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Abstract 
 
We introduce new statistical methods for analyzing genomic datasets that measure many 
effects in many conditions (e.g., gene expression changes under many treatments). These new 
methods improve on existing methods by allowing for arbitrary correlations in effect sizes 
among conditions. This flexible approach increases power, improves effect estimates, and 
allows for more quantitative assessments of effect-size heterogeneity compared to simple 
“shared/condition-specific” assessments. We illustrate these features through an analysis of 
locally-acting variants associated with gene expression (“cis eQTLs”) in 44 human tissues. Our 
analysis identifies more eQTLs than existing approaches, consistent with improved power. We 
show that while genetic effects on expression are extensively shared among tissues, effect 
sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets 
of biologically related tissues (e.g., brain-related tissues), or in only one tissue (e.g., testis). Our 
methods are widely applicable, computationally tractable for many conditions, and available 
online. 
 
Introduction 
 
Genomic studies often involve estimating and comparing many effects across multiple 
conditions or outcomes. Examples include studying changes in expression of many genes 
under multiple treatments1, differences in histone methylation at many genomic locations in 
multiple cell lines2, effects of many genetic variants on risk of multiple diseases3, and effects of 
expression quantitative trait loci (eQTLs) in multiple cell-types or tissues4–6. Analyses often aim 
to identify “significant” non-zero effects, and to identify differences in effects among conditions 
(e.g., tissue-specific effects), which may yield biological insights. 
 
A common analysis strategy for such studies is to separately analyze each condition in turn, 
then compare the “significant” results among conditions. Although appealingly simple, this 
“condition-by-condition” approach is unsatisfactory in several ways: it under-represents sharing 
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of effects among conditions because shared effects will be insignificant in some conditions by 
chance, and it misses the power gains that come from sharing information across conditions5. 
 
To address deficiencies of condition-by-condition analyses, several groups have developed 
methods for joint analysis of multiple conditions2–3,5–15. The simplest methods build on traditional 
meta-analysis methodology8,9, and assume that non-zero effects are shared across all 
conditions. Other methods are more flexible, allowing for condition-specific effects, for sharing of 
effects among subsets of conditions, and for heterogeneity in the shared effects5,6,12. The most 
flexible methods adapt themselves to each dataset by learning patterns of sharing using a 
hierarchical model5. 
 
Nonetheless, existing methods have important limitations. First, they make restrictive 
assumptions about the correlations of non-zero effects among conditions. For example, Flutre et 
al.5 assume these correlations are non-negative and equal. Correlations may be negative in 
some applications; e.g., genetic variants that increase one trait may decrease another. And 
some conditions may be more correlated than others; for example, in our eQTL application 
(below), brain tissues are strongly correlated with one another. Second, the most flexible 
methods are computationally intractable for moderate numbers of conditions (e.g., 44 tissues in 
our eQTL application). Existing solutions to this problem substantially reduce flexibility. For 
example, Flutre et al.5 solve the computational problem by restricting effects to be shared in all 
conditions, or to be specific to a single condition. Alternatively, Wei et al.12 allow for all possible 
patterns of sharing, but only under the restrictive assumption that non-zero effects are 
uncorrelated among conditions. Third, existing methods typically focus only on testing for 
significant effects in each condition, and not on estimating effect sizes which, as we illustrate, is 
important for assessing heterogeneity among conditions.  
 
We introduce more flexible statistical methods that combine the most attractive features of 
existing approaches, while overcoming their major limitations. The methods, which we refer to 
as “multivariate adaptive shrinkage” (mash), build on recent approaches16 for testing and 
estimating effects in a single condition, extending these approaches to multiple conditions. Key 
features of mash include: (i) it is flexible, allowing for both shared and condition-specific effects, 
and arbitrary patterns of correlation among conditions; (ii) it is computationally tractable for 
hundreds of thousands of tests in dozens of conditions, or more; (iii) it provides not only 
measures of significance, but also estimates of effect sizes, together with measures of 
uncertainty; (iv) it is adaptive, meaning that its behavior adapts to the patterns present in the 
data; and (v) it is generic, requiring only a matrix containing the observed effects in each 
condition and a matrix of the corresponding standard errors. (Alternatively, mash can be 
supplied with just matrix of Z scores, although this reduces the ability to estimate effect sizes.) 
Together, these features make mash the most flexible and widely applicable method available 
for estimating and testing multiple effects in multiple conditions. 
 
To demonstrate the potential for mash to provide novel insights, we apply it to analyze cis eQTL 
effects in 16,069 genes across 44 human tissues. Focusing on the strongest cis eQTLs, we find 
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that while most eQTLs are shared by many tissues, effect sizes can still vary considerably. Our 
results suggest that when assessing effects that are “tissue-specific” versus “tissue-consistent”, 
we should pay careful attention to the sizes of effects, and not only the tests for significance. 
 
Results 
 
Methods overview. Our method, mash, estimates effects of many “units” (J) in many conditions 
(R), allowing that effects may be sparse (i.e., many zero effects), and allowing for correlations 
among non-zero effects in different conditions. For example, in multi-tissue eQTL studies, the 
“units” are eQTLs (J > 10,000), the conditions are different tissues (R = 44), and mash estimates 
the effect of each eQTL in each tissue, allowing for cross-tissue sharing and tissue-specificity of 
eQTLs. 
 
To apply mash, the analyst must first conduct a condition-by-condition analysis to obtain an 
effect estimate and corresponding standard error for each unit in each condition. These 
estimates are the inputs for a two-step Empirical Bayes (EB) procedure: (1) learn patterns of 
sparsity, sharing and correlations among effects from the condition-by-condition results; (2) 
combine these learned patterns with the condition-by-condition results to produce improved 
effect estimates and corresponding measures of significance. These steps are summarized 
here, and in Fig. 1. (See Methods for more details.) 
 
In brief, let b denote the vector of true effects for a single unit across R conditions. We capture 
correlations and sharing of effects among conditions using a mixture model, 
 

𝑝(𝒃; 𝝅,𝑼) = 	++𝜋-,.𝑁0(𝒃; 𝟎, 𝜔.𝑈-)
4

.56

7

-56

, 

(1) 

where 𝑁0(	∙	; 𝝁, Σ) denotes the multivariate normal density in R dimensions with mean 𝝁 and 
variance-covariance matrix Σ; each Uk is a covariance matrix that captures a pattern of effects; 
each 𝜔. is a scaling coefficient that corresponds to a different effect size; and the mixture 
proportions 𝜋-,. determine the relative frequency of each covariance-scale combination. The 
scaling coefficients 𝜔. take values on a fixed dense grid that spans from “very small” to “very 
large”, capturing the full range of possible effects.  
 
Step 1 of mash learns patterns of sparsity, sharing and correlations by estimating covariance 
matrices 𝑼 and mixture proportions 𝝅 in two sub-steps: 
 

Step 1a: Generate candidate covariance matrices U = (U1,…, UK). This list includes both 
“data-driven” matrices that are estimated from the strongest signals in the condition-by-
condition results (see Methods), and “canonical” matrices that have simple interpretations. 
For example, the “canonical” matrices include the identity matrix (representing independent 
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effects across all conditions); a matrix of all ones (representing effects that are equal in all 
conditions); and R matrices that represent effects that are specific to each condition.  
 
Step 1b: Given U, estimate 𝝅 by maximum likelihood from the condition-by-condition results. 
This step can rescue imperfections in Step 1a by assigning low weight to covariance 
matrices that are not well-supported by the data. This step also adapts to sparse effects; if 
most effects are zero, or small, this step will put most weight on small effects (i.e., small 
scaling coefficients, 𝜔).  

 
Step 2 of mash uses Bayes’ theorem to compute the posterior distribution for each effect given 
the condition-by-condition results and the fitted prior (eq. 1). These posterior distributions yield 
improved effect estimates—posterior means and standard deviations—that account for sparsity 
and correlations among effects. We use these estimates to define quantitative measures of 
effect sharing between any two conditions: “sharing by sign” (effects have the same sign), and 
“sharing by magnitude” (effects have similar magnitude—here defined to be within a factor of 2, 
although other thresholds could be used; see Supplementary Note). The posterior distributions 
also yield a condition-specific measure of significance for each effect, the “local false sign rate”, 
or lfsr16, that is analogous to a false discovery rate, but more stringent because it requires true 
discoveries to be not only non-zero, but also correctly signed. Finally, mash also computes, for 
each unit, a Bayes Factor that summarizes the overall significance of the unit—i.e., overall 
evidence for a non-zero effect in any condition. 
 
Simulation studies. We ran simulations to compare mash with existing methods. We simulated 
effects for 20,000 units in 44 conditions, with 400 units having non-null effects. Non-null effects 
were simulated under two different scenarios: 
 

1. “Shared, structured effects”: Effects are largely shared (non-null units have an effect in 
many conditions), and “structured”—that is, similar in size and direction, with greater 
similarity among some subsets of conditions. This scenario was based on the fit of the 
model (eq. 1) to the eQTL data (see Methods).  

2. “Shared, unstructured effects”: Effects are shared (non-null units have an effect in every 
condition) but unstructured (independent) across conditions.  
 

We used these simulations to compare mash with several other methods: mash-bmalite, a 
simplified version of mash that uses only the BMAlite models from Flutre et al5; ash16, a 
univariate analogue of mash that analyzes each condition separately; and metasoft9,14, which 
implements several multivariate tests corresponding to different models (the “fixed effects”, or 
FE9, model, which assumes equal effects in all conditions, the RE2 model9, which allows for 
normally-distributed variation in effects among conditions, and the BE model, which extends the 
RE2 model to allow for effects are exactly zero14). 
 
The simulation results are summarized in Fig. 2 and Supplementary Table 1. We assessed the 
methods on three important tasks: distinguishing non-null units from null units (Fig. 2a–b); 
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distinguishing non-null effects (i.e., non-null unit-condition pairs) from null effects (Fig. 2c–d); 
and estimating effect sizes (Fig. 2e–f). (We included metasoft results for the first task only 
because it does not provide multivariate effect estimates, and because it is unclear how best to 
combine unit-level significance (p value) and condition-specific significance (m value) into a 
significance measure for each unit-condition pair.) 
 
In the “shared, structured” scenario, mash markedly outperformed the other methods in all three 
tasks (Fig. 2, Supplementary Table 1). This is expected because mash is the only method that 
attempts to fully exploit the structure in these effects. Further, mash found essentially all (>99%) 
of the signals that the other methods found, plus additional signals (Supplementary Table 2).  
 
In the “shared, unstructured” scenario, mash and mash-bmalite are the best methods, finding 
almost exactly the same signals (Supplementary Table 2), with metasoft-RE2 close behind as 
it was applied to the task it was designed for (testing unit-level significance). The strong 
similarity in performance between mash and mash-bmalite is explained by mash putting 
negligible weight on the data-driven covariance matrices, which are unnecessary in this 
scenario. This illustrates mash’s ability to adapt to the data, increasing power in complex 
scenarios without being unduly penalized in simpler scenarios.  
 
Note that mash uses two distinct strategies to improve accuracy of effect estimates: (i) it shrinks 
estimates towards zero, which improves average accuracy because most effects are null; (ii) in 
the presence of “structured effects”, it shares information across conditions to improve 
accuracy. For example, if a unit has effects that are similar across a subset of conditions, 
averaging the effect estimates in those conditions will improve accuracy. Both these strategies 
contribute to the strong performance of mash in the “shared, structured” scenario. 
 
These simulations are meant to be illustrative rather than comprehensive. Indeed, although 
numerical comparisons can help choose between methods, we believe that qualitative factors 
are equally important. For example, the fact that mash produces effect size estimates is a key 
feature that distinguishes it from most existing methods. See Supplementary Note for a detailed 
discussion on connections and differences between the methods. 
 
GTEx cis-eQTL analysis. To illustrate mash in a substantive application, we analyzed eQTLs 
across 44 human tissues, using data from the Genotype Tissue Expression (GTEx) project17. 
The GTEx project aims to provide insights into the mechanisms of gene regulation by studying 
gene expression and regulation in multiple tissues from human donors. One fundamental 
question is which SNPs are eQTLs (i.e., associated with gene expression) in which tissues. 
Answering this could help distinguish regulatory mechanisms that are tissue-specific or shared, 
and, by integrating with results from genome-wide association studies (GWAS), could help 
identify the most relevant tissues for complex disease17,18. 
 
As input, mash requires results from a condition-by-condition analysis (effect estimates and 
standard errors). We used the effect estimates and standard errors for candidate local (“cis”) 
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eQTLs for each gene (GTEx data release 6). These were obtained by performing (univariate) 
single-SNP eQTL analyses in each tissue using Matrix eQTL19. Expression levels were 
corrected for population structure (using genotype principal components20) and other 
confounding factors (both measured factors such as age and sex, and unmeasured factors 
estimated using factor analysis21), then rank-transformed to the corresponding quantiles of a 
standard normal distribution. Because these estimates were obtained by single-SNP analysis, 
the estimated effects for each SNP reflect both the effects of the SNP itself and SNPs in LD with 
it. Thus, our analyses do not distinguish causal eQTLs from those that are in LD with the causal 
eQTLs; see Discussion and Supplementary Note. 
 
We analyzed the 16,069 genes for which effect estimates were available for all 44 tissues 
considered; the filtering criteria used by GTEx ensure that these genes show some expression 
in all 44 tissues. 
 
mash improves model fit. To assess the improved fit of mash compared with the simpler 
mash-bmalite, we used cross-validation; we fitted each model to a random subset of units 
(“training set”), and assessed fit by the log-likelihood on the remaining units (“test set”). We 
found that mash improved the test set log-likelihood very substantially (by 23,796; 
Supplementary Fig. 1). Further, mash placed 79% of the weight on the data-driven covariance 
matrices. These results confirm that our methods for estimating data-driven covariance matrices 
are sufficiently effective that they better capture most effects than do the canonical matrices 
used by existing methods. 
 
Identification of data-driven patterns of sharing. The data-driven covariance matrix with 
largest mash weight is shown in Fig. 3 (34% weight). This covariance matrix captures several 
important features: (i) effects are positively correlated among all tissues; (ii) the brain tissues—
and, to a lesser extent, testis and pituitary—are particularly strongly correlated with one another, 
and less correlated with other tissues; (iii) effects in whole blood tend to be less correlated with 
other tissues. Many other data-driven covariance matrices estimated by mash also have positive 
correlations among all tissues and/or highlight heterogeneity between brain tissues and other 
tissues, confirming these as common features of these data (Supplementary Fig. 2). Other 
components capture less prevalent patterns, such as effects that are appreciably stronger in 
one tissue (e.g., Supplementary Fig. 2b). 
 
Patterns of sharing inform effect size estimates. Having estimated patterns of sharing, mash 
exploits these patterns to improve effect estimates at each candidate eQTL. Although we cannot 
directly demonstrate improved accuracy of effect estimates in the GTEx data (for this, see 
simulations above), individual examples can provide insight into how mash achieves improved 
accuracy. Figure 4 shows three illustrative examples, which we discuss in turn. 
 
In the first example (Fig. 4, left-hand column), raw effect estimates in each tissue are mostly 
positive, and strongest in brain tissues. The mash estimates are all positive: the few modest 
negative estimates are outweighed by the strong background information that effects are highly 
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correlated among tissues and mostly positive. This weighing of evidence was done using Bayes’ 
rule. Humans are notoriously bad at weighing background information against specific 
instances—they tend to underweight background information when presented with specific 
data22—so this behavior may or may not be intuitive. The mash effect estimates are also 
appreciably larger in brain tissues than in other tissues. This is a result of using Bayes’ rule to 
combine the effect estimates at this eQTL with the background information on heterogeneity of 
brain and non-brain effects learned from all eQTLs. 
 
In the second example (Fig. 4, middle column), most effect estimates in non-brain tissues are 
positive (30 out of 34), but modest in size, and only one is nominally significant (p < 0.05). 
However, by combining information among tissues, mash estimated that all effects in non-brain 
tissues are positive, and mostly “significant” (lfsr < 0.05). By contrast, the estimated effects in 
brain tissues are inconsistent (both positive and negative) and so mash is not confident about 
the sign of effects in brain tissues. This example illustrates that mash can learn to treat subsets 
of conditions differently; mash learned that effects in brain tissues are occasionally different from 
effects in other tissues, and therefore did not draw strong inferences in the brain based on the 
other tissues. 
 
In the third example (Fig. 4, right-hand column), the effect estimates vary in sign, and are 
modest except for a very strong signal in whole blood. While whole-blood-specific effects were 
estimated to be rare, mash—again, using Bayes’ theorem—recognized that the strong signal at 
this eQTL outweighs the background information, and estimated a strong effect in blood with 
insignificant effects in other tissues. This illustrates that mash, although focused on combining 
information across tissues, can still recognize—and shed light on—tissue-specific patterns when 
they exist. 
 
In all three examples, the mash estimates are noticeably different from those obtained by mash-
bmalite (Fig. 4c) and ash (Supplementary Fig. 3). The decreased flexibility of mash-bmalite 
compared to mash is particularly evident in the first example where mash-bmalite estimates 
are almost constant across tissues, hiding the stronger effects in brain-related tissues that are 
clearly visible in the original data, and maintained by mash.  
 
Increased identification of significant effects. Consistent with our simulation results, mash 
identified many more significant effects than either mash-bmalite or ash. To avoid double-
counting eQTLs in the same gene that are in LD with one another, we assessed the significance 
of only the “top” SNP in each gene (the SNP with the largest univariate |Z|-statistic across 
tissues). Thus, our results are based on 16,069 candidate eQTLs, each with effect estimates in 
44 tissues, for a total of 44 × 16,069 = 707,036 effects. 
 
The vast majority of top SNPs show a strong signal in at least one tissue (97% have a maximum 
|Z| score exceeding 4), consistent with most genes containing at least one eQTL in at least one 
tissue. However, in the tissue-by-tissue analysis ash identified only 13% of these effects as 
“significant” at lfsr < 0.05; that is, the univariate analysis was highly confident in the direction of 
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the effect in only 13% of cases. By comparison, mash-bmalite identified 39% as significant at 
the same threshold, and mash identified 47%. Similar to our simulations, the significant 
associations identified by mash include the vast majority (95%) of those found by either of the 
other methods (Supplementary Table 4).  
 
Overall, mash found 76% (12,171 out of 16,069) of the top SNPs to be significant in at least one 
tissue. We refer to these as the “top eQTLs” in subsequent sections. 
 
Sharing of effects among tissues. To investigate sharing of the top eQTLs among tissues, we 
assessed sharing of effects by sign and by magnitude (effects have the same sign and are 
within a factor of 2 in size). Because of the large differences between brain and non-brain 
tissues, we also show results separately for these subsets. The results (Table 1, Fig. 5) confirm 
extensive eQTL sharing among tissues, particularly among brain tissues. Sharing by sign 
always exceeds 85%, and is as high as 96% among brain tissues. (Furthermore, these numbers 
may underestimate the sharing by sign of actual causal effects due to the impact of multiple 
eQTLs in LD; see Supplementary Note and Supplementary Fig. 4.) Sharing by magnitude is 
necessarily lower because sharing by magnitude implies sharing by sign. On average, 36% of 
tissues show an effect within a factor of 2 of the strongest effect at each top eQTL. However, 
within brain tissues this increases to 76%. Thus, not only do eQTLs tend to be shared among 
brain tissues, but effect sizes tend to be homogeneous. Because our analyses were based on 
the top eQTLs, our results reflect patterns of sharing only among stronger cis eQTLs; weaker 
eQTLs may show different patterns. 
 
Some tissues share eQTLs more than others. Fig. 6 summarizes eQTL sharing by magnitude 
between all pairs of tissues (see Supplementary Fig. 5 for sharing by sign). In addition to strong 
sharing among brain tissues, mash identified increased sharing among other biologically related 
groups, including arteries (tibial, coronary and aortal), two groups of gut tissues (one group 
containing esophagus and sigmoid colon, the other containing stomach, terminal ilium of the 
small intestine and transverse colon), skin (sun-exposed and non-exposed), adipose 
(subcutaneous and visceral-omentum) and heart (left ventricle and atrial appendage). Figure 6 
also reveals heterogeneity in effect sizes in cerebellum versus non-cerebellum tissues, and 
highlights sharing between pituitary and brain tissues. 
 
Different levels of effect sharing among tissues means that effect estimates in some tissues 
gain more precision than others from the joint analysis. To quantify this, we computed an 
“effective sample size” (ESS) for each tissue that reflects typical precision of its effect estimates 
(Supplementary Fig. 6, Supplementary Note). The ESS values are smallest for tissues that 
show more “tissue-specific” behaviour (e.g., testis, whole blood), and are largest for coronary 
artery, reflecting its stronger correlation with other tissues. 
 
Tissue-specific eQTLs. Despite high average levels of sharing of eQTLs among tissues, mash 
identified some eQTLs that are relatively “tissue-specific”. Indeed, the distribution of the number 
of tissues in which an eQTL is shared by magnitude has a mode at 1 (Fig. 5), representing a 
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subset of eQTLs that have a much stronger effect in one tissue than in any other (henceforth, 
“tissue-specific” for brevity). Breaking down this group by tissue identified testis as the tissue 
with the most tissue-specific effects (Supplementary Fig. 7). Testis and whole blood stand out 
as having lower pairwise sharing of eQTLs with other tissues (Fig. 6). Other tissues showing 
larger than average tissue specificity (Fig. 5, Supplementary Fig. 7) include skeletal muscle, 
thyroid and transformed cell lines (fibroblasts and LCLs). 
 
One possible explanation for tissue-specific eQTLs is tissue-specific expression; that is, if a 
gene is strongly expressed only in one tissue, this could cause an eQTL for that gene to show a 
strong effect only in that tissue. Whether or not a tissue-specific eQTL is due to tissue-specific 
expression could considerably impact biological interpretation. To assess whether tissue-
specific eQTLs could be explained by tissue-specific expression we took genes with tissue-
specific eQTLs and examined the distribution of expression in the eQTL-affected tissue relative 
to expression in other tissues. We found this distribution to be similar to genes without tissue-
specific eQTLs (Supplementary Fig. 8). Therefore, most tissue-specific eQTLs identified here do 
not solely reflect tissue-specific expression. 
 
Discussion 
 
The statistical benefits of joint multivariate analyses compared with univariate analyses are well 
documented, and increasingly widely appreciated. But we believe this potential nonetheless 
remains under-exploited. With mash we aim to provide a set of flexible and general tools to 
facilitate such analyses. In particular, mash is generic and adaptive. It is generic in that it can 
take as input any matrix of Z scores (or, preferably, a matrix of effect estimates and a matrix of 
corresponding standard errors) that test many effects in many conditions. These scores could 
come from many sources; e.g., from linear regression, generalized linear models or linear mixed 
models13. And mash is adaptive in that it learns correlations among effects from the data, 
allowing it to maximize power and precision for each setting. Consequently, mash should be 
widely applicable to many settings involving estimation of multivariate effects. 
 
The mash method uses EB hierarchical modelling, and so is related to other EB methods5,6,12. 
Indeed, the mash framework essentially includes these methods as special cases (as well as 
simpler methods such as “fixed effects” and “random effects” meta-analyses9,23). One key 
feature that distinguishes mash from previous methods is that mash puts greater emphasis on 
quantitative estimation and assessment of effects. Moving away from binary-based models has 
at least two advantages. First, allowing for all possible binary configurations can create 
computational challenges. Second, in practice we have found that effects are often shared 
broadly among many conditions, and in such cases binary-based methods tend to infer that 
effects are non-zero in most or all conditions, even when the signal is modest in some 
conditions. This conclusion may be technically correct—for example, in our GTEx analysis it is 
not impossible that all eQTLs are somewhat active in all tissues. However, as our analysis has 
illustrated, a more quantitative focus can reveal variation in effect sizes that may be of 
considerable biological importance. 
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One limitation of our eQTL analysis is that, like most eQTL analyses, it does not distinguish 
between causal associations and those that are due to LD. This issue is particularly important to 
appreciate when, for example, cross-referencing GWAS associations with eQTL effect 
estimates; a GWAS-associated SNP may be a “significant” eQTL simply because it is in LD with 
another causal SNP. For single-tissue eQTL mapping, this problem has been addressed in 
several ways, including fine-mapping24–29 and co-localization30–32. For multi-tissue analysis, only 
more limited attempts exist to address this problem. For example, eQTLBMA5 implements a 
Bayesian approach to fine-mapping under the simplifying assumption that there is at most one 
causal SNP per gene24,25. However, this assumption becomes less plausible in analyses of 
many tissues, and developing more flexible multi-tissue fine-mapping methods seems an 
important future direction. 
 
Dealing with multiple tests is often described as a “burden”. This likely originates from the fact 
that controlling family-wise error rate requires more stringent thresholds as the number of tests 
increases. However, modern analyses prefer to control the FDR33, which does not depend on 
the number of tests34. Consequently, the term “burden” is inaccurate and unhelpful. We believe 
that the results of many tests in many conditions should instead be viewed as an opportunity—
an opportunity to learn about relationships among underlying effects, and make data-driven 
decisions to improve inferences. This will inevitably, it seems, involve modelling assumptions, 
and the challenge is to design flexible models that work well in a range of settings. The methods 
presented here represent a major step towards this goal. 
 
URLs. Multivariate adaptive shrinkage (“mash”) software, https://github.com/stephenslab/mashr; 
code and data resources for GTEx analysis, https://github.com/stephenslab/gtexresults, 
https://doi.org/10.5281/zenodo.1296399; GTEx project, http://gtexportal.org; adaptive shrinkage 
(“ash”) software, https://github.com/stephens999/ashr; Sparse Factor Analysis (SFA) software, 
http://stephenslab.uchicago.edu/software.html; Extreme Deconvolution software, 
https://github.com/jobovy/extreme-deconvolution; METASOFT software, 
http://genetics.cs.ucla.edu/meta; Matrix eQTL software, 
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL. 
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Figures 
 

 
 
Figure 1 | Overview of fitting procedure in mash, which estimates the multivariate 
distribution of effects present in the data. The data consist of a matrix of summary data (e.g., 
Z scores) for a large number of units (e.g., gene-SNP pairs) in multiple conditions (e.g., tissues), 
and, optionally, their standard errors (not shown). Color indicates the sign (positive, negative) of 
an effect (blue, yellow) or covariance (blue, red), with shading intensity indicating size. After 
selecting rows containing the strongest signals (1)—in this example, the top 6 rows—we apply 
covariance estimation techniques to estimate candidate “data-driven” covariance matrices 𝑈- 
(2). To these, we add “canonical” covariance matrices 𝑈-, including the identity matrix, and 
matrices representing condition-specific effects. Each covariance matrix represents a pattern of 
effects that may occur in the data. We scale each covariance matrix by a grid of scaling factors, 
𝜔., varying from “very small” to “very large”, which allows for a priori effect sizes to range from 
very small to very large. Using the entire data set, we compute maximum-likelihood estimates of 
the weights (relative frequencies) 𝜋-,. for each ;𝑈𝑘,𝜔𝑙> combination (3), thereby learning how 
commonly each pattern-effect size combination occurs in the data. Finally, we compute 
posterior statistics using the fitted model (4); the posterior mean estimates shown in the bottom-
right illustrate that effect estimates are “shrunk” adaptively using the fitted mash model. 
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Figure 2 | Comparison of methods on simulated data. Results are shown for two simulation 
scenarios: “shared, structured effects”, in which the non-zero effects are shared among 
conditions in complex, structured ways similar to patterns of eQTL sharing in the GTEx data; 
and “shared, unstructured effects”, in which the non-zero effects are shared among conditions 
but independent. Each simulation result involves n = 20,000 independent units observed at R = 
44 conditions, with 400 non-null units. Panels a–b show ROC curves for detecting significant 
units (n = 20,000 discoveries), based on unit-specific measures of significance (as in traditional 
meta-analyses). Panels c–d show ROC curves for detecting significant effects (n × R = 44 × 
20,000 = 880,000 discoveries), which requires effect-specific measures of significance. In c–d, 
we also require the estimated sign (+/–) of each significant effect to be correct to be considered 
a “true positive”. Panels e and f summarize the error in the estimated effects relative to the error 
from a simple condition-by-condition analysis (Relative Root Mean Squared Error, or RRMSE 
for short). Our new method (mash) outperformed other methods, particularly in the “shared, 
structured effects” scenario. 
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Figure 3 | Summary of primary patterns identified by mash in GTEx data. Shown are the 
heatmap of the correlation matrix (a) and bar plots of the first three eigenvectors (b, c, d) of the 
covariance matrix Uk corresponding to the dominant mixture component identified by mash (n = 
16,069 independent gene-SNP pairs). This component accounts for 34% of all weight in the 
GTEx data. Tissues are color-coded as indicated by the tissue labels in the heatmap. The first 
eigenvector (b) reflects broad sharing among all tissues, with all effects in the same direction; 
the second eigenvector (c) captures differences between brain (and, to a lesser extent, testis 
and pituitary) and other tissues; the third eigenvector (d) primarily captures effects that are 
stronger in whole blood. 
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Figure 4 | Examples illustrating that mash uses learned patterns of sharing to inform 
effect estimates in the GTEx data. In panel a, each colored dot shows the original (“raw”) 
effect estimate for a single tissue (color-coded as in Fig. 3), with grey bars indicating ±2 
standard errors. These are the data provided to mash. Panel b shows the corresponding mash 
estimates. In each case, mash combines information across all tissues, using the background 
information (patterns of sharing) learned from data on all eQTLs to produce more precise 
estimates. Panel c shows, for contrast, the corresponding estimates from mash-bmalite, 
which, due to its more restricted model, fails to capture features clearly apparent in the original 
data, such as strong brain effects in MCPH1. In b and c, colored dots are posterior means, and 
error bars depict ±2 posterior standard deviations. For all estimates, n = 83–430 individuals, 
depending on the tissue (Supplementary Table 3). 
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Figure 5 | Number of tissues shared by sign and magnitude. Histograms show estimated 
number of tissues in which top eQTLs are “shared," considering all tissues (n = 12,171 gene-
SNP pairs with a significant eQTL in at least one tissue), non-brain tissues (n = 12,117), and 
brain tissues only (n = 8,474), and using two different sharing definitions, by sign (a) and by 
magnitude (b). Sharing by sign means that the eQTLs have the same sign in the estimated 
effect; sharing by magnitude means that they also have similar effect sizes (within a factor of 2). 
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Figure 6 | Pairwise sharing by magnitude of eQTLs among tissues. For each pair of 
tissues, we considered the top eQTLs that were significant (lfsr < 0.05) in at least one of the two 
tissues, and plotted the proportion of these that are “shared in magnitude”—that is, have effect 
estimates that are the same sign and within a factor of 2 in size of one another (n = 5,605–9,811 
gene-SNP pairs, depending on pair of tissues compared). Brackets surrounding tissue labels 
highlight groups of biologically related tissues mentioned in the text as showing particularly high 
levels of sharing. 
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Tables 
 

 proportion of effects 
sharing criterion all tissues non-brain brain 

shared by sign  0.85 0.85 (0.88) 0.96 (0.98) 
shared by magnitude  0.36 0.40 (0.44) 0.76 (0.85) 

 
Table 1 | Summary of sharing among top eQTLs. Numbers give the proportion of effects 
meeting a given sharing criterion: “shared by sign” requires that the effect have the same sign 
as the strongest effect across tissues; “shared by magnitude” requires that the effect also be 
within a factor of 2 of the strongest effect. Numbers in parentheses were obtained from 
secondary mash analyses conducted separately in brain and non-train tissues. 
 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/096552doi: bioRxiv preprint 

https://doi.org/10.1101/096552
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

Methods 
 
Model and fitting. Let 𝑏@A (j = 1,…, J; r = 1,…, R) denote the true value of effect j in condition r. 
Further, let 𝑏B@A denote the “observed” estimate of this effect, and let �̂�@A be the standard error of 
this estimate, so 𝑧@A ≔	 𝑏B@A/�̂�@A is the standard Z statistic used to test whether 𝑏@A is zero. Let B, 
𝐵B, S and Z denote the corresponding J × R matrices, and let 𝒃@ (respectively, 𝒃I@, 𝒛@) denote the 
jth row of B (respectively, 𝐵B, Z). 
 
We assume 𝒃I@ is normally distributed about 𝒃@, with variance-covariance matrix 𝑉@ (defined 
below), and that 𝒃@ follows eq. 1: 
 

𝑝;𝒃B𝑗	M	𝒃𝑗, 𝑉𝑗) = 𝑁0;𝒃B𝑗; 𝒃𝑗, 𝑉𝑗> 
(2) 

𝑝;𝒃𝑗	M	𝝅, 𝑼) = ++𝜋-,.𝑁0(𝒃𝑗; 𝟎, 𝜔.𝑈-)
4

.56

7

-56

, 

(3) 

 
where 𝑁0(	∙	; 𝝁, Σ) denotes the multivariate normal (MVN) density in R dimensions with mean 𝝁 
and variance-covariance matrix Σ. Here, each Uk is a covariance matrix that captures a pattern 
of effects; each 𝜔. is a scaling coefficient that corresponds to a different effect size; and the 
mixture proportions 𝜋-,. determine the relative frequency of each covariance-scale combination. 
The scaling coefficients 𝜔. take values on a fixed dense grid that spans “very small” to “very 
large” so as to capture the full range of effects that could occur.  
 
Combining eqs. 2 and 3 implies that the marginal distribution of 𝒃I@, integrating out 𝒃@, is 
 

𝑝;𝒃B𝑗	M	𝝅, 𝑼, 𝑉𝑗) = ++𝜋-,.𝑁0(𝒃B𝑗; 𝟎, 𝜔.𝑈- + 𝑉𝑗)
4

.56

7

-56

. 

(4) 

 
Each covariance matrix 𝑉@ is specified as 𝑉@ =	 𝑆@𝐶𝑆@, where C is a correlation matrix that 
accounts for correlations among the measurements in the R conditions, and 𝑆@ is the R × R 
diagonal matrix with diagonal elements �̂�@6, … , �̂�@0. If measurements in the R conditions are 
independent, one would set 𝐶 = 𝐼0 , the R × R identity matrix, and therefore 𝑉@ = 𝑆@T . However, in 
our GTEx analysis the measurements are correlated due to sample overlap (individuals in 
common) among tissues; we estimate this correlation from the data (see “Estimating the 
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correlation matrix C” below). The methods place no restriction on the 𝑉@ except that they must 
be symmetric positive definite matrices. 
 
The steps of mash are: 

1. Estimate 𝑼 and 𝝅. This involves two sub-steps: 

a. Define a set of (normalized) data-driven and canonical covariance matrices, 𝑼I . 

b. Given 𝑼I , estimate 𝝅 by maximum likelihood. (A key idea is that if some matrices 
generated in Step 1a do not help capture patterns in the data, they will receive little 
weight.) Let 𝝅U denote this estimate. 

2. Compute, for each j, the posterior distribution 𝑝;𝒃@	M	𝒃I@, 𝝅U,𝑼I , 𝑉@). 
These steps are now detailed in turn. 
 
Generate data-driven covariance matrices Uk. We first identify rows j of matrix 𝐵B that 
correspond to the “strongest” effects. For example, in the GTEx data we chose rows 
corresponding to the “top” SNP for each gene, which we defined to be the SNP with the highest 
value of 𝑍@WXY ≔ 	max

A
𝑏B@A/�̂�@A. (We used the maximum rather than the sum because we wanted 

to include effects that were strong in a single condition, not just effects that were shared among 
conditions.) For the simulated data, we ran ash separately for each condition r, computed 𝑙𝑓𝑠𝑟@A 
for each (j,r), then chose rows j for which min

A
𝑙𝑓𝑠𝑟@A < 0.05. 

 
Next, we fit a mixture of MVN distributions to these strongest effects using methods from Bovy 
et al.35. Bovy et al. describe an EM algorithm for fitting a model similar to eqs. 2 and 3, with the 
crucial difference that there are no scaling parameters on the covariances: 
 

𝑝;𝒃𝑗	M	𝝅,𝑼) = +𝜋-𝑁0;𝒃𝑗;𝟎, 𝑈->
7

-56

. 

(5) 

 
The absence of the scaling factors 𝜔. means that, compared with mash, their model is less well 
suited to capturing effects that have similar patterns (relative sizes across conditions) but vary in 
magnitude. By applying it to only the largest effects, we seek to sidestep this issue. 
  
Estimates of Uk from this EM algorithm are sensitive to initialization. Furthermore, we noticed an 
interesting feature of the EM algorithm: each iteration preserves the rank of the matrices Uk, so 
that ranks of the estimated matrices are the same as the ranks of the matrices used to initialize 
the algorithm. We exploited this fact to ensure that some of the estimated Uk had low rank. This 
helped stabilize the estimates since rank-penalization is one way to regularize covariance matrix 
estimation. 
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To describe the initialization in detail, let 𝐽e denote the number of “strongest effects” selected 
above, and let 𝑍f denote the column-centered 𝐽e × 𝑅 matrix of Z scores for these “strong effects”. 
To extract the main patterns in 𝑍f, we perform dimension reduction on 𝑍f; specifically, we apply 
principal components analysis (through a singular value decomposition, or SVD) and sparse 
factor analysis21 (SFA) to 𝑍f. SVD yields a set of singular values and singular vectors of 𝑍f. Let 
𝜆j, 𝑣j denote the pth singular value and corresponding right singular vector. SFA yields matrix 
factorization 
 

𝑍f = 𝐿𝐹 + 𝐸, 
 
where L is a sparse J × Q matrix of loadings and F is a Q × R matrix of factors. We use Q = 5. 
 
Given this matrix factorization, we use the EM algorithm to fit the mixture model (eq. 5) with K = 
3, in which the three matrices Uk are initialized as follows: 
 

• 𝑈6 = 	𝑍fo𝑍f/𝐽e, the empirical covariance matrix of 𝑍f. 

• 𝑈T = 	∑ 𝜆j𝑣j𝑣joq
j56 /𝐽e, which is a rank-P approximation of the covariance matrix of 𝑍f, with P 

< Q. We use P = 3. 

• 𝑈r = 𝐹o𝐿o𝐿𝐹/𝐽e, which is a rank-Q approximation of the covariance matrix of 𝑍f. 
 
The output of the EM algorithm defines U1, U2 and U3 in the mash model (eq. 1). 
 
In addition to the covariance matrices obtained from this EM algorithm, we define more 
covariance matrices from the SFA results; specifically, the Q = 5 rank-1 matrices 𝐹so𝐿so𝐿s𝐹s , with 
q = 1,…,Q. The rationale for adding these rank-1 covariance matrices is that the SFA factors 
may directly reflect effect patterns in the data, and if so these matrices will be a helpful addition. 
(If they are not helpful, they will receive little weight when estimating 𝝅). 
 
In summary, SFA and the EM algorithm generate 8 data-driven covariance matrices for our 
analysis of the GTEx and simulated data sets. 
 
Generate canonical covariance matrices Uk. We use the following “canonical” covariance 
matrices: 
 

• The identity matrix, 𝐼0. This represents the situation where the effects in different 
conditions are independent, which may be unlikely in some applications (like the GTEx 
application here), but seems useful to include if only to show that the data assign low 
weight to it. 

• R rank-1 matrices 𝒆A𝒆Ao, where 𝒆A denotes the unit vector with zeros everywhere except 
for element r, which is set to 1. These matrices represent effects that occur in only one 
condition. 
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• The rank-1 matrix 𝟏𝟏o, where 𝟏 denotes the R-vector of ones—this is the matrix of all 
ones, and represents effects that are identical among all conditions. 

 
The user can, if desired, add other canonical matrices. For example, if R is moderate then one 
could add the 2R–1 canonical matrices that correspond to shared (equal) effects in each of the 
2R-1 subsets. 
 
In summary, this procedure produces 46 canonical covariance matrices for our analyses of the 
GTEx and simulated data sets, with R = 44. 
 
Standardize the covariance matrices. Since eq. 3 uses the same grid of scaling factors for 
each covariance matrix Uk, we standardize the matrices Uk so that they are similar in scale. 
Specifically, for each k, we divide all elements Uk by the maximum diagonal element of Uk so 
that the maximum diagonal element of the rescaled matrix is 1. These rescaled matrices define 
𝑼I  in Step 1a of mash. 
 
Define grid of scaling factors. We define a dense grid of scaling factors, ranging from “very 
small” to “very large”. Stephens16 suggests a way to select suitable limits (𝜔Wvw, 𝜔WXY) for this 
grid in the univariate case; we apply this method to each condition r, and take the smallest 𝜔Wvw 
and the largest 𝜔WXY as the grid limits. The internal points of the grid are obtained, as in the 
univariate case16, by setting 𝜔. =	𝜔WXY/𝑚.y6, for l = 1,…,L, where m > 1 is a user-tunable 
parameter that controls the grid density, and L is chosen to be just large enough so that 𝜔4 <
	𝜔Wvw. We use 𝑚 = √2.  
 
Estimate 𝝅 by maximum likelihood. Given 𝑼I  and 𝝎, we estimate the mixture proportions 𝝅 by 
maximum likelihood. 
 
To simplify notation, let Σ-,. ≔ 𝜔𝑙𝑈𝑘, and replace the double index k,l with a single index p 
ranging from 1 to 𝑃 ≔ 𝐾𝐿, so that eqs. 3 & 4 become 
 

𝑝;𝒃𝑗	M	𝝅, 𝑼) = +𝜋j𝑁0(𝒃𝑗; 𝟎, Σj)
q

j56

, 

 

𝑝;𝒃B𝑗	M	𝝅,𝑼, 𝑉𝑗) = +𝜋j𝑁0(𝒃B𝑗; 𝟎, Σj + 𝑉𝑗)
q

j56

. 

 
Assuming independence of the rows of 𝐵B, the likelihood for 𝝅 is 
 

𝐿(𝝅) ∶= 𝑝;𝐵B	M	𝝅,𝑼, 𝑽) =�𝑝;𝒃I@	M	𝝅, 𝑼, 𝑉@)
�

@56

=�+𝜋j𝑁𝑅(𝒃I@; 𝟎, Σ𝑝 + 𝑉𝑗)
q

j56

�

@56
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If the rows of 𝐵B are not independent, this may be interpreted as a “composite likelihood”36, which 
generally yields consistent point estimates. (We also empirically confirmed that our GTEx 
results were robust to LD pruning of SNPs; see Supplementary Fig. 9.)  
 
Maximizing L(𝝅) is a convex optimization problem, which we solve using EM37, accelerated 
using SQUAREM38. If 𝐵B has a large number of rows, we can reduce computational effort by 
taking a random subset of rows. In the GTEx analysis, we use a random subset of 20,000 rows. 
(It is important that this is a random subset, and not just the 𝐽e rows of strong effects.) 
 
Posterior calculations. If 𝒃	~	𝑁0(𝟎,𝑈) and 𝒃B	|	𝒃	~	𝑁0(𝒃, 𝑉), then 
 

𝒃B	|	𝒃	~	𝑁0;𝝁�,𝑈�>, 
 
where 
 

𝑈� = 𝑈�(𝑈, 𝑉) ≔ (𝑈y6 + 𝑉y6)y6 
(6) 

𝝁� = 𝝁�;𝑈, 𝑉, 𝒃I> ≔ 𝑈�(𝑈, 𝑉)𝑉y6𝒃I 
(7) 

This result is easily extended to the case where the prior on b is a mixture of MVNs (eq. 3). In 
this case the posterior distribution is 
 

𝑝;𝒃@	M	𝒃I@, 𝑉@, 𝝅) = 	+𝜋�@j𝑁0;𝒃@;	𝝁�@j, 𝑈�@j>,
q

j56

 

 
where 𝑈�@j ≔ 𝑈�;Σj,𝑉@> (eq. 6) and 𝝁�@j ≔ 𝝁�;Σj, 𝑉@, 𝒃I@> (eq. 7), and 
 

𝜋�@j ≔
𝜋j𝑁0(𝒃I@; 0, Σj + 𝑉@)

∑ 𝜋j�𝑁0(𝒃I@; 0, Σj� + 𝑉@)q
j�56

. 

 
The posterior mean and variance are 
 

𝒃II@ ≔ 𝐸;𝒃@	M	𝒃I@, 𝑉@, 𝝅) = +𝜋�@j𝝁�@j

q

j56

 

(8) 
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Var;𝑏@A	M	𝒃I@, 𝑉@, 𝝅) =	+𝜋�@j;𝑈�@j,AA + 𝝁�@j,AT > −	�+ 𝜋�@j�𝝁�@j�,A
q

j�56
�
T

.
q

j56

 

 
The local false sign rate (lfsr) is defined by Stephens16 as: 
 

𝑙𝑓𝑠𝑟@A ∶= min�Pr;𝑏@A ≥ 0	|	𝐷>, Pr;𝑏@A ≤ 0	|	𝐷>�, 
 
where D denotes the available data. Intuitively, 𝑙𝑓𝑠𝑟@A is the probability that we would incorrectly 
predict the sign of the effect if we were to use our best guess of the sign (positive or negative). 
Thus, a small lfsr indicates high confidence in the sign of an effect. The lfsr is more conservative 
than the local false discovery rate (lfdr)39 because requiring high confidence in the sign is more 
stringent than requiring high confidence that the effect be non-zero. More importantly, the lfsr is 
more robust to modelling assumptions than the lfdr16, a particularly important issue in 
multivariate analyses where modelling assumptions play a larger role. 
 
Bayes Factors testing global null. The Bayes Factor for b ≠ 0 against the null model (b = 0) is 
 

𝐵𝐹@ = 𝑝;𝒃I@	M	𝝅,𝑼, 𝑉@)/𝑝;𝒃I@	M	𝒃 = 0, 𝑉@). 
 
The numerator is given by eq. 4, and the denominator is given by eq. 2, with b = 0. 
 
The EZ model, and applying mash to Z scores. The model (eq. 3) assumes the 𝒃@ are 
independent of their standard errors, 𝑉@. We refer to this as the “Exchangeable 
Effects” (EE) model23. An alternative is to allow the effects to scale with standard error, so that 
effects with larger standard error tend to be larger, 
 

𝑆@y6𝒃@	|	𝝅, 𝑼, 𝑉@	~	𝑔, 
 
where g is shorthand for the mixture of MVNs (eq. 3). We refer to this as the “Exchangeable Z” 
(EZ) model because the left of this equation is the vector of Z scores for effect j. 
 
As explained in Stephens16, the EZ model can be fit by applying the same code as the EE 
model to the Z statistics instad of the effect estimates, 𝐵B, in which the standard errors of the Z 
statistics are set to 1; in other words, set 𝑏B@A = 𝑧@A and �̂�@A = 1. (The correlation matrix, C, 
remains the same.) One advantage of the EZ model is that it can be fit using only the Z scores; 
it does not require access to both the effect estimates and their standard errors. The lfsr can 
also be computed using only the Z scores. However, the posterior mean estimates that arise 
from this model are estimates of 𝑆@y6𝒃@; transforming these to estimates of effect sizes 𝒃@ 
requires knowledge of 𝑆@. 
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We analyzed the GTEx data using both EE and EZ models. Results were qualitatively similar in 
terms of patterns of sharing, but the EZ model performed better in cross-validation tests of 
model fit (see below), so we used results from the EZ model. 
 
Estimating the correlation matrix C. C is an R × R correlation matrix that accounts for 
correlations among measurements in the R conditions. To estimate this matrix, we exploit the 
fact that C is the correlation matrix of the Z scores under the null (𝒃@ = 0). Specifically, we 
estimate C from the empirical correlation matrix of the Z scores for the effects j that are most 
consistent with the null, 
 

𝐶 =
1
|𝒩|

+ 𝒛@𝒛@o,
@∈𝒩

 

 
where 𝒩 ≔ �𝑗 ∶ max

A
|𝑧@A| < 2�.  

 
For the GTEx data, we found that measurements in different tissues were not highly correlated; 
all elements of estimated C had magnitude less than 0.2, and 95% had magnitude less than 0.1. 
However, in cross-validation tests (below), this estimated C produced better model fit than 
ignoring correlations (i.e., 𝐶 = 𝐼0). 
 
Cross-validation of model fit. To compare model fitting procedures, we randomly divide the 
rows of the data matrix 𝐵B into two subsets—a “training set” 𝐵B�A���, and a “test set” 𝐵B�� �. We 
then apply mash to 𝐵B�A���, yielding estimates (𝝅U,𝑼I ), and assess the “fit” of these estimates by 
computing the log-likelihood in the test data, log 𝑝;𝐵B�� �	|	𝝅U,𝑼I , 𝑽>, which is given by eq. 4. This 
cross-validation strategy can also be used to compare different approaches to estimating 𝑼I , and 
our current strategy was developed and refined using this framework.  
 
When applying cross-validation to the GTEx data, we create test and training sets by randomly 
selecting half the genes, rather than half the rows (gene-SNP pairs). Specifically, we use genes 
on even-numbered chromosomes as the training set, and genes on odd-numbered 
chromosomes as the test set. This ensures that rows in the test set were independent of rows in 
the training set. 
 
Visualizing Uk. In the simulations, and in our application to the GTEx data, R = 44, so each Uk 
is a 44 × 44 covariance matrix, and each component of the mixture (eq. 1) is a distribution in 44 
dimensions. Visualizing such a distribution is challenging. However, we can get some insight 
from the first eigenvector of Uk, denoted by vk, which captures the principal direction of the 
effects. If Uk is dominated by this principal direction, then we can think of effects from that 
component as being of the form 𝜆𝑣- for some scalar 𝜆. For example, if the elements of the 
vector vk are approximately equal, then component k captures effects that are approximately 
equal in all conditions; alternatively, if vk has one large element, with other elements close to 
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zero, then component k corresponds to an effect that is strong in only one condition. See Fig. 3 
and Supplementary Fig. 2 for illustration. 
 
RRMSE (accuracy of estimates in simulation studies). In simulations, we used the “relative 
root mean squared error” (RRMSE) to assess error in effect estimates (e.g., Fig. 2). Let 𝑏@A∗  

denote the estimate of effect j in condition r (for mash, 𝑏@A∗ = 𝑏BB@A	). Then 
 

RRMSE = 	
© 6
�0 ∑ ∑ (𝑏@A − 𝑏@A∗ )T0

A56
�
@56

© 6
�0 ∑ ∑ (𝑏@A − 𝑏B@A)T0

A56
�
@56

. 

 
ROC curves. For the ROC curves in Fig. 2c–d, the True Positive Rate (TPR) and False Positive 
Rate (FPR) are computed at any given threshold t as 
 

TPR ∶=
|𝐶𝑆 ∩ 𝑆|
|𝑇|

 

FPR ∶=
|𝑁 ∩ 𝑆|
|𝑁|

, 

 
where S is the set of significant results at threshold t, CS the set of correctly signed results, T 
the set of true (non-zero) effects and N the set of null effects: 
 

  𝑆 ≔ �𝑗, 𝑟 ∶ 	 𝑙𝑓𝑠𝑟@A < 𝑡� 
𝐶𝑆 ≔ �𝑗, 𝑟 ∶ 	𝐸(𝑏@A	|	𝐷) × 𝑏@A > 0� 
 𝑁 ≔ �𝑗, 𝑟 ∶ 	 𝑏@A = 0� 
		𝑇 ≔ �𝑗, 𝑟 ∶ 	 𝑏@A ≠ 0�. 

 
Thus, to be considered a true positive, we require that an effect be both “significant” and 
correctly signed. 
 
For the ROC curves in Fig. 2a–b, the TPR and FPR are computed by treating units j as 
“discoveries”. For example, suppose a method produces a p value pj for testing unit j. Then, at 
any threshold t, the TPR and FPR are 
 

𝑇𝑃𝑅 ≔ M𝑆eM M𝑇fM±  
𝐹𝑃𝑅 ≔ M𝑆eM M𝑁�M,±  

 
where 𝑆e is the set of significant units at threshold t, 𝑇f  the set of true (non-null) units, and 𝑁� the 
set of null units: 
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	𝑆e ≔ �𝑗 ∶ 	𝑝@ ≤ 𝑡� 
𝑁� ≔ �𝑗 ∶ 	 𝑏@A = 0, ∀𝑟� 
	𝑇f ≔ �𝑗 ∶ 	∃	𝑟	s. t.		𝑏@A ≠ 0�. 

 
Effective sample size. We define the “effective sample size” (ESS) for tissue r to be 
 

𝑛A·¸¸ ≔ 𝑛A
¹ºv» 	× median@;�̂�@AT �̃�@AT± > 

 
where 𝑛A

¹ºv» is the number of available samples in tissue r (Supplementary Table 3), and �̂�@A and 
�̃�@A are the standard error and posterior standard deviation, respectively, for effect j in tissue r. 
 
Normalized effects. For estimating sharing of effects by magnitude (e.g., Supplementary Fig. 
7), we define a “normalized” effect 𝑏f in each condition as the ratio of its effect in that condition to 
the largest effect across all conditions: 
 

𝑏f@A ≔ 𝑏@A 𝑏@A¿,⁄  
 
where 
 

𝑟Á ≔ argmax
A
M𝑏@AM 

 
For example, in the application to multi-tissue eQTL analysis, a normalized effect 𝑏f@A = 0.5 
means that the effect of eQTL j in tissue r is half that of its effect in the strongest tissue. 
 
Sharing by sign and magnitude. We define two effects to be “shared in sign” if they have the 
same sign; we define them to be “shared in magnitude” if they also have an effect within a factor 
of 2 of one another. (In some applications it may make sense to drop the requirement that 
effects are of the same sign when assessing sharing by magnitude, but not here.) 
 
In Fig. 5 and Table 1, we assess sharing for each eQTL by comparing its estimated effect in 
each tissue against the strongest estimated effect across all tissues. Thus, for example, if an 
eQTL has a very strong positive effect in one tissue and weak negative effects in all other 
tissues, then the number of tissues “shared by sign” for this eQTL would be 1. 
 
In Fig. 6 (and Supplementary Fig. 5), we investigate sharing between each pair of tissues. 
When computing sharing between tissues r and s, we consider only QTLs that are “significant” 
(lfsr < 0.05) in at least one of r and s. This is to avoid sharing estimates being driven by 
estimates of null or nearly-null effects. 
 
More formally, define 
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QTLA ≔ �𝑗 ∶ 	 𝑙𝑓𝑠𝑟@A < 0.05� 

 SSA  ≔ �𝑗 ∶ sign(𝑏BB@A) = sign(𝑏BB@ )� 

SMA  ≔ �𝑗 ∶ 6
T
≤ 𝑏BB@A 𝑏BB@ ± ≤ 2�. 

 
Then the sharing by sign between r and s is given by 
 

|SSA  ∩ (QTLA ∪ QTL )|
|QTLA ∪ QTL |

, 

 
and sharing by magnitude between r and s is given by 
 

|SMA  ∩ (QTLA ∪ QTL )|
|QTLA ∪ QTL |

. 

 
These estimates of sharing are based on the posterior estimates 𝒃II@ to simplify their calculation. 

However, we obtained similar estimates of sharing when we accounted for uncertainty in 𝒃II@ by 
sampling from the posterior distributions of the effects. 
 
ash: We applied ash16 separately to each tissue using the same 20,000 randomly-selected 
gene-SNP pairs as for mash. We then computed the posterior means and lfsr for the top SNPs. 
 
mash-bmalite: This is a simplification of mash without the data-driven covariance matrices, 
and with particular choices for the canonical covariance matrices and scaling factors. It can be 
thought of as a version of BMAlite5 that outputs effect size estimates and lfsr values. (The 
original software does not compute these quantities.) 
 
Specifically, the U for mash-bmalite includes the 44 singleton configurations (𝑈- = 𝑒-𝑒-o), and 
matrices corresponding to the models in Flutre et al.5, with heterogeneity parameters H = {0, 
0.25, 0.5, 1}. (When H = 0, effects are equal in all conditions; when H = 1, effects are 
independent among conditions.) We used 𝝎 =	{0.1, 0.4, 1.6, 6.4, 25.6}, similar to the coarse 
grid used in Flutre et al.5, and chosen to capture the full range of the GTEx (real and simulated) 
Z statistics. 
 
Statistical tests. For the ash, mash and mash-bmalite methods, an association was 
considered significant if the lfsr16 was less than 0.05. For all metasoft approaches included in 
the simulation experiments (FE, RE2, BE), p values were computed as described in 9,14. The 
metasoft p value threshold was varied to assess performance in the simulation experiments 
(Fig. 2). 
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“Shared, structured effects" simulations. We simulated each 𝒃@ from the mixture model (eq. 
3), with mixture parameters based on fit to the GTEx data. This is the simulation procedure in 
more detail: 
 

1. We took the 8 “data-driven” covariance matrices 𝑈6,…,𝑈Æ learned from the GTEx data, 
standardized as described above. 

2. We simulated 400 “non-null units”: independently for j = 1,…,400, we (a) chose a 
component k uniformly at random from 1,….,8, (b) simulated a scaling factor 𝜔 as the 
absolute value of an N(0,1) random variable, and (c) simulated 𝒃@	~	𝑁ÇÇ(𝟎,𝜔𝑈-). 

3. For the 19,600 “null units”, we set 𝒃@ = 0. 

4. For all 20,000 units, we simulated 𝒃I@	~	𝑁ÇÇ;𝒃@, 𝑉@>,	where Vj was the diagonal matrix with 
diagonal elements 0.12 (so that standard errors were 0.1, similar to the estimates from 
the GTEx data). 

 
“Shared, unstructured effects” simulations. We simulated as for “shared, structured effects”, 
except that the 400 non-null units in Step 2c were simulated as 𝒃@	~	𝑁ÇÇ(𝟎, 0.1T𝐼).  
 
“Independent effects” simulations. We also simulated data from effects that were entirely 
independent across conditions: 
 

1. Independently for each r = 1,…,44, we chose a random set of 400 𝑗 ∈ 	 {1, . . . , 2 × 10Ç} to 
be the “true effects”. 

2. For the “true effects”, we simulated 𝑏@A	~	𝑁(0, ΣT), where ΣT was chosen with equal 
probability from the set {0.1, 0.5, 0.75, 1}. In this way, the true effects captured both 
small and large effects for each condition. All other effects were set to zero. 

3. We simulated 𝒃I@	~	𝑁ÇÇ;𝒃@, 𝑉@> as in the other simulations. 
 
Analysis of simulated data. Each simulated dataset was analyzed using mash, following the 
procedure described above. Note that we re-estimated (U,𝝅) from the data without making use 
of the true values used to simulate the data. We estimated effects by their posterior means (eq. 
8), and assessed significance by the lfsr. The ash and mash-bmalite methods were applied 
to the simulated data in the same way that they were applied to the GTEx data (see above). 
 
Data availability. The GTEx study data are available through dbGaP under accession 
phs000424.v6.p1. The GTEx summary statistics used in the mash analysis have been 
deposited in Zenodo (doi:10.5281/zenodo.1296399). 
 
Code availability. Source code implementing our methods, including processing and analysis 
of the GTEx data, adaptive shrinkage (“ash”) and multivariate adaptive shrinkage (“mash”, 
“mash-bmalite”), is available online, and is distributed under GNU and BSD open source 
licenses (see URLs). 
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Supplementary Note 
 
Multivariate adaptive shrinkage (mash), and its relationship with existing methods. An 
important novel feature of our method, mash, is its focus on estimation of effect sizes, in 
contrast to most existing multivariate analysis methods that focus only on testing for non-zero 
effects. Further, mash is more than just an extension of existing methods to estimate effect 
sizes because the underlying model is more flexible than models underlying existing methods—
and, indeed, includes existing models as special cases. 
 
The mash method includes many existing methods for joint analysis of multiple effects as 
special cases. Specifically, many existing methods correspond to making particular choices for 
the set of “canonical” covariance matrices (with no data-driven matrices). For example, a simple 
“fixed effects” meta-analysis—which assumes equal effects in all conditions—corresponds to K 
= 1 with 𝑈" = 𝟏𝟏% (a matrix of all ones). (This covariance matrix is singular, but it is still allowed 
in mash.) A more flexible assumption is that effects in different conditions are normally 
distributed about some mean—this corresponds to the multivariate normal assumption made in 
mash if the mean is assumed to be normally distributed as in Wen & Stephens1. More flexible 
still are models that allow effects to be exactly zero in subsets of conditions, as in Flutre et al.2 
and Li et al.3. These models correspond to using (singular) covariances Uk with zeros in the 
rows and columns corresponding to the subset of conditions with no effect. 
 
mash extends the capabilities of previous methods in two ways: first, mash includes a large 
number of scaling coefficients 𝝎, which allows mash to flexibly capture a range of effect 
distributions4; second, and perhaps more importantly, mash includes data-driven covariance 
matrices, making it more flexible and adaptive to patterns in the data. This innovation is 
particularly helpful in settings with moderately large R—as in the GTEx data, with R = 44—
where it becomes impractical to pre-specify canonical matrices for all patterns of sharing that 
might occur. For example, Flutre et al.2 and Li et al.3 consider all 2R combinations of sparsity in 
the effects, which is feasible for R = 9 (see Flutre et al.2), but impractical at R = 44. While it is 
possible to restrict the number of combinations considered (e.g., BMAlite2), this comes at a cost 
to flexibility. The addition of data-driven covariance matrices helps to address this issue, making 
mash both flexible and computationally tractable for moderately large R. 
 
In addition to effect estimates, mash also provides a measure of significance for each effect in 
each condition. Specifically, mash estimates the “local false sign rate” (lfsr)4, which is the 
probability that the effet is estimated with the incorrect sign. The lfsr is analogous to the local 
false discovery rate6, but is more stringent in that it insists that effects be correctly signed to be 
considered “true discoveries”. Similarly, mash-bmalite can estimate the lfsr (under its less 
flexible model), and ash can estimate the lfsr separately for each condition. 
 
Comparison with metasoft. Among existing software packages for this problem, metasoft7 
is in some respects the most comparable to mash. In particular, it is both generic—requiring 
only effect estimates and their standard errors—and computationally tractable for R = 44. The 
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metasoft software implements several different multivariate tests for association analysis, 
each corresponding to different multivariate models for the effects. For example, the FE model 
assumes that the effects in all conditions are equal; the RE2 model assumes that the effects are 
normally distributed about some common mean, with deviations from that mean being 
independent among conditions8; and the BE model is an extension of the RE2 model allowing 
that some effects are exactly zero7. These models are similar to the BMAlite models from Flutre 
et al.2, and none capture the kinds of structured effects that can be learned from the data by 
mash. However, because differences in software implementation sometimes lead to 
unanticipated differences in performance, we also performed simple direct benchmarks 
comparing mash and mash-bmalite with metasoft. For each model (FE, RE2, BE), 
metasoft produces a p value for each multivariate test, whereas mash and mash-bmalite 
produced a Bayes Factor (see Online Methods); in each case, these can be used to rank the 
significance of the tests. 
 
Assessing heterogeneity and sharing in effects. In analyses of effects in multiple conditions, 
it is often desirable to identify effects that are shared across many conditions, or, conversely, 
those that are specific to one or a few conditions. This is a particularly delicate task. For 
example, Flutre et al.2 emphasize that the simplest approach—first identifying significant signals 
separately in each condition, then examining the overlap of significant effects—can substantially 
underestimate sharing. This is due to incomplete power; by chance, a shared effect can easily 
be significant in one condition and not in another. To address this, Flutre et al.2 and Li et al.3 
estimated sharing among conditions as a parameter in a joint hierarchical model, which takes 
account of incomplete power. However, these approaches are infeasible for R = 44. 
Furthermore, even for smaller values of R they have some drawbacks. In particular, they are 
based on a “binary” notion of sharing—i.e., whether an effect is non-zero in each condition—so 
they do not capture differences in magnitude or directions of effects among conditions. If effects 
shared among conditions differ greatly in magnitude—for example, being very strong in one 
condition and weak in all others—then this would seem useful to know. 
 
We addressed this limitation by taking a new approach to quantify similarity of effects. 
Specifically, we assessed sharing of effects in two ways: (i) “sharing by sign” (estimates have 
the same direction); and (ii) “sharing by magnitude” (effects are similar in magnitude). We 
defined “similar in magnitude” to mean both the same sign and within a factor of 2 of one 
another. (Other thresholds could be used, and in some settings—e.g., when “conditions” are 
different phenotypes—the requirement that effects have the same sign could be dropped.) 
These measures of sharing can be computed for any pair of conditions, and an overall summary 
of sharing across conditions can be obtained by assessing how many conditions share with 
some reference condition. (We used the condition with the largest estimated effect as 
reference.) These measures of sharing could be naively estimated from the original effect 
estimates in each condition; however, errors in these effect estimates will naturally lead to errors 
in assessed sharing. Because mash combines information across conditions to improve effect 
estimates, it can also provide more accurate estimates of sharing. 
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Effects of linkage disequilibrium. Linkage disequilibrium (LD) between SNPs has two distinct 
effects. 
 
First, LD causes correlations in the observed effects of nearby SNPs for the same gene. This 
issue is likely to be minor here; mash ignores correlations between rows of 𝐵( when estimating 
the prior density g, and this can be justified as a “composite likelihood” approach9, which can 
perform well for computing joint estimates of model parameters. 
 
Second, the effect estimates we obtained for each SNP from single-SNP analysis are not 
actually the individual causal effects of that SNP; rather, they are the combined effects of all 
SNPs that are in LD with that SNP, weighted by their LD10,11. This issue more likely has an 
impact because of the presence of multiple eQTLs in some or many genes. It also applies to all 
single-SNP eQTL analyses, which are the vast majority of all published eQTL analyses, and not 
just mash. Ideally, one would develop a multi-SNP, multi-tissue method for association analysis 
at each gene to avoid this issue. And, indeed, we see mash as a first step towards this more 
ambitious goal. However, for now we have limited this analysis to highlighting one specific 
feature of our results that we believe may be a consequence of the use of single-SNP effect 
estimates, and which will hopefully be better addressed as multi-SNP analyses are developed to 
better account for LD. 
 
Specifically, we found that LD among multiple causal SNPs can cause single-SNP analyses to 
identify eQTLs that appear to have strong effects of opposite sign in different tissues. One 
example is shown in Supplementary Fig. 4; this eQTL has strong, positive Z scores in brain 
tissues, and negative Z scores in most other tissues. Initially, this suggested that this eQTL 
might have causal effects in opposite directions in brain versus non-brain tissues. However, 
there is another way to explain this result: there could be two eQTLs in LD with one another, 
one of which (e.g., eQTL A) has a strong effect in brain tissues, and the other of which (e.g., 
eQTL B) has a strong effect in other tissues. If the expression-increasing allele at eQTL A is in 
negative LD with the expression-increasing allele at eQTL B, then the single-SNP Z scores for 
both SNPs will show opposite signs in brain versus non-brain. Indeed, closer examination of the 
data at this particular gene suggests that this explanation is likely correct in this case 
(Supplementary Fig. 4). A similar example is discussed in the GTEx pilot study5 (their 
Supplementary Fig. 14). 
 
Based on this reasoning, we believe that estimates of sharing in sign from single-SNP analyses 
such as ours are likely to be underestimates of the sharing in sign of actual causal effects. 
Therefore, we urge careful interpretation of an eQTL in multiple tissues that shows significant 
effects in different directions. 
 
Increase in effective sample size due to multivariate analysis. A feature of our multivariate 
analysis approach is improved quantitative estimates of effect sizes in each condition. When 
estimating effects in a single condition, mash uses the data not only from that condition but also 
from other “similar” conditions. In this way, mash effectively increases the available sample size, 
improving both accuracy and precision of estimates. The improvement will be greatest for 
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conditions that are similar to many other conditions, and weakest for conditions with many 
“condition-specific” effects. 
 
To illustrate this effect in the GTEx data, we computed an “effective sample size'” (ESS) for 
each tissue based on the standard deviations of the mash estimates. The ESS estimates 
(Supplementary Fig. 6) vary from 240 for testis to 1,392 for coronary artery. Other tissues with 
smaller ESS include liver, pancreas, spleen and brain cerebellum. Identifying tissues with 
smaller ESS could help prioritize “under-represented” tissues in future experimental efforts. 
 
For testis, the ESS of 240 represents only a small (1.4-fold) increase compared with actual 
sample size, reflecting that its effects are more “tissue specific”; that is, they are less correlated 
with other tissues. Other tissues showing a small gain in ESS include transformed fibroblasts 
and whole blood, which we also highlight for having more “tissue-specific” signals. By contrast, 
the ESS for coronary artery represents a 10-fold increase compared with the actual sample size 
for this tissue, reflecting its strong correlation with other tissues. On average across all tissues, 
mash provides a 4-fold increase in ESS for estimating the top eQTL effects, reflecting an overall 
moderate-to-large correlation in effect sizes across tissues. 
 
One caveat of this analysis is that ESS reflects average gains in precision for a tissue; in 
practice, effects that are shared across many tissues will benefit more than effects that are 
tissue-specific. For example, if one were particularly interested in effects that are specific to 
uterus (which has the smallest actual sample size in our study), then the high reported ESS for 
uterus may not be as useful. In the end, detection of tissue-specific effects will benefit most from 
collecting more samples in the tissue of interest. 
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Supplementary Figures 
 

 
Supplementary Figure 1 | Increase in log-likelihood on test set as new Uk are added. The 
figure shows the log-likelihood on the test set for different “models” (choices of Uk). From left to 
right, the models are: mash-bmalite (no data-driven Uk); mash-no-SFA (the combination of 
canonical and data-driven covariances, excluding the rank-one matrices derived from SFA); 
mash (the full combination of canonical and data-driven covariances described here). The result 
illustrates how, as more data-driven covariances are added, the log-likelihood on the test set 
increases. Note that the difference in likelihood between the mash and mash-no-SFA is large—
mash is approximately 100 log-likelihood units higher than mash-no-SFA—although this is 
difficult to see at this scale. Test-set log-likelihoods are based on n = 28,198 randomly selected 
gene-SNP pairs. 
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Supplementary Figure 2 | Summary of covariance matrices Uk with the largest estimated 
weights (>1%) in the GTEx data. For each covariance matrix Uk, the figure shows the heatmap 
of the corresponding correlation matrix, and bar plots of the top eigenvectors of Uk (n = 16,069 
independent gene-SNP pairs). Component 2 (a) captures qualitatively similar effects to the 
component shown in Fig. 3. Component 8 (b) captures testis-specific effects. Components 4 (c) 
and 5 (d) primarily capture effects that are stronger in whole blood than in other tissues. 
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Supplementary Figure 3 | Estimates from the univariate method ash for the examples 
shown in Fig. 4. Each dot (color-coded as in Fig. 3) shows the effect estimate (posterior mean) 
from ash, with horizontal gray bars indicating ±2 posterior standard deviations. For all 
estimates, n = 83–430 individuals, depending on the tissue (Supplementary Table 3). 
 
 

 

MCPH1 ARMH3 RALBP1

–1 –0.5 0 0.5 1 –1 –0.5 0 0.5 1 –1 –0.5 0 0.5 1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/096552doi: bioRxiv preprint 

https://doi.org/10.1101/096552
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
Supplementary Figure 4 | Illustration of how linkage disequilibrium (LD) can impact effect 
estimates. This gene was chosen as an example where the effect estimates in the “top eQTL” 
were opposite in sign in brain compared to non-brain tissues, and where further investigation 
suggested that this difference in effect directions could be explained by multiple eQTLs in LD. In 
this example, we define “SNP1” and “SNP2” as the SNPs that show the strongest eQTL 
associations in brain and non-brain tissues, respectively. The top panels show effect estimates 
for these SNPs from a simple (1-SNP) regression model in each tissue, 𝑌 = 	𝜇 +	𝐵-.𝑔0 where i in 
{1, 2} indexes the two SNPs. The bottom panels show effects from a multiple (2-SNP) 
regression model in each tissue, 𝑌 = 	𝜇 +	𝐵("𝑔" + 𝐵(1𝑔1. Each dot shows the effect estimate for a 
single tissue (color-coded as in Fig. 3), with grey bars indicating ±2 standard errors. For all 
estimates, n = 83–430 individuals, depending on the tissue (Supplementary Table 3). The 
simple regression estimates (a, b) show opposite-direction effects in brain versus non-brain 
tissues (with testis and pituitary clustering with brain in one case). However, the multiple 
regression results (c, d) suggest that in fact there are (at least) two eQTLs in this gene, as 
SNP1 and SNP2 show a significant effect that excludes zero in most tissues. Furthermore, for 
both SNP1 and SNP2 the multiple regression effect estimates are consistent in sign across all 
tissues.  
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Supplementary Figure 5 | Pairwise sharing by sign. For each pair of tissues, we considered 
the top eQTLs that were significant (lfsr < 0.05) in at least one of the tissues, and calculated the 
proportion that have effect sizes with the same sign. These proportions are shown in this 
heatmap. n = 5,605–9,811 gene-SNP pairs, depending on pair of tissues compared. 
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Supplementary Figure 6 | Sample sizes and effective sample sizes from mash analysis 
across tissues. Sample size (a) and median “effective sample size” (ESS) for each tissue (b). 
Tissues are ordered by their (original) sample size (Supplementary Table 3). Effective sample 
sizes are consistently higher than actual sample sizes, primarily due to sharing of information 
among tissues. 
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Supplementary Figure 7 | Number of tissue-specific eQTLs in each tissue. Here, “tissue-
specific” is defined to mean that the effect is at least 2-fold larger in one tissue than in any other 
(i.e., 𝑏345 > 0.5 in only one tissue). 
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Supplementary Figure 8 | Expression levels in genes with tissue-specific eQTLs are 
similar to those in other genes. The plots compare the densities (a) and cumulative 
distribution functions (b) of the average expression level for genes identified as having a “tissue-
specific” eQTL (red), and remaining genes (black), separately in four tissues—testis, thyroid, 
whole blood and transformed fibroblasts. In each case, the distribution functions are reasonably 
similar, showing that tissue-specific eQTLs mostly do not reflect tissue-specific expression. 
Expression is defined as the median of log-Reads per Kilobase Mapped (log-RPKM) across 
individuals. Densities for genes having tissue-specific eQTLs (red) are estimated using average 
expression levels from n = 201–301 genes, depending on the tissue, and densities for 
remaining genes (black) are based on at least n = 15,768 average gene expression levels. 
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Supplementary Figure 9 | Comparison of pairwise sharing by magnitude for top eQTLs, 
without and with LD pruning. Each point corresponds to a pair of tissues. The horizontal axis 
gives results from the original mash analysis reported in the main paper; the vertical axis shows 
results from an “LD-pruned'” analysis, where training data and top eQTLs were first pruned 
(using PLINK12) to avoid any pair of SNPs being in LD (r2 > 0.2) before mash was applied. The 
strong similarity of the results illustrates the robustness of mash to LD pruning. 
  

 
Proportion of sharing by magnitude, before LD pruning

P
ro

po
rti

on
 o

f s
ha

rin
g 

by
 m

ag
ni

tu
de

, a
fte

r L
D

 p
ru

ni
ng

0.4

0.4

0.5

0.6

0.7

0.8

0.9

1

0.60.5 0.7 0.9 10.8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/096552doi: bioRxiv preprint 

https://doi.org/10.1101/096552
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplementary Tables 
 

method Simulation 
framework 

RRMSEAll RRMSENon-null RRMSENull 

mash shared, structured  0.06 0.44 0.015 
mash-bmalite shared, structured 0.11 0.78 0.018 

ash shared, structured 0.21 1.34 0.076 
mash shared, unstructured  0.14 1.00 0.014 

mash-bmalite shared, unstructured 0.15 1.03 0.014 
ash shared, unstructured 0.21 1.37 0.078 
mash independent  0.28 1.82 0.112 

mash-bmalite Independent 0.28 1.82 0.118 
ash Independent 0.21 1.37 0.076 

 
Supplementary Table 1 | Accuracy of effect size estimates for each method. Table shows 
relative root mean squared error (RRMSE) for all effects (RRMSEAll), for the subsets of effects 
that are truly non-null (𝛽 ≠ 0; RRMSENon-null) and truly null (𝛽 ≠ 0, RRMSENull). RRMSE values 
less than 1 indicate improvements in accuracy over the original estimates. Values of RRMSENull 
< 1 indicate that shrinkage toward zero helped improve estimates of null effects. Values of 
RRMSENon-null < 1 indicate that pooling information across conditions can improve accuracy of 
estimates of non-null effects. Note that, in the “independent” simulations, most effects are null, 
so shrinkage of all methods improved overall performance compared to no shrinkage (RRMSEAll 
< 1) at the expense of lowering accuracy in the non-null effects (RRMSENon-null > 1). RRMSENon-

null, RRMSENull and RRMSEAll values were calculated from n = 400, 19,600 and 20,000 and 
observed effects, respectively, in 44 simulated tissues. 
 
 

 —simulation framework— 

associations 
shared, 

structured 
shared, 

unstructured independent 
mash, not ash, not mash-bmalite 3,889 622 32 
ash, not mash, not mash-bmalite 0 0 740 
mash-bmalite, not mash, not ash 37 9 79 

mash, ash, not mash-bmalite 7 0 44 
mash, mash-bmalite, not ash 5,777 336 70 
ash, mash-bmalite, not mash 0 0 10 

all 3,477 2 5,962 
 
Supplementary Table 2 | Overlap in associations identified from simulated data sets.  
Table summarizes the overlap in significant associations (lfsr < 0.05) identified among all 
methods that were compared. In both “shared effects” scenarios, mash captured the vast 
majority of the associations identified by the other methods. All association counts in the table 
are a subset of n = 20,000 × 44 = 880,000 simulated gene-SNP effects (most of which are 
zero).  
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Tissue sample size 
adipose visceral omentum 227 
adrenal gland 145 
artery aorta 224 
artery coronary 133 
artery tibial 332 
brain anterior cingulate cortex BA24 84 
brain caudate basal ganglia 117 
brain cerebellar hemisphere 105 
brain cerebellum 125 
brain cortex 114 
brain frontal cortex BA9 108 
brain hippocampus 94 
brain hypothalamus 96 
brain nucleus accumbens basal ganglia 113 
brain putamen basal ganglia 97 
breast mammary tissue 214 
cells EBV-transformed lymphocytes 118 
cells transformed fibroblasts 284 
colon sigmoid 149 
colon transverse 196 
esophagus gastroesophageal junction 153 
esophagus mucosa 286 
esophagus muscularis 247 
heart atrial appendage 194 
heart left ventricle 218 
liver 119 
lung 320 
muscle skeletal 430 
nerve tibial 304 
ovary 97 
pancreas 171 
pituitary 103 
prostate 106 
skin not sun exposed suprapubic 250 
skin sun exposed lower leg 357 
small intestine terminal ileum 88 
Spleen 104 
Stomach 193 
Testis 172 
thyroid 323 
uterus 83 
vagina 96 
whole blood 393 

 
Supplementary Table 3 | Tissue sample sizes. Right-hand column gives the sample size (n) 
for each tissue in the GTEx data set. 
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associations count 

mash, not ash, not mash-bmalite 63,956 
ash, not mash, not mash-bmalite 2,383 
mash-bmalite, not mash, not ash 11,789 

mash, ash, not mash-bmalite 665 
mash, mash-bmalite, not ash 176,572 
ash, mash-bmalite, not mash 248 

all 88,459 
 
Supplementary Table 4 | Overlap in associations identified from GTEx data. Table 
summarizes the overlap in significant associations (lfsr < 0.05) identified among all methods 
compared. The mash method captures the vast majority of the associations identified by the 
other methods—only 248 associations identified by ash or mash-bmalite are not identified by 
mash—in addition to many other associations that are not identified by either ash or mash-
bmalite (63,956). All association counts in the table are a subset of the n = 16,069 × 44 = 
707,036 gene-SNP effects considered. 
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