17)

where D denotes all the available data. More intutively, lfsr jr is the probability
that we would get the sign of the effect βjr incorrect if we were to use our best
guess of the sign (positive or negative). Thus a small lfsr indicates high
confidence in the sign of an effect. The lfsr is more conservative than its
analogue, the local false discovery rate [17], because requiring confidence in the
sign of an effect is more stringent than requiring confidence that it be non-zero.
More importantly the lfsr is more robust to modelling assumptions than the
lfdr [14], a particularly important issue in multivariate analyses where modelling
assumptions inevitably play a larger role.

The EZ model, and applying mash to Z scores

The model (3) assumes bj are independent of their standard errors Vj . We refer
to this as the “exchangeable effects” (EE) model [22]. An alternative
assumption is to allow that the effects may scale with standard error, so that
effects with larger standard error tend to be larger. That is:

V −0.5j bj |π,U,ω,Vj ∼ g(), (18)
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where g() represents the mixture of multivariate normal distributions in (3). We
refer to (18) as the “Exchangeable Z” (EZ) model, because when Vj is diagonal
the left of this equation is the vector of Z scores for effect j.

As described in [14], this EZ model can be fit by applying exactly the same
code as the EE model to the Z statistics, with the standard errors of the Z
statistics set to be 1. Thus, one advantage of this model is that it can be fit to
data where we have access only to Z scores, and does not require access to both
the estimates and their standard errors. The lfsr can also then be computed
using only the Z scores. However, the posterior mean estimates that arise from
this model are estimates of V −0.5j bj , so to transform these to estimates of effect
sizes bj requires knowledge of Vj .

We analyzed the GTEx data using both EE and EZ models. Results were
qualitatively similar in terms of patterns of sharing, but the EZ model
performed better in cross-validation tests of model fit (see below), and so we
report results from that model.

Cross-validation of model fit

To compare the performance of different strategies for selecting the covariance
matrices Uk we use a cross-validation-based approach to assess model fit. In
brief, this involves first dividing the data matrix into two groups by selecting
half the rows to form the “training data”, with the remaining rows forming the
“test data”. We then apply mash, as above, to the training data: use the
strongest effects to select candidate Uk, and then learn the weights πk,l from all
the training data (or a random subset if the data are large; we used 20,000
effects in our analysis). This provides an estimate of the distribution of effects ĝ.
We assess the “fit” of this estimated g by how well it predicts the test data.
That is, by computing p(B̂|π̂, V, Û), given by (2), for the test data.

This strategy facilitates experimentation with ways to estimate Û . In
particular, if new ways to generate Û are suggested then their effectiveness can
be assessed using this strategy. Our current strategy described above was
developed and refined using this framework. (However, performance of mash is
relatively robust to the addition of poorly-estimated Uk because they are
typically estimated to have small weight.)

When applying this strategy to the GTEx data we created the test and
training data by randomly selecting half the genes, rather than half the rows
(gene-SNP pairs), to help ensure that rows in the test set are independent of
rows in the training set.
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Visualizing Uk

In our application to the GTEx data R = 44, so each Uk is a 44 by 44
covariance matrix, and each component of the mixture (1) is a distribution in 44
dimensions. Visualizing such a distribution is challenging, but we can get some
insight from the first eigenvector of Uk, vk say, which captures the principal
direction of the effects in component k. If Uk is dominated by this principal
direction then we can think of effects from that component as being of the form
λvk for some scalar λ. For example, if the elements of the vector vk are
approximately equal then component k captures effects that are approximately
equal in all conditions. Or, if vk has one large element, with other elements close
to 0, then component k corresponds to an effect that is strong in only one
condition. See Figure 2 for illustration.

Relationship with existing methods

The mash method essentially includes many existing methods for joint analysis
of multiple effects as special cases. Specifically, many existing methods
correspond to making particular choices for the “canonical” covariance matrices
U (and excluding the data-driven covariance matrices). For example, a simple
“fixed effects” meta-analysis – which assumes equal effects in all conditions –
corresponds to K = 1 with U1 = 11′ (the matrix with all entries 1). (This
covariance matrix is singular, but this is allowed within mash). A more flexible
assumption is that effects in different conditions are normally distributed about
some mean, and this also corresponds to a multivariate normal assumption if the
mean is assumed to be normally distributed [22]. More flexible still are models
that allow that effects may be exactly zero in some subset of conditions, as
in [5, 6]. These models correspond to using (singular) covariances Uk with 0s in
the rows and columns corresponding to the subset of conditions with zero effect.

However, mash also goes beyond these previous methods in two ways. First,
mash includes a large number of scaling coefficients ωl, which allows it to
flexibly capture a range of effect distributions (see [14]). Second, and perhaps
more important, mash includes data-driven covariance matrices (Step i-a)),
making it more flexible and adaptive to patterns in the specific data being
analyzed. This innovation is particularly helpful in settings with moderately
large R (e.g., in our application here R = 44) where it becomes impractical to
pre-specify canonical matrices for all patterns of sharing that might occur. For
example, [5, 6] consider all 2R different combinations of sparsity in the effects,
which works for R = 9 [18], but is impractical for R = 44. While it is possible to
restrict the number of combinations considered (e.g. BMAlite in [5]), this comes
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at an obvious cost in flexibility. The addition of data-driven covariance matrices
helps rectify this problem, making mash both flexible and computationally
tractable for moderately large R.

Definitions of various quantities

RRMSE (accuracy of estimates in simulation studies)

The RRMSEs for estimates
ˆ̂
bjr of bjr reported in Figure 2a are computed as

RRMSE =

√
E((bjr − ˆ̂

bjr))2)√
E((bjr − b̂jr)2)

. (19)

ROC curves

For the ROC curves in Figure 2b the True Positive Rate and False Positive Rate
are computed at any given threshold t as

True Positive Rate :=
|CS ∩ S|
|T |

(20)

False Positive Rate :=
|N ∩ S|
|N |

(21)

where S is the set of significant results at threshold t, CS the set of
correctly-signed results, T the set of true (non-zero) effects and N the set of null
effects:

S := {j, r : lfsr jr ≤ t}, (22)

CS := {j, r : E(bjr|D)× bjr > 0}, (23)

N := {j, r : bjr = 0} (24)

T := {j, r : bjr 6= 0}. (25)

(Thus, to be considered a true positive, we require that the effect be correctly
signed and not only significant.)

Effective sample size

We define the effect sample size for tissue r as

neffr := norigr medianj

ŝ2jr
s̃2jr

(26)

where ŝjr is the standard error and s̃jr is the posterior standard deviation for
effect j in tissue r.
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Normalized effects

We define the normalized effect b̃ in each condition as the ratio of its effect in
that condition to the largest effect across all conditions:

b̃jr =
bjr
bjr0

(27)

where

r0 = arg max
r
|bjr| (28)

For example, in our eQTL context, a normalized effect b̃jr = 0.5 means that the
effect of eQTL j in tissue r is half that of its effect in the strongest tissue.

Pairwise Sharing

To assess pairwise sharing in sign between tissues r and s (Figure 4) we
compute, for QTL that are significant (lfsr < 0.05) in at least one of r and s,
the fraction that have effect estimates that are of the same sign.

To assess pairwise sharing in magnitude between tissues r and s (Figure 6) we
compute, for QTL that are significant (lfsr < 0.05) in at least one of r and s, the
fraction that have effect estimates that are within a factor of 2 of one another.

That is, let

QTLr := {j : lfsr jr < 0.05} (29)

SSrs := {j : sign(
ˆ̂
bjr) = sign(

ˆ̂
bjs)} (30)

SMrs := {j : 0.5 ≤ ˆ̂
bjr/

ˆ̂
bjs ≤ 2}. (31)

Then the sharing by sign between r and s is given by:

|SSrs ∩ (QTLr ∪QTLs)|
|QTLr ∪QTLs|

(32)

and sharing by magnitude between r and s is given by:

|SMrs ∩ (QTLr ∪QTLs)|
|QTLr ∪QTLs|

. (33)

ash analyses

For comparison with mash we also analyzed the GTEx data using the univariate
shrinkage procedure ash [14]. We applied ash separately on each tissue using
the same 20,000 randomly-selected gene-snp pairs as in the mash analysis. We
then computed the posterior means and lfsr for the top SNPs.
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bmalite analyses

For comparison with mash we implemented a version on bmalite ( [5]) that
outputs effect size estimates and lfsr values. This version of bmalite can be
thought of as a variation of mash but without the data driven covariance
matrices, and with particular choices for the canonical covariance matrices, and
with a smaller grid on ω than mash (consistent with the coarse grid used in [5].

Specifically, the list Uk for bmalite include the 44 singleton configurations
(Uk = eke

′
k), and matrices corresponding to the models in [5] with heterogeneity

parameters H = {0.0, 0.25, 0.5, 1} [5]. (When heterogeneity=0, effects are equal
in all conditions; when heterogeneity = 1, effects are independent among
conditions.) We use a grid of ω ∈ {0.1, 0.40, 1.6, 6.4, 25.6} consistent with the
coarse grid in [5] and designed to capture the range of the GTEx Z-statistics.

Simulation Details

“Shared, Structured Effects”

We simulated bj from model (3) with equal weights on 8 different covariance
matrices learned from the GTEx data, but with the scaling factors ω simulated
from a continuous distribution rather than using a fixed grid.

In detail:

1. Take the list of 8 “data-driven” covariance matrices learned from the
GTEx data (see Section ), standardized to have maximum diagonal
element 1 (Section ).

2. Simulate 400 ‘true effects’: for each such effect j, a) choose Uj by selecting
one of the eight Uk at random, all equally likely; b) simulate ωj as the
absolute value of an N(0, 1) random variable; c) simulate
bj ∼ N44(0, ωjUj).

3. For 19,600 ‘null effects’ set bj = 0.

4. For all 20,000 effects, simulate b̂j ∼ N (bj , Vj) where Vj is the diagonal
matrix with diagonal elements 0.12. Here, all standard errors are
approximately 0.10, consistent with the GTEx dataset.

“Shared, Unstructured Effects”

In these simulations the 400 true effects were all independent and identically
distributed: bj ∼ N44(0, IR). Other details are as for Shared, Structured Effects.
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“Independent Effects”

We also simulated data where effects were entirely independent across
conditions; These were simulated as follows:

1. Independently for each r = 1, . . . , 44, choose a random set of 400
j ∈ {1, . . . , 20, 000} to be the ‘true’ effects.

2. For the ‘true effects‘ simulate bjr ∼ N (0,Σ2) where Σ2 is chosen with
equal probability from the set {0.1, 0.5, 0.75, 1} to represent small and
large effects within each condition. (All other effects are set to be 0).

3. Simulate b̂j ∼ N (bj , Vj) as in other simulations.

Analysis of simulated data

Each simulated dataset (b̂j , Vj) was analyzed using mash as detailed in Section .
In particular we re-estimated the Uk,π from the data, without making use of
the true values for U . We estimated effects by their posterior mean (15) and
assessed significance by the lfsr (17). Analyses using ash and bmalite were
performed similarly to the applications on the GTEx data (see above).
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Supporting Information

Supplementary Text

Effects of Linkage Disequilibrium

Linkage Disequilibrium (LD) between SNPs has two distinct effects.
First, LD causes correlations in the observations of effects for near-by SNPs

in the same gene. This issue is likely minor here. Although, when estimating g,
mash ignores correlations between rows of B̂, this can be justified as a
“composite likelihood” approach [27], and composite likelihood methods tend to
perform well at point estimation.

Second, effect estimates we obtain for each SNP from single-SNP analysis are
not actually the individual causal effects of that SNP; rather they are the
combined effects of all SNPs that are in LD with that SNP, weighted by their
LD [31], [32]. This issue is more important, because of the likely presence of
multiple eQTLs in some or many genes. It also applies to all single-SNP eQTL
analyses, which is the vast majority of all published eQTL analyses, and not just
mash. Ideally one would develop multi-SNP multi-tissue methods for association
analysis at each gene to avoid this issue. And indeed, we see mash as a first step
towards this more ambitious goal. However, for now we limit ourselves to
highlighting one specific feature of our results that we believe may be a
consequence of the use of single-SNP effect estimates, and that may change in
multi-SNP analyses that better account for LD.

Specifically, LD among multiple causal SNPs can cause single-SNP analyses
to identify eQTL that appear to have strong effects of opposite sign in different
tissues. One example is shown in Supplementary Figure 3: this eQTL has strong
positive Z scores in brain tissues, and negative Z scores in most other tissues,
initially suggesting that this eQTL might have causal effects in opposite
directions in brain vs non-brain tissues However, the Z scores could also have a
different explanation: there could be two eQTLs in LD with one another, one of
which (A say) has a strong effect in brain tissues, and the other of which (B say)
has a strong effect in other tissues. If the expression-increasing-allele at A is in
negative LD with the expression-increasing-allele at B then the single SNP Z
scores for either SNP will show opposite signs in brain vs non-brain. Indeed,
closer examination of the data at this gene suggests that this explanation is
likely correct in this case (Supplementary Figure 3). A similar example is
discussed in [18] (their Supplementary Figure S14).

For this reason we believe that estimates of sharing in sign given above are
likely to be underestimates of the sharing in sign of actual causal effects, and we
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caution against over-interpreting eQTLs that show significant effects of different
signs in different tissues.

Increase in effective sample size due to multivariate analysis

A particular emphasis of our work here is improved quantitative estimates of
effect sizes in each condition. When estimating effects in a condition, mash uses
the data not only from that condition but also from other “similar” conditions.
In this way mash effectively increases the sample size available, and this
improves both accuracy and precision of estimates. The improvement will be
strongest for conditions that are similar to many other conditions, and weaker
for conditions with more “condition-specific” effects.

To illustrate this effect in the GTEx data we compute an “effective sample
size” (ESS) for each tissue based on the standard deviations of the mash

estimates. The ESSs (Supplementary Figure 1) vary from 241 for testis to 1926
for coronary artery. Other tissues with relatively smaller ESS include liver,
pancreas, spleen and brain cerebellum. Identifying tissues with smaller ESS
could help guide prioritization of (effectively) under-represented tissues in future
experimental efforts.

For testis the ESS of 241 represents only a small (1.4-fold) increase compared
with actual sample size, reflecting that its effects are more “tissue specific”, or,
more precisely, that they are less correlated with other tissues. Other tissues
showing a similarly small gain in ESS include transformed fibroblasts and whole
blood, which are also highlighted as showing more “tissue specific” signals above.
In contrast, the ESS for coronary artery represents a 14-fold increase compared
with the actual sample size for this tissue, reflecting its stronger correlation with
other tissues. On average, across all tissues, mash provides a 6-fold increase in
ESS for estimating these (strongest) eQTL effects, reflecting the overall
moderate to large correlation among effect sizes across tissues.

One caveat here is that ESS reflects average gains in precision for a tissue: in
practice effects that are shared across many tissues will benefit more than effects
that are tissue-specific. For example, if one were particularly interested in effects
that are specific to uterus (which has the smallest actual sample size here), then
the substantial ESS for uterus may not be as useful as it would first seem. More
generally, detecting tissue-specific effects will inevitably benefit most from
collecting more samples in that particular tissue.
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Supplementary Tables

Method Simulation Framework RRMSEAll RRMSENon-null RRMSENull

mash Shared, structured 0.06 0.44 0.015
bmalite Shared, structured 0.11 0.78 0.018

ash Shared, structured 0.21 1.34 0.076

mash Shared, unstructured 0.14 1.00 0.014
bmalite Shared, unstructured 0.15 1.03 0.014

ash Shared, unstructured 0.21 1.37 0.078

mash Independent 0.28 1.82 0.112
bmalite Independent 0.28 1.82 0.118
ash Independent 0.21 1.37 0.076

Supplemental Table 1: Comparison of accuracy of effect size
estimates for each method. Results show the RRMSE for all effects
(RRMSEall), and for the subsets of effects that are truly non-null
(β 6= 0; RRMSENon-null) and truly null (β = 0,RRMSENull). Values of
RRMSENull < 1 indicate how shrinkage towards zero is helping improve the
estimates of null effects. Values of RRMSENon-null < 1 indicate how pooling
information across conditions can improve accuracy of estimates of non-null
effects. (In the Independent simulations the shrinkage of all methods improves
overall performance, despite hurting performance for the non-null effects,
because most effects are null.)
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Supplementary Figures
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Supplementary Figure 1. Sample sizes and effective sample sizes
from mash analysis across tissues. Left: sample size for each tissue; Right:
median effective sample size for each tissue. Tissues are ordered by their original
sample size. Effective sample sizes are consistently higher than actual sample
sizes, primarily due to sharing of information among tissues.
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Supplementary Figure 2. Summary of covariance matrices Uk with
largest estimated weight (> 1%) in GTEx data. Component 2 largely
captures qualitatively similar effects to the component highlighted in Figure 3,
although with quantitative differences. Component 8 captures testis-specific
effects. Components 4 and 5 primarily capture effects that are stronger in
Whole Blood than other tissues.
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Supplementary Figure 3. Illustration of how Linkage Disequilibrium
can impact effect estimates. This gene was chosen as an example where the
effect estimates in the “top eQTL” were opposite in sign in brain vs non-brain
tissues, and where further investigation suggested that this is likely due to
multiple eQTLs in LD. Specifically, SNP1 and SNP2 are the SNPs that show
the strongest eQTL association in brain and non-brain tissues respectively. The
top panels show effect estimates for these SNPs from a simple (1-SNP)
regression model in each tissue, Y = µ+ B̂igi where i ∈ {1, 2} indexes the two
SNPs. The bottom panels show effects from a multiple (2-SNP) regression
model in each tissue, Y = µ+ B̂1g1 + B̂2g2. The simple regression estimates
show apparent opposite-sign effects in brain vs non-brain tissues (with testis and
pituitary clustering with brain in one case). However, the multiple regression
results suggest that in fact there are (at least) two eQTLs in this gene, because
both SNPs show a significant effect that excludes 0 in most tissues.
Furthermore, for both SNP1 and SNP2 the multiple regression effect estimates
are consistent in sign across all tissues.
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Pairwise Sharing by Sign

Testis
Liver

Cells_EBV.transformed_lymphocytes
Whole_Blood

Brain_Cerebellar_Hemisphere
Brain_Cerebellum

Brain_Anterior_cingulate_cortex_BA24
Brain_Frontal_Cortex_BA9

Brain_Cortex
Brain_Hippocampus

Brain_Hypothalamus
Brain_Putamen_basal_ganglia

Brain_Nucleus_accumbens_basal_ganglia
Brain_Caudate_basal_ganglia

Pituitary
Muscle_Skeletal

Cells_Transformed_fibroblasts
Pancreas

Spleen
Esophagus_Mucosa

Skin_Sun_Exposed_Lower_leg
Skin_Not_Sun_Exposed_Suprapubic

Heart_Left_Ventricle
Heart_Atrial_Appendage

Adrenal_Gland
Thyroid

Ovary
Small_Intestine_Terminal_Ileum

Colon_Transverse
Stomach

Artery_Coronary
Artery_Tibial

Artery_Aorta
Lung

Adipose_Subcutaneous
Adipose_Visceral_Omentum

Breast_Mammary_Tissue
Nerve_Tibial

Vagina
Prostate

Uterus
Colon_Sigmoid

Esophagus_Muscularis
Esophagus_Gastroesophageal_Junction

............................................

0.75

0.80

0.85

0.90

0.95

1.00

Supplementary Figure 4. Pairwise sharing by sign. For each pair of
tissues we consider the top eQTLs that are significant in at least one of the
tissues, and estimate the proportion that have effect sizes that are the same sign.
These proportions are displayed in this heatmap.
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Supplementary Figure 5. Number of “tissue-specific eQTLs” in each
tissue. Here “tissue-specific” is defined to mean that the effect is at least 2-fold
larger in one tissue than in any other (i.e. b̃jr > 0.5 in only one tissue).
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Supplementary Figure 6. Expression levels in genes with
“tissue-specific eQTLs” are similar to those in other genes. The plots
compare the densities (left) and cumulative distribution functions (right) of the
expression level for all genes (black) and for genes identified as having a
“tissue-specific” eQTL (red) in each of Testis, Thyroid, Whole Blood and
Transformed Fibroblasts. In each case the distribution functions are reasonably
similar, demonstrating that tissue-specific eQTLs are not simply reflecting
tissue-specific expression. Expression is here defined as median across
individuals of the log Reads per Kilobase Mapped (RPKM).
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