New Results
Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions
Sarah M. Urbut, Gao Wang, Peter Carbonetto, Matthew Stephens
doi: https://doi.org/10.1101/096552
Sarah M. Urbut
1Pritzker School of Medicine, Growth & Development Training Program, University of Chicago, Chicago, IL, USA.
2Department of Human Genetics, University of Chicago, Chicago, IL, USA.
Gao Wang
2Department of Human Genetics, University of Chicago, Chicago, IL, USA.
Peter Carbonetto
2Department of Human Genetics, University of Chicago, Chicago, IL, USA.
4Research Computing Center, University of Chicago, Chicago, IL, USA.
Matthew Stephens
2Department of Human Genetics, University of Chicago, Chicago, IL, USA.
3Department of Statistics, University of Chicago, Chicago, IL, USA.
Article usage
Posted September 21, 2018.
Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions
Sarah M. Urbut, Gao Wang, Peter Carbonetto, Matthew Stephens
bioRxiv 096552; doi: https://doi.org/10.1101/096552
Subject Area
Subject Areas
- Biochemistry (12990)
- Bioengineering (9869)
- Bioinformatics (31635)
- Biophysics (16318)
- Cancer Biology (13395)
- Cell Biology (19076)
- Clinical Trials (138)
- Developmental Biology (10329)
- Ecology (15341)
- Epidemiology (2067)
- Evolutionary Biology (19595)
- Genetics (12998)
- Genomics (17972)
- Immunology (13087)
- Microbiology (30596)
- Molecular Biology (12771)
- Neuroscience (66744)
- Paleontology (490)
- Pathology (2065)
- Pharmacology and Toxicology (3555)
- Physiology (5543)
- Plant Biology (11432)
- Synthetic Biology (3187)
- Systems Biology (7845)
- Zoology (1773)