
 1 

A more accurate account of the effect 
of k-space sampling and signal decay 
on the effective spatial resolution in 
functional MRI 
Denis Chaimow1 and Amir Shmuel1,2 
 
1Centre for Magnetic Resonance Research 
University of Minnesota, Minneapolis, USA  
 
2McConnel Brain Imaging Centre, Montreal Neurological Institute 
Departments of Neurology, Neurosurgery, Physiology and Biomedical Engi-
neering 
McGill University, Montreal, QC, Canada 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Key words 
High-resolution functional MRI, Spatial resolution, Point-spread function, 
Blood oxygenation level dependent, BOLD, Gradient-Echo functional MRI, 
Spin-Echo functional MRI, GRASE, VASO, Cortical columns, Cortical layers 

Acknowledgements 
We thank Avery Berman for his comments on an earlier version of the manu-
script, and Nicky Tam for English editing. This work was supported by grants 
from the Natural Sciences and Engineering Research Council of Canada (AS, 
NSERC Discovery grants RGPIN 375457-09 and RGPIN-2015-05103).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 17, 2017. ; https://doi.org/10.1101/097154doi: bioRxiv preprint 

https://doi.org/10.1101/097154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 

Abstract 

The effects of k-space sampling and signal decay on the effective spatial resolu-
tion of MRI and functional MRI (fMRI) are commonly assessed by means of 
the magnitude point-spread function (PSF), defined as the absolute values 
(magnitudes) of the complex MR imaging PSF. It is commonly assumed that 
this magnitude PSF signifies blurring, which can be quantified by its full-width 
at half-maximum (FWHM). Here we show that the magnitude PSF fails to ac-
curately represent the true effects of k-space sampling and signal decay.  

Firstly, a substantial part of the width of the magnitude PSF is due to MRI 
sampling per se. This part is independent of any signal decay and its effect de-
pends on the spatial frequency composition of the imaged object. Therefore, it 
cannot always be expected to introduce blurring. Secondly, MRI reconstruction 
is typically followed by taking the absolute values (magnitude image) of the 
reconstructed complex image. This introduces a non-linear stage into the pro-
cess of image formation. The complex imaging PSF does not fully describe this 
process, since it does not reflect the stage of taking the magnitude image. Its 
corresponding magnitude PSF fails to correctly describe this process, since con-
volving the original pattern with the magnitude PSF is different from the true 
process of taking the absolute following a convolution with the complex imag-
ing PSF. Lastly, signal decay can have not only a blurring, but also a high-pass 
filtering effect. This cannot be reflected by the strictly positive width of the 
magnitude PSF.  

As an alternative, we propose to first approximate the MRI process linearly. 
We then model the linear approximation by decomposing it into a signal de-
cay-independent MR sampling part and an approximation of the signal decay 
effect. We approximate the latter as a convolution with a Gaussian PSF or, if 
the effect is that of high-pass filtering, as reversing the effect of a convolution 
with a Gaussian PSF. We show that for typical high-resolution fMRI at 7 Tesla, 
signal decay in Spin-Echo has a moderate blurring effect (FWHM = 0.89 
voxels, corresponds to 0.44 mm for 0.5 mm wide voxels). In contrast, Gradi-
ent-Echo acts as a moderate high-pass filter that can be interpreted as revers-
ing a Gaussian blurring with FWHM = 0.59 voxels (0.30 mm for 0.5 mm wide 
voxels). Our improved approximations and findings hold not only for Gradi-
ent-Echo and Spin-Echo fMRI but also for GRASE and VASO fMRI. Our find-
ings support the correct planning, interpretation, and modeling of high-
resolution fMRI. 

Introduction 

The spatial specificity of functional MRI (fMRI) based on the Blood Oxygena-
tion Level Dependent (BOLD) signal depends on the spatial properties of the 
hemodynamic response. Specifically, it depends on the relative contributions 
of the micro-vascular and macro-vascular components of the hemodynamic re-
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sponse to the fMRI signal. In addition to the effects of the hemodynamic re-
sponse on the spatial specificity of fMRI, the MRI acquisition process influences 
the effective resolution of the acquired images. Specifically, the sampling of k-
space by means of temporal gradient encoding defines the spatial resolution. 
However, the effective spatial resolution can be compromised in the presence 
of  and/or  decay, which potentially contribute to the overall measured 
spread of the BOLD fMRI signal. 

The BOLD point-spread function (PSF) is a measure used to approximate 
the spatial spread of the BOLD response to a localized increase in neuronal ac-
tivity. A convolution of the pattern of neuronal activity with a single BOLD PSF 
kernel is not a precise model of the spatial specificity of the BOLD response, 
because of the variability in the vascular components as a function of space 
(Polimeni et al., 2010). However, it provides a useful measure, based on the 
average BOLD PSF across space, for comparing the spatial specificity between 
different fMRI contrasts and techniques. 

The full-width at half-maximum (FWHM) of the gradient echo (GE) BOLD 
PSF at 1.5 T was found to be 3.5 mm (Engel	
  et	
  al.,	
  1997). Similar values of 3.9 
mm for GE BOLD and 3.4 mm for Spin-Echo (SE) BOLD have been reported at 
3 T (Parkes	
  et	
  al.,	
  2005). We previously estimated the FWHM of the GE BOLD 
PSF to be below 2 mm at 7 T (Shmuel	
   et	
   al.,	
   2007). Narrower BOLD PSFs at 
higher field strength are thought to result from reduced intravascular contribu-
tions from larger blood vessels and increases in extravascular signal changes 
around capillaries and smaller vessels (Yacoub	
  et	
  al.,	
  2001). Additional relative 
weighting towards the microvasculature, and thus further increases in spatial 
specificity, can be achieved by using SE BOLD imaging, which suppresses ex-
travascular signal contributions from larger blood vessels (Uludağ	
  et	
  al.,	
  2009;	
  
Yacoub	
  et	
  al.,	
  2003). 

The use of high field strengths and developments in pulse sequences that 
lead to decreases in the BOLD fMRI PSF allow investigation into the function 
of ever finer structures such as cortical columns (Cheng	
  et	
  al.,	
  2001;	
  Goodyear	
  
and	
   Menon,	
   2001;	
   Menon	
   et	
   al.,	
   1997;	
   Nasr	
   et	
   al.,	
   2016;	
   Shmuel	
   et	
   al.,	
   2010;	
  
Yacoub	
  et	
  al.,	
  2008;	
  2007;	
  Zimmermann	
  et	
  al.,	
  2011;	
  ). Consequently, in order to 
optimize such experiments and to understand their inherent limitations, it be-
comes important to assess the contribution of the MRI sampling process and of 

/  decay to the overall BOLD fMRI PSF. 
The MR imaging process can be described by means of a complex valued 

MR imaging PSF (Haacke	
  et	
  al.,	
  1999). The magnitude PSF (formed by the ab-
solute values (magnitudes) of the complex MR imaging PSF) and the corre-
sponding FWHM of the magnitude PSF, have been used to assess the effective 
spatial resolution and to quantify the blurring that the MR sampling process 
introduces (Constable	
   and	
   Gore,	
   1992;	
   Farzaneh	
   et	
   al.,	
   1990;	
   Haacke,	
   1987;	
  
Kemper	
  et	
  al.,	
  2015;	
  Oshio	
  and	
  Singh,	
  1989;	
  Qin,	
  2012). 

Here, we simulate /  decay and MR imaging of realistic columnar pat-
terns to show that the FWHM of the magnitude PSF is neither a meaningful 
nor an accurate measure for quantifying the effect of MR sampling on the ef-
fective spatial resolution, especially in the context of functional MRI. As an al-
ternative, we propose to decompose the modeling of the imaging process into 
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two components: one component accounts for MR sampling, independent of 
the signal decay; a second component, formulated as a convolution with a 
Gaussian kernel, approximates the blurring effect due to the /  decay.  

Methods 

Discrete representations of simulated spaces 
All simulations were implemented in MATLAB (The MathWorks Inc., Natick, 
MA, USA). Spatial dimensions were considered relative to an arbitrary voxel 
width. A field-of-view (FOV) of 32 voxels was simulated, represented by 256 
equally spaced points (resolution 8 times finer than the voxel width). The spa-
tial frequency space (k-space) was simulated on a corresponding grid of 256 
equally spaced points representing a spatial frequency range between -128  
and +127 cycles per 32 voxels. Spatial frequencies sampled by MRI (see be-
low) are represented by the central part of this simulated k-space, covering the 
spatial frequency range between -16 and +15 cycles per 32 voxels. 

Modeling of signal decay 
GE signal decay  and SE signal decay were modeled according to 
(Haacke	
  et	
  al.,	
  1999):  

  
 

, 

 
where  represents the echo time. Relaxation time constants for gray matter 
at 7T were used (see	
  Uludağ	
  et	
  al.,	
  2009	
  for	
  a	
  review	
  of	
  relaxation	
  times).  was 
set to 50 ms. of gray matter at 7T was 27.8 ms. In order to account for addi-
tional macroscopic inhomogeneities, a volumetric  value of 17 ms was used 
(Kemper	
  et	
  al.,	
  2015). 

Calculation of Modulation Transfer Functions 
If not stated otherwise, a total read-out time of 27.8 ms (equal to )  for the 
full k-space acquisition using 32 lines (phase-encode steps) was assumed. For 
partial Fourier acquisition, the total read-out time was shortened, so that it 
was  proportional to the reduction in k-space coverage, resulting in a total 
read-out time of 20.85 ms for the acquisition of 24 lines (3/4 partial Fourier). 

For GE, the echo time  was set to the true  of 27.8 ms. The SE echo 
time was set to 55 ms (Yacoub et al., 2003). The modulation transfer functions 
(MTFs) of MR imaging are sums of Dirac delta functions (rect-function-
windowed Dirac comb function), where each Dirac delta function is modulated 
by a signal decay factor (Appendix A). Discrete representations of MTFs were 
computed by first calculating the sampling time of each k-space line relative to 
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excitation and then setting the line’s MTF value to the signal decay value for 
this time, or to zero if it fell outside the range of sampled lines. 

Calculation of point-spread functions 
PSFs were calculated by taking an inverse discrete Fourier transform of the 
discrete representation of the corresponding MTF. 

Simulation of responses of cortical columns 
MR imaging simulations were applied to simulated realistic ocular dominance 
column (ODC) patterns and to simulated general isotropic columnar patterns.  

ODC response patterns were simulated by anisotropic filtering of Gaussian 
white noise (Rojer	
   and	
   Schwartz,	
   1990). Detailed modeling equations can be 
found in (Chaimow	
   et	
   al.,	
   2011). We modified the mathematical form of the 
band-pass filtering kernel relative to our previously published model, express-
ing it as a product of radial and angular components. The non-normalized fil-
ter as a function of absolute spatial frequency  and orientation  is given as 

. 

Unless stated otherwise, the main spatial frequency parameter  was set to 
0.5 cycles/mm, corresponding to an average column width of 1 mm (Yacoub	
  et	
  
al.,	
   2007). Parameters  and  controlled the degree of irregularities orthogo-
nal and parallel to the main axis of elongation of the ODC bands, respectively. 
We specified those parameters by defining  relative irregularity parameters as 

  and  , that determined the level of irregularities independent 
of the chosen main spatial frequency. Unless stated otherwise, relative irregu-
larity parameters  and  were set to 0.5 and 1 respectively. The orienta-
tion parameter  was set to , so that the main axis of elongation of the 
ODC bands was orthogonal to the phase-encode direction. 

For 1D modeling (along the phase-encode direction), the 2D model was re-
duced by only considering the radial component of the filter (first factor), set-
ting the angular component (second factor) to 1. This 1D model can be re-
garded as a general one dimensional columnar model, valid not only for aniso-
tropic organizations such as ODC, but also for isotropic columnar patterns.  

The sharpness parameter  was set to 1.4, resulting in a mid-level of 
sharpness. The default maximum response amplitude was set to 5%. Single 
condition columnar response patterns were added to a background signal in-
tensity of 1. For the definition of the sharpness parameter and the response 
amplitude, see (Chaimow	
  et	
  al.,	
  2011). 

Simulation of MR imaging 
MR imaging was modeled by multiplying the k-space representation of a pat-
tern with the MTF and applying an inverse discrete Fourier transformation. 
This was followed by taking the magnitude of the resulting complex values. 
The size of the MTF was identical to that of the pattern k-space representation. 
However, the MTF was zero for k-space components not sampled by MRI im-
aging. Therefore the result of the discrete Fourier transform was a high-
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resolution representation of the voxel-size dependent MR sampled signal. It is 
equivalent to an interpolation using zero-filling in k-space. This high-resolution 
representation was then down-sampled to correspond to the actual voxel size, 
resulting in single voxel signals in accordance with the MR imaging equation 
(Appendix A). 

Different MTFs introduce differences in the overall amplitude scaling of re-
sulting images. To allow the comparison of the image patterns obtained by 
considering different MTFs, we normalized the magnitude images in the last 
stage of the simulation. To this end, we divided each of the magnitude images 
by a constant equal to the result of simulating the entire MRI sampling process 
with the specific MTF applied to a constant pattern of value 1. Note that 1 is 
also the value of the homogeneous background onto which we superimposed 
the simulated ODC pattern with the maximal amplitude of 5%. 

Simulation of Partial Fourier 
Partial Fourier imaging and reconstruction was simulated by setting the first or 
last ¼ of the MTF components within the full acquisition sampling range to 
either zero (zero-filling reconstruction) or to their conjugate symmetric coun-
terparts (conjugate symmetry reconstruction). The most negative k-value of 
the full acquisition sampling range has no positive k-space counterpart due to 
the slight asymmetric sampling of an even number of k-space lines. Therefore, 
in early omission partial Fourier and conjugate symmetry reconstruction, the 
most negative k-value was set to zero. 

Implementation of approximating MRI models 
Convolutions between simulated patterns and various kernel functions were 
implemented as multiplication of their respective discrete Fourier transforms 
or MTF representations, followed by inverse discrete Fourier transform back 
into image space. For Gaussian blurring, Gaussian kernels were computed as  

 where .  
Convolutions followed by MR sampling were modeled by first setting the 

MTF outside the range of the sampled lines to zero. Then, this modified MTF 
was multiplied with the k-space representation of the pattern, and an inverse 
discrete Fourier transformation was applied. Lastly, the magnitudes of the re-
sulting complex values were computed. This high-resolution representation 
was then down-sampled according to the voxel size, resulting in single voxel 
signals according to the MR imaging equation (Appendix A). 

Contrast range 
The contrast range of each of 1000 simulated individual response patterns, su-
perimposed on a background signal intensity level of 1, was computed as the 
standard deviation (SD) of all responses while taking into account the theoret-
ical mean ( , where  is the maximum response level) used for simulat-
ing the original pattern. All individual contrast range estimates were averaged 
resulting in the average contrast range. 
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Frequency spectra 
Spatial frequency spectra were computed by taking the absolute value of the 
discrete Fourier transform separately for each of 1,000 individual response 
patterns. Average spatial frequency spectra were computed by averaging all 
individual spectra. 

Evaluation of a linear approximation of the MR imaging process 
We approximated the MR imaging process linearly as a convolution with the 
real component of the complex imaging PSF (see Appendix B). This linear ap-
proximation of the MR imaging process was evaluated by simulating 1000 dif-
ferent cortical columnar response patterns for each combination of a main spa-
tial frequency (8 values from 1 cycle per Field of View (FOV) to 1 cycle per 2 
voxels), a relative irregularity parameter (10 values from 0.1 to 1), and a 
range of maximum response amplitudes (1% - 10% in steps of 1% and 10% - 
100% in steps of 10%). The complete MR imaging of each of these patterns 
was simulated. In addition, for each of these patterns we computed the linear 
approximation of the MR imaging process. The results of the linear approxima-
tions of the MR imaging process were compared to the complete MR imaging 
simulations by computing the root-mean-squared-errors (RMSE) relative to the 
standard deviation of the simulated patterns of the complete MR imaging pro-
cess. 

In addition, for a response amplitude of 5%, the same patterns were also 
convolved with the magnitude PSF. The results of convolving with the magni-
tude PSF were compared to the complete MR imaging simulations by compu-
ting the root-mean-squared-errors (RMSE) relative to the standard deviation of 
the simulated patterns of the complete MR imaging process. 

Definition and fitting of a Gaussian point-spread function model for signal 
decay 
The MTF corresponding to the real component of the complex imaging PSF 

was calculated by transforming the real component of the complex 
imaging PSF back into the spatial frequency domain. The inverse MTF of this 
real component ) was calculated as  for all 
k-space lines within the sampling range (and zero outside the sampling range). 

Gaussian functions of the form were fitted to  and 
) within the range of –(k-1) to (k-1). The amplitude  was con-

strained to be equal to the center component  or . This re-
sulted in Gaussian PSFs of the form whose FWHM = 

. To fit the Gaussian functions, we used the MATLAB function ‘fit’ 
from the Curve Fitting Toolbox (The MathWorks Inc., Natick, MA, USA). The 
Gaussian fit (either to the real component of the complex imaging PSF or to its 
inverse) with the higher R2 was considered for further characterizing the ef-
fects of signal decay. 
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Evaluation of the Gaussian point-spread function model of signal decay 
The Gaussian PSF model of signal decay was evaluated by simulating 1000 dif-
ferent cortical columnar response patterns with a main spatial frequency of 1 
cycle per 4 voxels and a relative irregularity of 0.5. The complete MR imaging 
of these patterns was simulated for different total read-out durations and par-
tial Fourier acquisition schemes (including full k-space acquisition).  

In addition, for each of these patterns and acquisition parameters (different 
total read-out durations and partial Fourier acquisition schemes), we comput-
ed the convolution of the pattern with a Gaussian PSF model for the signal de-
cay (see definition and fitting described in the previous section). This was fol-
lowed by MR sampling with no decay. The results of these approximations of 
the MR imaging process were compared to the complete MR imaging simula-
tions by computing the root-mean-squared-errors (RMSE) relative to the 
standard deviation of the simulated patterns of the complete MR imaging pro-
cess. 

Estimation of a pattern specific Gaussian point-spread function model of 
signal decay 
One thousand different cortical columnar response patterns with a main spa-
tial frequency of 1 cycle per 4 voxels and a relative irregularity of 0.5 were 
simulated. MR imaging of these patterns was simulated for different total-read 
out durations and partial Fourier acquisition schemes (including full k-space 
acquisition). For each pattern, we computed convolutions with PSFs corre-
sponding to Gaussian MTFs and inverse of Gaussian MTFs, while considering 
the FWHM as a free parameter. This was followed by MR sampling with no de-
cay. Using MATLAB’s fminsearch (The MathWorks Inc., Natick, MA, USA), the 
FWHM (and the choice of Gaussian MTF or inverse of Gaussian MTF) was op-
timized such that the mean-squared-error between the approximation and the 
full MR imaging simulation was minimized. 

Results 

The MR imaging point-spread function 
We first summarize how the MRI acquisition process of a pattern can be de-
scribed using PSFs. Appendix A provides detailed equations. The theory fol-
lows Haacke et al. (1999). 

MRI with no signal decay 
Echo-planar imaging (EPI) samples the two-dimensional k-space representa-
tion of the pattern by sequentially sampling individual lines along the first di-
mension (read-out direction), each separated by a step in the phase-encode 
direction. This results in a grid of sampled k-space points from which the orig-
inal image is reconstructed using an inverse discrete Fourier transform. Since 
the dimensions in the Fourier transform are separable, we can focus on one 
dimension: the phase-encode dimension. 
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Assuming no signal decay takes place, we can formulate the MRI sampling 
process as an inverse Fourier transform of the product between the k-space 
representation of the pattern and a rect-function-windowed Dirac comb func-
tion (Figure 1, no decay, MTF). This function describes the effect of a linear 
system as multiplication in spatial frequency space and is commonly termed a 
modulation transfer function (MTF). Typically an even number of points, 

 is sampled, resulting in a slightly asymmetric coverage of k-space over 
the region , where  is the step size in the k-space. 

 
Fig. 1 MR complex imaging PSF and its absolute values. This figure demonstrates how MR imaging can 
be described using a PSF. The three columns illustrate the scenarios of no signal decay, signal decay in 
GE imaging, and signal decay in SE imaging, respectively. The first row shows the modulation transfer 
function (MTF) of the imaging process. In the case of no decay, the MTF is a Dirac comb function that 
corresponds to sampled k-space data points that are sampled in time from the lowest to the highest k-
value. In GE imaging, this comb function is modulated by the  signal decay (red line). In SE a refocus-
ing pulse results in a decay curve with a peak at the echo time. The second row shows the corresponding 
complex PSFs defined as the Fourier transform of the MTF. These functions show the complex signal one 
would obtain along the phase encoding direction from an infinitesimally small point-like structure. One 
can model the complex signal obtained by MRI along the phase-encoding direction as a convolution of 
the original pattern with the complex PSF. In contrast, in the general case one cannot model the magni-
tude of the signal obtained along the phase-encoding direction as the result of a convolution process. The 
third row shows the absolute (magnitude) values of the complex imaging PSF. Its FWHM (black arrows) 
has been previously used as a common measure to describe the spatial specificity of the MR imaging pro-
cess. For relaxation time constants measured at 7 Tesla and a total readout duration of 27.8 ms, the 
FWHM of the magnitude PSF is 1.20 voxels for no decay, 1.34 voxels for GE, and 1.32 voxels for SE. 

Multiplying the k-space data with an MTF is equivalent to convolving the 
image space data with the MTF’s Fourier transform, which is the imaging 
point-spread function (PSF) (Figure 1, no decay, complex PSF). On its own, 
the PSF describes the image one would obtain from an infinitesimally small 
point-like structure.  
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The non-zero imaginary component of the no-decay PSF is a result of the 
above mentioned asymmetry in the MTF. MTF asymmetries are also caused by 
signal decay as described below. MTF asymmetries and other phase-
influencing artifacts result in reconstructed images that are generally complex 
valued with non-zero phase. Commonly, the absolute values (magnitudes) of 
the complex image are considered for further analysis. Likewise, the spatial 
resolution of MRI and fMRI is often characterized by measuring the full-width 
at half-maximum of the magnitude PSF, obtained by taking the absolute values 
(magnitudes) of the complex PSF (Figure 1, no decay, magnitude PSF). Here, 
without any signal decay effects the FWHM is 1.20 voxels. 

However, neither the complex PSF nor the magnitude PSF can describe the 
spatial resolution of the MRI process correctly under all circumstances. The 
magnitude PSF in itself is not the PSF of the imaging process, because convolu-
tion with the absolute values of the complex PSF is not equivalent to taking the 
absolute values after convolution with the complex PSF (which is the common 
practice in MRI reconstruction). In contrast, the complex PSF does describe the 
imaging process (excluding the operation of taking the absolute values of the 
complex image). However, given its complex nature, how to use the complex 
PSF for quantifying the effective spatial resolution of the absolute values image 
is not obvious. 

Signal decay in Gradient-Echo and Spin-Echo functional MRI 
So far, we have not considered the change in signal strength with time follow-
ing excitation. In GE imaging, the signal decays with a time constant of  
(Figure 1, GE, MTF), which subsumes tissue dependent spin-spin relaxation 
(time constant ) and additional dephasing due to magnetic field inhomoge-
neities (time constant ). In SE imaging, the signal similarly decays with time 
constant . At half the echo time, however, a refocusing pulse causes reversal 
of the accumulated  decay, while  decay continues. After the echo time is 
reached, the signal returns to a decay with time constant  (Figure 1, SE, 
MTF).  

During the decay, the k-space is sampled for the total acquisition time from 
the smallest (most negative) k-space value to the highest k-space value, such 
that the center of k-space (k=0) is sampled at the echo time. Note that this 
common sampling order, also called linear ordering, is not the only one possi-
ble. For example, in centric ordering, the sampling trajectory starts at the cen-
ter of k-space and alternates between increasingly positive and decreasingly 
negative k-space coordinates. Here, we only consider linear ordering. For each 
k-space step in the phase-encode direction, an entire line along the read-out 
direction is acquired while the signal decays only minimally. Consequently, the 
effect of signal decay on the read-out direction can be neglected. However, in 
the phase-encode direction, the signal decay modulates the sampled data, 
causing different weighting of different spatial frequency components. The 
MTFs of GE and SE along the phase-encoding direction reflect this weighting 
(Figure 1, GE and SE, MTF). Therefore, the complex PSFs of GE and SE MRI 
differ from the complex PSF of the imaging process with no signal decay (Fig-
ure 1, GE and SE, complex PSF). The time constants used in our simulations 
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reflect imaging at 7 Tesla; unless specifically mentioned otherwise, we consid-
ered a total readout duration of 27.8  ms (equal to  of gray matter). The 
FWHM of the magnitude PSFs were 1.34 voxels for GE and 1.32 voxels for SE, 
both larger than the FWHM of the magnitude PSF with no decay (1.20 voxels). 

The Effect of the MRI process on the effective spatial resolution for imaging 
cortical columns 
In the previous section we have discussed why the magnitude PSF does not 
correctly describe the MR imaging process. Does it follow then, that the FWHM 
of the magnitude PSF fails to accurately describe the effective spatial resolu-
tion of fMRI? 

To address this question specifically in the context of imaging cortical col-
umns, we simulated fMRI sampling of BOLD responses of patterns of ocular 
dominance columns (Chaimow	
  et	
  al.,	
  2011;	
  Rojer	
  and	
  Schwartz,	
  1990).  

Figure 2 (simulated pattern, 2D pattern) shows a 2D modeled pattern and 
an excerpt from a 1D pattern (simulated pattern, 1D pattern excerpt). The 1D 
pattern follows the horizontal direction of the 2D pattern, here considered as 
the phase-encode direction. 

These 2D and 1D modeled patterns represent a BOLD pattern, consisting of 
a spatially constant baseline signal of 1 and a superimposed ODC pattern-
dependent BOLD response. The BOLD response can vary between 0% and 5% 
relative to the baseline value. We did not model the spatial spread of the BOLD 
response (meaning we assumed no spread) in order to not distract from the 
effects of the imaging process. 

The main spatial frequency of the simulated ODC BOLD pattern was 0.5 
cycles/mm (Yacoub	
  et	
   al.,	
   2007), reflected as the maximum in the spatial fre-
quency spectrum (Figure 2, simulated pattern, average spatial frequency spec-
trum, vertical blue lines). The irregularity of the pattern is reflected in a distri-
bution of additional spatial frequency contributions around the two maxima. 

In order to quantify the functional contrast of true or imaged responses, we 
defined the contrast range as the standard deviation around the average re-
sponse (the average response is defined as one half of the maximum response 
relative to the background intensity, namely 1.025). The contrast range aver-
aged over 1,000 simulated one-dimensional patterns, was 1.30% (relative to 
the baseline of 1). 

MRI with no signal decay 
First we analyzed the effect of MR imaging with no signal decay. We simulated 
MRI sampling of the simulated original pattern (Figure 2, Simulated pattern) 
using a voxel width of 0.5 mm. Figure 2 (No decay, 2D pattern) shows the cor-
responding imaged two-dimensional pattern. Figure 2 (No decay, 1D pattern 
excerpt) shows the values of the imaged and interpolated one-dimensional 
pattern (red). The MR imaged pattern is shown as a high-resolution represen-
tation, which is equivalent to an interpolation using zero-filling in k-space. 
This was done in order to facilitate visual comparison to the original pattern 
(the alternative presentation format would consist of a discrete function due to 
voxelization). The imaged pattern was very similar to the original pattern 
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(blue). The average contrast range computed over 1,000 imaged patterns de-
creased only slightly from 1.30% (average SD of 1,000 original patterns) to 
1.29% (average SD of 1,000 no-decay MRI patterns).  

In addition, we compared the average frequency spectrum of the imaged 
patterns to the average spectrum computed over the original patterns (Figure 
2, no decay, average spatial frequency spectrum). Within the sampled k-space 
range (spatial frequencies below 1 cycle/mm), the two spectra were identical. 
Outside of this range, the average spectrum of the imaged patterns was zero.  

Note, however, that the FWHM of the magnitude PSF corresponding to 
MRI with no signal decay was 1.20 voxels (= 0.6 mm in our specific simula-
tion). This result could be wrongly interpreted to imply that MR image for-
mation, ignoring decay, is comparable to blurring with a kernel (e.g. a Gaussi-
an) of the same width. 

Figure 2 (no decay, 1D pattern excerpt, orange curve) shows that in con-
trast to actual MRI sampling, such blurring would have resulted in a reduced 
amplitude (contrast range = 0.95%) and a shift in the spatial frequency spec-
trum to 0.4375 cycles/mm (Figure 2, no decay, average spatial frequency spec-
trum, orange lines). Using the magnitude PSF as a convolution kernel in itself 
(although, in fact, it is not a convolution kernel of the MRI process) resulted in 
an even larger reduction in contrast (0.45%, Figure 2, no decay, 1D pattern 
excerpt, green) and a shift of the spatial frequency distribution towards lower 
frequencies (maximum at 0.3750 cycles/mm, Figure 2, no decay, average spa-
tial frequency spectrum, green). 

MR imaging in the presence of signal decay: Gradient-Echo imaging 
Next, we analyzed the effect of signal decay. Figure 2 (GE, 2D pattern) shows 
the GE imaged two-dimensional pattern. There is no noticeable blur relative to 
the no-decay image. In fact, the interpolated one-dimensional imaged pattern 
(Figure 2, GE, 1D pattern excerpt, red) showed a higher amplitude compared 
to the original pattern (blue). The average contrast range increased from 
1.30 % (original) to 1.41% (GE).   

This increase in contrast did not result in a noticeable difference in the 
peak spatial frequency, which remained at 0.5 cycles/mm (Figure 2, GE, aver-
age spatial frequency spectrum; the resolution we employed in our simulated 
k-space was 0.0625 cycles/mm). However, relative to the average spectrum of 
the original patterns, the amplitude at the peak spatial frequency increased, 
while the amplitudes at spatial frequencies close to 0 cycles/mm remained 
constant. This shows that GE imaging had the effect of a moderate high-pass 
filter. Similar to our conclusion for the imaging with no signal decay, this re-
sult could not be expected by simply considering the positive FWHM of the 
magnitude PSF, which was 1.34 voxels (= 0.67 mm in our specific simulation). 

A convolution with a Gaussian of the same width resulted in contrast re-
duction (Figure 2, GE, 1D pattern excerpt, orange). The average contrast range 
dropped from 1.30% to 0.89%. Also, the peak in the spatial frequency spec-
trum shifted to a lower frequency of 0.375 cycles/mm. Convolution of the orig-
inal pattern with the magnitude PSF resulted in a larger reduction in contrast 
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(average contrast range 0.33% ) and a shift of the peak spatial frequency to-
wards lower frequencies (0.375 cycles/mm). 

 
Fig. 2 The effect of imaging PSF on MRI of a columnar pattern. We simulated and analyzed columnar 
ocular dominance patterns (first column) and their MR imaging with no signal decay (second column), 
GE imaging (third column) and SE imaging (fourth column). The first row shows the simulated original 
2D pattern and the resulting MR images using a voxel size of 0.5 mm. The second row shows an extract 
from a 1D simulated pattern (blue) and its no-decay, GE, and SE imaged counterparts (red). The 1D im-
aged patterns (which could be presented as non-continuous functions due to voxelization) were interpo-
lated using zero-filling in k-space in order to facilitate comparison. The no-decay imaged pattern was 
very similar to the original pattern. The GE and SE imaged patterns showed slight increases and decreas-
es, respectively, in contrast. In addition, we simulated convolutions (in orange) of the original pattern 
with Gaussian PSFs of the same widths as those computed from the magnitude PSFs (black arrows in Fig. 
1) and convolutions with the magnitude PSF itself (in green). They all show lower contrast than that in 
the corresponding MR simulations. The third row shows spatial frequency spectra averaged from 1,000 
simulated 1D patterns. The spatial frequency showing the maximal amplitude in each spectrum is 
marked with a vertical line with corresponding color. In cases where segments of the spectra obtained 
from the original pattern and the pattern obtained by MRI sampling were identical, we present alternat-
ing dashed red (for MRI sampling) and blue (for the original pattern) curves.  Similarly, we present al-
ternating dashed blue and red vertical lines in cases for which the frequencies showing the maximal am-
plitude were identical across the original pattern and MRI sampling. Imaging with no decay did not 
change the frequency spectrum within the sampled range (up to 1 cycle/mm). For GE, no change in the 
frequency showing the maximal amplitude was detected at the resolution we applied. SE imaging result-
ed in a slightly lower spatial frequency showing the maximal amplitude. In contrast, all spectra obtained 
by the Gaussian convolution (orange) and by the magnitude PSF convolution (green) showed lower spa-
tial frequencies associated with the maximal amplitudes. 

MR imaging in the presence of signal decay: Spin-Echo imaging 
Figure 2 (SE, 2D pattern) shows the SE imaged two-dimensional pattern. 

The SE image is slightly blurred relative to the image obtained with no signal 
decay. Similarly, the interpolated one-dimensional pattern excerpt (Figure 2, 
SE, 1D pattern excerpt, red) shows a lower amplitude compared to the original 
pattern (blue). The average contrast range decreased from 1.30% (original) to 
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1.01% (SE) and the peak spatial frequency shifted to a lower frequency of 
0.4375 cycles/mm (Figure 2, SE, average spatial frequency spectrum). 

The reduction in contrast and peak spatial frequency suggests that SE imag-
ing had a blurring effect on the original pattern, which could be consistent 
with the spatial extent of its magnitude PSF (FWHM of 0.66 mm). However, 
convolution with a Gaussian of the same width resulted in even larger contrast 
reductions (Figure 2, SE, 1D pattern excerpt, orange). The average contrast 
range decreased further to 0.90% and the peak in the spatial frequency spec-
trum shifted to 0.375 cycles/mm. True also for SE, convolution with the mag-
nitude PSF reduced the contrast (0.52%) more than the MRI simulation and 
the convolution with a Gaussian kernel (of the same width as the width of the 
magnitude PSF) did. The peak spatial frequency remained at 0.4375 relative to 
the SE MR simulation. 

An alternative approach to quantifying the effect of MR imaging on the ef-
fective spatial resolution 

Convolution with the real component of the complex imaging PSF linearly ap-
proximates the complete MRI process 
We have shown that neither the linear process of convolution with the com-
plex PSF (without taking the absolute) nor the linear process of convolution 
with the magnitude PSF can faithfully describe the entire non-linear MR imag-
ing and reconstruction process. To characterize the complete MRI process us-
ing a PSF, we propose an alternative, optimal, linear approximation.  

The best linear approximation of a function around a point  is the deriva-
tive of the function at . For a function of a single variable , the deriva-
tive  represents a tangent line which can be interpreted as a linear ap-
proximation to  by mapping small deviations  onto 

. 
In the case of the MR imaging and reconstruction process, the function un-

der consideration is not a function of a single variable but a functional, which 
maps a pattern onto a set of imaged voxel values. The derivative of this func-
tional is a linear transformation that itself depends on a baseline pattern (the 
point at which the derivative is evaluated) in the same manner that a tangent 
depends on the point ( ) at which it is defined. Similar to a tangent line, this 
linear transformation maps a pattern with small deviations from the baseline 
pattern onto a set of voxel values approximating the true imaged pattern.  

In Appendix B, we computed this derivative for a spatially constant base-
line pattern. This derivative is a linear transformation that approximates the 
complete MR process for other patterns, with small response deviations rela-
tive to this spatially constant baseline pattern. In appendix B we show that this 
linear approximation is identical to a convolution with the real component of 
the complex imaging PSF (presented in the middle row of Figure 1, in purple). 
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Fig. 3 Evaluation of the linear approximation of the complete MRI process. The upper row shows the 
dependence of the linear approximation for GE imaging (left) and SE imaging (right) as a function of 
maximum response amplitude. Cortical columnar response patterns for a wide range of spatial frequency 
parameters, irregularity parameters, and maximum response amplitudes were simulated (1,000 for each 
parameter combination; results from 100 patterns were used for visualization). MR imaging of these pat-
terns was simulated. In addition, a linear approximation of the MR imaging process consisting of a con-
volution of the pattern with the real component of the complex imaging PSF was computed. The results 
of the linear approximations were compared to the complete MR imaging simulations by means of the 
root-mean-squared-errors (RMSE) relative to the standard deviation of the images obtained by the com-
plete MRI process. The gray curves show the distribution of relative RMSEs from all simulated patterns; 
the red curve presents their 95 percentile. The blue curves show results from realistic columnar parame-
ters (intermediate irregularity and spatial frequency). All curves show increased errors with increasing 
response amplitude. For the default, realistic response amplitude level of 5% (indicated by a vertical 
black line), most relative errors were well below 1%. The middle row of panels presents a magnified 
view of the errors for such realistic response amplitudes. The bottom part of the figure compares the dis-
tribution of relative RMSEs obtained by the linear approximation with those obtained by a convolution 
with the magnitude PSF. The default, realistic response amplitude level of 5% was used for this compari-
son. The convolution with the magnitude PSF resulted in substantially higher errors. 

Next, we evaluated how well this convolution approximates the true MR 
imaging and reconstruction process. In particular, because the linear approxi-
mation is expected to be valid for small deviations around the spatially con-
stant baseline pattern, we quantified the dependence of the quality of the ap-
proximation on the response amplitude. To this end, we simulated a wide 
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range of columnar patterns with different response amplitudes. We then com-
pared the results obtained by simulating the full MRI process for each of these 
patterns to those obtained by a convolution of the pattern with the real com-
ponent of the complex imaging PSF (Fig. 3). Note that as expected, for large 
amplitude deviations from the spatially constant baseline pattern, the linear 
approximation can result in relatively large errors (e.g. 95th percentile of the 
RMSE were 6.13% and 0.68% for 100% response amplitude imaged with GE 
and SE fMRI, respectively; Figure 3, upper row). However, the root-mean-
squared error for realistic response amplitudes was small. For example, for the 
maximal response amplitude of 5% imaged with GE fMRI, the 95th percentile 
was 0.43% of the standard deviation of the pattern obtained by the full MRI 
simulation (Figure 3, middle row). For SE imaging, the relative RMSE was 
even lower; for the maximal response amplitude of 5% imaged with SE fMRI it 
was 0.05% f (Figure 3, middle row). In contrast, convolution of the same re-
sponse patterns (with response amplitude of 5%) with the magnitude PSF re-
sulted in median relative root-mean-squared errors of 78% (GE) and 48% (SE) 
(Figure 3, bottom row). 

Quantifying the effect of signal decay by fitting a two-component model consisting 
of convolution with a Gaussian PSF followed by MR sampling with no decay 
In itself, the real component of the complex imaging PSF, in particular its 
width, is not suited to characterize the effective spatial resolution of the MR 
imaging process. The reason is that it represents not only signal decay, but also 
the MR sampling process. As we have shown, the latter is pattern-dependent 
and irrelevant if the voxels are sufficiently small to sample the spatial frequen-
cy spectrum, such that the imaged pattern is similar to the original pattern. 
Furthermore, it is not possible to easily discriminate the blurring characteris-
tics of SE from the high-pass filtering characteristics of GE on the basis of the 
real component of the complex imaging PSFs. 

However, instead of considering the real components of the complex imag-
ing PSFs, we can consider their spatial frequency representations. Figure 4 (se-
cond row) shows the MTF of the real component of the complex imaging PSF 
for GE and SE (blue). The MTF of the real component is equal to the average 
of the positive and negative components of the original imaging MTF (present-
ed in Figure 4, first row), assigned in a mirror-symmetric manner around the 
center (k=0) of the k-space. 

The MTF of the real component of the complex imaging PSF can be regard-
ed as the product of two factors representing two different processes. The first 
factor is the rect-function-windowed Dirac comb function that describes the 
MRI sampling with no signal decay. The second factor is a modulation of the 
sampled signal due to signal decay. In order to model this second factor we 
can choose a function that fits the modulation within the sampled k-space 
range. The Fourier transform of this function will be a convolution kernel in 
the image space, which describes the effect of signal decay. It does not de-
scribe the effect of MRI sampling with no signal decay, which is qualitatively 
different and depends on the imaged pattern. 
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Fig. 4 Fitting of a two-component model consisting of convolution with a Gaussian PSF that accounts for 
signal decay followed by MR sampling with no decay. This figure shows the fitting of a Gaussian convolu-
tion and MRI sampling model for GE imaging (first column) and SE imaging (second column). Gaussian 
functions (second row, red) were fitted to the MTF of the real component of the SE image PSF (second 
row, right side column, in blue) and to the scaled inverse MTF of the real component of the GE image 
(second row, left side column, in orange). Outside the sampled k-space range, the continuation of the 
Gaussian fit is shown as a dashed red line. The Fourier transforms of these functions are Gaussian PSFs 
(bottom row, in green). For SE, this PSF describes the blurring due to the signal decay. For GE, it de-
scribes a hypothetical blurring that would be reversed by the high-pass filter properties of the  decay 
effect. Their respective FWHM (black arrows) are 0.59 voxels (GE) and 0.89 voxels (SE). 

We can then apply MRI sampling with no signal decay. The image we get from 
the convolution that accounts for the signal decay and the MRI sampling is ei-
ther identical to the complete MRI process (depending on the function fitted to 
the k-space representation in its sampled range) or approximates it. 

For SE imaging, we chose a Gaussian function and fitted it to the signal de-
cay-dependent modulation of the MTF of the real component of the complex 
imaging PSF (= the second factor; Figure 4 second row, SE, red; See discus-
sion for justification of modeling the second factor as a Gaussian function). An 
inverse Fourier transformation of this fitted Gaussian results in a Gaussian PSF 
in the image space, allowing for the interpretation of the signal decay effect as 
Gaussian blurring. The FWHM of this Gaussian PSF was 0.89 voxels (for a total 
read duration of 27.8 ms at 7T). 
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Fig. 5 Fitting of the two-component model for GE partial Fourier acquisition. This figure shows the fitting 
of a two-component model for partial Fourier acquisition using GE imaging. Omission of the first ¼ (col-
umns 1 and 2) and last ¼ (columns 3 and 4) of phase-encode steps were simulated. Furthermore, a re-
construction that exploits conjugate symmetry (columns 1 and 3) was compared to a zero-filling recon-
struction (columns 2 and 4). The first row shows the imaging MTF resulting from measurement compo-
nents (dark blue) and reconstruction components (light blue). Gaussian functions (second row, in red) 
were fitted to the MTF of the real component of the imaging PSF (early-omission partial Fourier, columns 
1 and 2, and late-omission partial Fourier using zero-filling reconstruction, column 4, in blue) and to the 
inverse MTF (here scaled for clarity of presentation) of the real component of the imaging PSF (late-
omission partial Fourier using conjugate symmetry reconstruction, column 3, in orange). Outside the 
sampled k-space range, the continuation of the Gaussian fit is presented as a dashed red line. The Fourier 
transforms of these functions are Gaussian PSFs (bottom row, in green). For early-omission partial Fouri-
er (columns 1 and 2) and late-omission partial Fourier using zero-filling reconstruction (column 4), these 
PSFs describe the blurring due to the signal decay. For late-omission partial Fourier using conjugate 
symmetry reconstruction (column 3), the PSF describes a hypothetical blurring that would be reversed by 
the high-pass filter properties of the  decay effect.  

For GE imaging, a Gaussian function is not a good fit, since the MTF of the 
real component of the complex imaging PSF shows increasing amplitudes with 
increasing spatial frequency (Figure 4, second row, GE, blue), consistent with 
its high-pass filtering properties we have shown above (Figure 2). However, 
instead of this MTF, we can consider its inverse (1 divided by the MTF; Figure 
4, second row, GE, orange). The inverse MTF describes the process that would 
be reversed by a convolution with the real component of the complex PSF. We 
fitted a Gaussian to the signal decay-dependent modulation of this inverse 
MTF (which resulted in a higher R2, than the Gaussian fit to the non-inverted 
MTF) and calculated its corresponding Gaussian PSF in the image space. This 
allows for interpreting GE imaging as reversing (deconvolving) a Gaussian blur. 
The FWHM of this Gaussian was 0.59 voxels (for a total read duration of 27.8 
ms at 7T). 
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Fig. 6 Fitting of the two-component model for SE partial Fourier acquisition. This figure shows the fitting 
of a two-component model for partial Fourier acquisition using SE imaging. Omission of the first ¼ (col-
umns 1 and 2) and last ¼ (columns 3 and 4) of phase encode steps were considered. Furthermore, a 
reconstruction that exploited conjugate symmetry (columns 1 and 3) was compared to a zero-filling re-
construction (columns 2 and 4). The first row shows the imaging MTF resulting from measurement com-
ponents (dark blue) and reconstruction components (light blue). Gaussian functions (second row, in red) 
were fitted to the MTF of the real component of the imaging PSF for all columns 1-4. Outside the sam-
pled k-space range, the continuation of the Gaussian fit is presented as a dashed red line. The Fourier 
transforms of these functions are Gaussian PSFs (bottom row, in green) that have a blurring effect. These 
PSFs describe the blurring due to the signal decay. 

Partial Fourier acquisition 
In addition to the standard EPI acquisition described so far, one can shorten 
the total read-out duration by only acquiring parts of the conjugate symmetric 
k-space. This is known as partial Fourier acquisition.  
In order to study how signal decay affects partial Fourier acquisition, we simu-
lated MTFs resulting from partial Fourier imaging in which either the first ¼ or 
last ¼ of the phase-encode steps were omitted (the total read out duration was 
shortened accordingly from 27.8 ms to 20.85 ms). We then applied the same 
modeling methodology described above for the full k-space acquisitions (Fig-
ures 5 and 6 for GE and SE, respectively). In addition, we compared a recon-
struction that exploited the conjugate symmetry (Figures 5 and 6, columns 1 
and 3) to a reconstruction with simple zero-filling (Figures 5 and 6, columns 2 
and 4). 
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Fig. 7 FWHMs of Gaussian PSFs that model the effect of signal-decay as a function of total read-out dura-
tion. This figure shows the results of fitting our two component model that accounts for MR sampling 
and signal decay for different GE (left) and SE (right) imaging scenarios and for different total read-out 
durations. The FWHM of the fitted Gaussian PSFs are presented as a function of total-read out duration. 
For Partial Fourier acquisition, the total-read out duration axis is labeled at the top. Partial Fourier acqui-
sition total-read out durations were shortened according to the fraction of omitted k-space (1/4) relative 
to the corresponding full k-space total read-out duration (bottom axis). The vertical black line represents 
a total-read out duration of 27.8 ms (20.85 ms for partial Fourier). Negative FWHM values indicate that 
the Gaussian PSFs resulted from the inverse of the MTF of the real component of the complex imaging 
PSF. Such negative values represent a hypothetical blurring that is reversed by the high-pass filter prop-
erties of the  decay effect. 

For GE, partial Fourier with early omission resulted in blurring (Figure 5 
columns 1 and 2) as opposed to the high-pass filtering observed in full k-space 
acquisition (Figure 4). The blurring was more substantial in zero-filling recon-
struction (FWHM = 1.38 voxels) than in conjugate symmetry reconstruction 
(FWHM = 1.00 voxels).  

Partial Fourier with late omission using conjugate symmetry reconstruction 
resulted in high-pass filtering (Figure 5, column 3). This high-pass filtering ef-
fect (reverse kernel FWHM = 1.10 voxels) increased relative to that of full k-
space acquisition (reverse kernel FWHM = 0.59 voxels). Partial Fourier with 
late omission using zero filling reconstruction (Figure 5, column 4) resulted in 
moderate low-pass filtering (FWHM = 0.30 voxels). 

For SE, partial Fourier with early omission (Figure 6, columns 1 and 2) re-
sulted in increased blurring relative to that shown by the full k-space acquisi-
tion (FWHM = 0.89 voxels). The blurring was more substantial in zero-filling 
reconstruction (FWHM = 1.55 voxels) than in conjugate symmetry reconstruc-
tion (FWHM = 1.10 voxels). Partial Fourier with late omission also resulted in 
blurring (Figure 6, columns 3 and 4). Here, conjugate symmetry and zero-
filling reconstructions resulted in decreased (FWHM = 0.66 voxels) and in-
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creased (FWHM = 1.38 voxels) blurring, respectively, relative to the blurring 
obtained from the full k-space acquisition (FWHM = 0.89 voxels). 

All results so far were based on an assumed total readout duration of 27.8 
ms. In order to extend our results and to study the dependence of signal decay 
blurring on the total read out duration, we repeated the simulation of signal 
decay-dependent MTFs and the fitting of our model of Gaussian convolution 
and MRI sampling for a range of total readout durations (Figure 7). 

For almost all imaging scenarios, including GE and SE imaging, the type of 
decay-dependent effect (blurring or high-pass filtering) was independent of 
total readout duration. However, the effect’s strength increased with increas-
ing total readout duration. The only exception was the zero-filling reconstruc-
tion of GE partial Fourier imaging that omits the late acquisitions. Here, short 
total readout durations resulted in blurring while longer total readout dura-
tions resulted in high-pass filtering.  

Evaluation of modeling the complete MR process as a convolution with a Gaussian 
PSF that accounts for signal decay followed by MR sampling with no decay 
Lastly, we evaluated how well our simplifying model approximated a complete 
MRI acquisition model (Figure 8). We compared complete simulations of fMRI 
of columnar patterns including signal decay to simulations that used our 
Gaussian PSF model of signal decay followed by MR sampling with no decay. 
We then quantified their deviations by calculating the root-mean-squared er-
rors relative to the standard deviation of the patterns obtained by the simula-
tion of the complete MRI process. The relative errors differed for different im-
aging methods and total readout durations. For full k-space acquisition (Figure 
8, upper row), the median error (red curve) obtained for a total readout dura-
tion of 27.8 ms was 3.91% and 8.39% using GE and SE fMRI, respectively.   

The relative errors obtained for the majority of partial Fourier acquisition 
schemes were substantially higher. For conjugate symmetry reconstruction 
(Figure 8, middle row), the median error computed for GE fMRI and a total 
readout duration of 20.85 ms (that corresponds to 27.8 ms for full k-space ac-
quisition) was 17.55% and 11.6% for omissions of the early and late part of 
the k-space, respectively. The corresponding errors for SE fMRI were 5.79% 
and 9.51%. 

For zero filling reconstruction (Figure 8, bottom row), the median error 
computed for GE fMRI and a total readout duration of 20.85 ms was 31.15% 
and 14.19% for omissions of the early and late part of the k-space, respectively. 
The corresponding errors for SE fMRI were 18.14% and 16.37%. 

Our Gaussian PSF model of signal decay approximates the signal decay ef-
fect in MR imaging as a pattern-independent linear process. As we have just 
demonstrated, the differences between the results of this approximation and 
the true imaging process are low for full k-space acquisitions, but are higher 
for partial Fourier acquisitions. In order to obtain an even better approxima-
tion, we can define an alternative approximation. Given a specific pattern, we 
can determine a Gaussian PSF (or its inverse process) that accounts for signal 
decay, such that convolution with this specific Gaussian followed by MR sam-
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pling with no decay results in the best Gaussian-based approximation of the 
complete MR imaging process. 

 
Fig. 8 Evaluation of modeling the complete MR process as a convolution with a Gaussian PSF that ac-
counts for signal decay followed by MR sampling with no decay. 1,000 cortical columnar response pat-
terns (with intermediate irregularity and spatial frequency) were simulated (results from 100 patterns 
were used for visualization). For GE (left) and SE (right) full k-space acquisition (top) and partial Fourier 
acquisition (bottom), convolution with the fitted Gaussian PSF (or its inverse model, see text) followed 
by MR sampling with no decay was compared to the complete MR imaging process. To this end, the root-
mean-squared-errors (RMSE) relative to the standard deviation of the complete MR images were calcu-
lated. The gray curves show the distribution of relative RMSEs from all simulated patterns as a function 
of total read-out duration. The vertical black line represents a total-read out duration of 27.8 ms (20.85 
ms for partial Fourier). The medians of RMSEs are shown in red. For Partial Fourier acquisition, the to-
tal-read out duration axis is labeled at the top. Partial Fourier acquisition total-read out durations were 
shortened according to the fraction of omitted k-space (1/4) relative to the corresponding full k-space 
total read-out duration (bottom axis). RMSEs were generally low for full k-space acquisition but became 
higher for the majority of partial Fourier acquisition schemes. 
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Fig. 9 Estimation of pattern specific Gaussian PSFs that model the effect of signal-decay.  1,000 cortical 
columnar response patterns (with intermediate irregularity and spatial frequency) were simulated (re-
sults from 100 patterns were used for visualization). We present results from GE (left) and SE (right) full 
k-space acquisition (top) and partial Fourier acquisition (bottom). For each pattern, complete MR imag-
ing was simulated and compared to the result of convolution of the pattern with Gaussians (or their in-
verse models, see text) followed by MR sampling with no decay. For each pattern, the pattern specific 
Gaussian that resulted in the smallest mean squared error relative to the complete MR imaging simula-
tion were determined. The blue curves show the distribution of FWHMs of these Gaussians as a function 
of total read-out duration. The vertical black line represents a total-read out duration of 27.8 ms (20.85 
ms for partial Fourier). The medians of FWHMs are shown in red. For Partial Fourier acquisition, the 
total read-out duration axis is labeled at the top. Partial Fourier acquisition total read-out durations were 
shortened according to the fraction of omitted k-space (1/4) relative to the corresponding full k-space 
total read-out duration (bottom axis). The FWHMs of our pattern independent Gaussian PSF model are 
presented in dashed orange for comparison. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 17, 2017. ; https://doi.org/10.1101/097154doi: bioRxiv preprint 

https://doi.org/10.1101/097154
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Figure 9 presents the resulting Gaussian PSF FWHMs (blue, median in red) as 
a function of total read-out duration for full k-space acquisitions (upper row) 
and for different partial Fourier acquisition schemes (middle and bottom rows). 
In addition, we present the previously estimated pattern-independent Gaussian 
PSF FWHMs (dashed orange curves). Note that the patterns used for this eval-
uation were the results of different columnar patterns, but they all shared the 
same statistical properties (main pattern frequency = 1 cycle per 4 voxels, rel-
ative irregularity = 0.5). 

The pattern-dependent PSF widths (blue curves) for the full k-space acqui-
sitions did not vary much across patterns (they were relatively independent of 
the specific pattern). They corresponded reasonably well to those obtained 
from our pattern-independent model (dashed orange curve). For the majority 
of partial Fourier acquisition schemes, the variability of pattern-specific PSF 
widths was somewhat higher. In addition, the differences between the median 
over simulated patterns and the pattern independent model were on average 
higher than those obtained for the full k-space acquisitions. This suggests that 
using a pattern-independent, single PSF width does not fully characterize the 
effective spatial resolution under partial Fourier acquisitions. We note, howev-
er, that for both full k-space and partial Fourier acquisitions, the estimations 
obtained from our proposed pattern-independent model (in dashed orange 
curves) matched those obtained from the pattern-dependent simulations rea-
sonably well.    

Discussion 

The Imaging PSF and effective spatial resolution 
The PSF of an imaging system is defined as the image obtained from an infini-
tesimally small point-like object. If the imaging system is linear and shift invar-
iant, its response to an arbitrary object can be described as a convolution with 
the imaging PSF as the convolution kernel. This latter property is what makes 
the PSF useful in describing the spatial characteristics of an imaging system. 

The effect of a system with an imaging PSF with its maximum at zero and 
whose strictly positive values do not increase with increasing distance from ze-
ro can be intuitively understood as spatial spreading or blurring. Such systems 
produce smoothed image versions of any object or pattern. The smoothing can 
be quantified by measures of the imaging PSF width (such as the FWHM). 
However, other PSF shapes may characterize certain systems, resulting in more 
complex effects that require careful evaluation and may not be intuitive. 

Note that the width of the PSF is not the only possible measure of effective 
spatial resolution. Another measure that has been proposed is the area under 
the PSF divided by the value of the PSF at the origin (Haacke	
  et	
  al.,	
  1999). In 
the case of MR imaging without signal decay, it is identical to the actual voxel 
width. 
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The magnitude PSF is not a good measure for the effective spatial resolution 
of MRI and fMRI 
We have shown that the FWHM of the magnitude PSF is not a good measure 
for the effect of   and   signal decay on spatial resolution. There are three 
reasons as to why this is the case. 

The larger part of the FWHM of the magnitude PSF is due to MR sampling and 
not due to signal decay 
The magnitude PSF of MR imaging, even with no signal decay, has a FWHM of 
1.2 voxels compared to 1.4 voxels and 1.3 voxels (examples given for total 
readout of 30 ms at 7T) for GE and SE decay, respectively. However this MR 
sampling effect with no signal decay cannot be regarded as a simple spread of 
signal. In fact, it acts as a hard low-pass filter that discards all spatial frequen-
cy components higher than the voxel size-dependent highest sampled spatial 
frequency, and leaves all other spatial frequency components unchanged. For a 
pattern dominated by the latter spatial frequency components, MR sampling 
with no signal decay has virtually no blurring effect. For a pattern with spatial 
frequencies limited to those sampled by the MRI process, MR sampling with no 
signal decay has no blurring effect at all. Thus, the FWHM of the magnitude 
PSF is a pattern-independent measure, whereas the effective resolution of MRI 
sampling with no signal decay does depend on the imaged pattern. 

The MR imaging process is non-linear 
The last step of the reconstruction in an MR imaging process typically involves 
taking the absolute values (magnitude image) of the complex image values. 
The complex image values are the results of a process that can be described as 
a convolution of the original pattern with the complex imaging PSF. Taking 
the absolute values of the complex image values makes the MRI process non-
linear. In general, the result of convolving a pattern with a complex kernel, 
then taking the magnitude image, is not equal to convolving the same pattern 
with the magnitude values of the complex kernel. This general statement ap-
plies in the specific case of MRI: the image obtained by the MRI process is dif-
ferent from that obtained by convolving the original pattern with the magni-
tude PSF.  

To illustrate the effect of the non-linearity of the MRI process, we will de-
scribe two scenarios involving the imaging of a point-like structure. While the 
FWHM of the magnitude PSF can describe the effective spatial resolution of 
imaging an infinitesimally small point-like structure with no background, it 
cannot describe the MRI sampling of any arbitrary structure. For example, MRI 
of a pattern composed of a similar infinitesimally small point-like structure su-
perimposed on a spatially constant baseline with an amplitude higher than the 
amplitude of the magnitude PSF would include negative side lobes relative to 
the baseline. Thus, the magnitude PSF fails to correctly describe the MRI pro-
cess. 

Note that even convolving the original pattern with the complex imaging 
PSF does not fully describe the MRI process, since it does not reflect the opera-
tion of taking the magnitude image. Therefore, even the complex imaging PSF 
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on its own does not completely reflect the typical MRI sampling and recon-
struction process. 

Signal decay may cause blurring or high-pass filtering with identical FWHM of 
the magnitude PSF 
Signal decay does not always blur the pattern; it can also cause high-pass fil-
tering. This is the case for the GE simulations we have conducted. Whether 
signal decay results in blurring or high-pass filtering depends on the shape of 
the decay curve and on the ordering of k-space acquisitions. Specific decay 
curves and ordering of k-space acquisitions may result in imaging PSFs that are 
different, but share the same FWHM. Indeed, the magnitude PSFs that are as-
sociated with imaging processes that result in blurring or high-pass filtering 
can be different but may have identical widths. This clearly limits the interpre-
tation based on the magnitude PSF’s width measure. 

What does the magnitude PSF describe? 
In the 3 previous sub-sections, we have shown that the magnitude PSF is not a 
good measure for characterizing the effective spatial resolution of the MRI 
process. The magnitude PSF carries less information relative to the complex 
imaging PSF. Simply relying on the FWHM of the magnitude PSF further re-
duces the available information. The magnitude PSF cannot differentiate be-
tween reduced effective spatial resolution due to the MRI sampling per se or 
due to signal decay. The effect of MRI sampling with no signal decay depends 
on the original pattern, whereas the FWHM of the magnitude PSF does not. 
While the magnitude PSF does describe the magnitude MR image of a small 
point-like structure with no background signal, it is not a convolution kernel of 
the MR imaging process. The FWHM of the magnitude PSF does not differenti-
ate between blurring and high-pass filtering effects.  

What, then, does the magnitude PSF describe, and can it be used for any 
characterization of the MRI process? The magnitude PSF has some general 
value in that it describes the absolute level of influence that neighboring posi-
tions in the original pattern have on each other’s value in the image. The prob-
lem is that it fails to characterize the nature of this influence (e.g. blurring or 
high-pass filtering), which depends on the signs of the components, the phase 
and the overall shape of the underlying complex PSF. 

Applicability of our simplified model 

Approximation of fMRI as a convolution with the real component of the complex 
imaging PSF 
We have shown that the MR imaging process can be approximated by a convo-
lution with the real component of the complex imaging PSF. This approxima-
tion works well if the original pattern constitutes a low amplitude spatially 
varying pattern superimposed on a constant, spatially homogeneous back-
ground of a higher amplitude. For response amplitudes of 5%, we found the 
typical RMSE relative to the standard deviation of the pattern imaged by the 
complete MRI process to be well below 1%.  This scenario holds for fMRI, 
where gray matter has a relatively uniform baseline intensity and the focus is 
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on superimposed signal changes of approximately 1%-5%. In contrast, this ap-
proximation may not be as appropriate for structural MRI where the low signal 
background, as well as objects of varying size and intensity, are of interest. 

Separation of MRI sampling and signal decay 
The separation of MR sampling and signal decay makes it possible to consider 
their respective effects separately. MR sampling with no decay does not auto-
matically result in a blurred image. If the voxel width is sufficiently small for 
sampling the larger part of the original spatial frequencies, the MRI sampling 
will have no blurring effect.  

For example, the spatial frequency content of the BOLD response of cortical 
columns is limited due to the smoothness of the neuronal columnar organiza-
tions and the spreads of the neurophysiological and hemodynamic responses. 
Therefore, the blurring effect of fMRI sampling with adequately small voxels 
can be neglected. The condition is that the voxels are sufficiently small, such 
that they can capture the main (peak) frequency of a columnar organization 
and the frequencies showing elevated power around it. 

When untangled from MR sampling, signal decay can be described as a 
blurring process which we model as Gaussian blurring. This is a simplifying 
model, with precision that varies with the actual imaging MTF. However, the 
deviations of this simplifying model relative to the complete fMRI process are 
small for typical signal changes (fMRI response) and noise levels in fMRI.  

Importantly, it results in a simple and intuitive characterization of the blur-
ring associated with signal decay that makes it possible to compare it to previ-
ously reported FWHMs of PSFs associated with the entire BOLD fMRI process 
(BOLD PSF) (Chaimow	
  et	
  al.,	
  2017;	
  Engel	
  et	
  al.,	
  1997;	
  Parkes	
  et	
  al.,	
  2005;	
  Shmuel	
  
et	
   al.,	
   2007). It further makes it possible to decompose the PSF of fMRI into 
two components: one caused by k-space sampling and signal decay, and the 
other caused by a physiological fMRI contrast-dependent spread. 

Our proposed model applies to both isotropic and anisotropic cortical columns 
We have used the example of ocular dominance columns (ODC) in order to 
show the limitations of using the magnitude PSF for characterizing the effec-
tive spatial resolution of fMRI (Figure 2). However, our characterization of the 
MR imaging process as Gaussian blurring followed by MR sampling with no 
signal decay does not depend on this specific example. In particular because 
we only considered the phase-encode dimension, we were able to use one di-
mensional columnar patterns. These one dimensional patterns can be regarded 
as general models of columnar patterns, characterized by a main pattern fre-
quency and a level of irregularity. 

Applicability of our proposed model to other fMRI and MRI methods 
In addition to GE and SE BOLD fMRI, other methods such as 3D GRASE (Fein-­‐
berg	
  et	
  al.,	
  2008), VASO (Lu	
  et	
  al.,	
  2003) and ASL (Detre	
  et	
  al.,	
  1992) have been 
used for high resolution imaging (Duong	
   et	
   al.,	
   2001;	
  Huber	
   et	
   al.,	
   2015;	
   Zim-­‐
mermann	
   et	
   al.,	
   2011). Do our findings generalize and account for MRI sam-
pling and signal decay in these methods? Our analysis of the imaging PSF de-
pends on two conditions. The first is the shape of signal decay during linear 
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sampling of k-space. This condition holds when using different echo times or 
preparatory pulses that only affect the absolute magnitude of the magnetiza-
tion to which the modeled  or /  decay is applied. Our derivations are 
valid for such scenarios. The second is the validity of a linear approximation of 
the response pattern, which holds if the response is composed of a small am-
plitude response pattern relative to a larger amplitude spatially homogenous 
baseline.  

In 3D GRASE, multiple refocusing pulses and subsequent EPI acquisitions 
(partitions) follow a single excitation pulse. Each partition represents a step in 
3D k-space in the direction orthogonal to what is commonly considered the 
slice planes. The signal decay within each partition is proportional to that of a 
single SE EPI acquisition (Fig. 1, first row, SE). Across partitions, the ampli-
tude changes according to decay. 

Consequently, the entire 3D k-space modulation due to signal decay can be 
separated into a product of decay between and within partitions. Furthermore, 
the separability of dimensions in the Fourier transform implies that these re-
spective components determine the spatial filtering due to signal decay across 
slices (between partition decay) and within slices (within partition decay). 

As a result, our SE findings are valid for the effective in-plane resolution of 
3D GRASE acquisitions. In order to approximate the effective in-plane spatial 
resolution of 3D GRASE, one needs to consider the total readout for a single 
partition and refer to the SE results in Figure 7. However, the effective spatial 
resolution across slices is determined by a decay similar to GE acquisition, but 
with a time constant of  instead of , and with a total read-out duration that 
covers the acquisition of all partitions. 

VASO, a method that indirectly measures changes in cerebral blood volume, 
applies an inversion recovery pulse prior to a normal GE or SE EPI sequence. 
The effect of the inversion recovery pulse is that all signals from blood are 
nulled when the excitation pulse occurs. This, in addition to the often used 
very short echo time, results in a change of scaling but not in a change of the 
shape of  decay (for GE) or /  decay (for SE). In addition, VASO signal 
changes are small, on the order of -1% (Lu	
  and	
  van	
  Zijl,	
  2012). Together, these 
features allow us to apply our results directly to VASO imaging. Therefore, 
Figure 7 provides the effective spatial resolution of VASO acquired by means of 
GE or SE imaging. 

For cerebral blood flow imaging, e.g. using ASL, the situation is different. If 
EPI acquisition is used, the signal decay follows our analysis, therefore comply-
ing with the first condition as described above. However, cerebral blood flow 
changes are on the order of 20%-60% which does not follow the second condi-
tion, making our linear approximation much less accurate.  

How does the effective spatial resolution influence functional imaging? 

Signal amplitude reductions 
In the current study, we focus on signal decay-dependent modulation of ampli-
tudes of spatial frequency components relative to each other. However, signal 
decay also causes overall amplitude decreases that bring about a reduced sig-
nal to thermal noise ratio (SNR). Such amplitude decreases depend on total 
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read-out duration. In addition, read-out duration per read-out line determines 
receiver bandwidth, with higher bandwidth (shorter read-out duration) result-
ing in increased noise. Both factors need to be considered in order to find an 
optimal total read-out duration that maximizes SNR (Qin,	
  2012), all within the 
constraints (and potential effects) of matrix size, field of view, echo time, and 
gradient strength. 

SNR associated with a spatial frequency 
SNR and effective spatial resolution can be considered together by evaluating 
the SNR at a spatial frequency. For detecting or decoding stimulus-specific re-
sponses, SNR needs to be high for at least part of the spatial frequencies that 
contribute to stimulus-specific responses, independent of whether the overall 
image is blurred. However, if one aims to obtain a precise reconstruction of the 
response pattern, then both high SNR and an image with an undistorted fre-
quency spectrum are necessary.  

In this context, it is of interest to discuss the difference between partial 
Fourier reconstructions employing conjugate symmetry and simple zero-filling. 
It may appear that the conjugate symmetry reconstruction is always superior 
to zero-filling due to its reduced blurring effect. Indeed, this is the case if the 
aim is to image a pattern precisely. However, the situation is different if we 
consider the SNR at each spatial frequency. Compared to conjugate symmetry 
reconstruction, zero-filling reduces the amplitude of high spatial frequencies, 
as the contribution of their omitted components is set to zero. However, the 
noise at these spatial frequencies is reduced proportionally. Therefore, the spa-
tial frequency-specific SNR is equal between conjugate symmetry and zero fill-
ing reconstructions of partial Fourier acquisition. The spatial frequency specific 
SNR obtained by full k-space acquisition is higher than those obtained by both 
conjugate symmetry and zero-filling reconstructions of data obtained by partial 
Fourier acquisition. This is because full k-space acquisition benefits from aver-
aging of independent noise across the negative and positive k-space parts. The 
result is an expected increase of spatial frequency-specific SNR by a factor of 

 compared to partial Fourier acquisitions, independent of the employed re-
construction method. 

Significance of signal decay blurring relative to the overall BOLD point 
spread function 
The absolute width of the PSF due to signal decay is proportional to voxel 
width. At ultra-high magnetic field, the in-plane voxel width used for high-
resolution fMRI can be as small as 0.5 mm. In Table 1, we compare the FWHM 
of the resulting PSF due to signal decay to the overall BOLD fMRI PSF as esti-
mated in (Chaimow	
   et	
   al.,	
   2017). Furthermore, we estimated the BOLD PSF 
while accounting for the effect of signal decay. We considered that consecutive 
Gaussian convolutions result in a Gaussian convolution with a total width 
equal to the square root of the sum of squares of individual convolution widths. 
The results show that the contribution of fMRI signal decay to the overall 
BOLD fMRI PSF is relatively small. This is especially true, considering that sig-
nal decay blurring acts only on the phase-encode direction. 
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Table 1 Comparison of decay dependent imaging PSF and BOLD PSF. This table compares the FWHM of 
the PSF due to signal decay (fMRI signal decay PSF, as estimated in the current study) to that of the 
overall BOLD fMRI PSF as estimated in (Chaimow et al., 2017). A voxel width of 0.5 mm is assumed. The 
bottom row shows the FWHM of the BOLD PSF when accounting for the contribution of fMRI signal de-
cay. These numbers show that the contribution of fMRI signal decay is relatively small. Note that for GE, 
accounting for the PSF due to signal decay widens the PSF function, due to the high-pas filtering effect of 
the signal decay in GE BOLD fMRI. 

 GE SE 
Overall BOLD fMRI PSF  
(Chaimow et al., 2017) 
 

0.99 mm 0.86 mm 

fMRI signal decay PSF -0.30 mm  
(high pass filter) 

0.44 mm 

BOLD PSF,  
accounting for fMRI signal decay 

1.03 mm 0.74 mm 

 

Conclusion 

We have demonstrated that the FWHM of the absolute values of the complex 
imaging PSF (magnitude PSF) is a poor and potentially misleading measure for 
the effect of signal decay on the effective spatial resolution. Instead, we pro-
pose to first linearly approximate the typically non-linear process of MR sam-
pling and reconstruction and then to separately consider the effects of two 
components of the imaging process. The first component is the MR sampling 
with no signal decay, which acts as a hard low-pass filter. It discards all spatial 
frequencies higher than the voxel size-dependent maximal sampled spatial fre-
quency and leaves all other frequencies untouched. The second component 
depends on the signal decay. We have shown that the effect of this second 
component can be approximated by either Gaussian blurring or high-pass fil-
tering that reverses the effect of a Gaussian blurring. For typical SE parameters 
at 7 Tesla, we found that the Gaussian blurring attributed to signal decay has a 
PSF FWHM of 0.89 voxels (0.44 mm for 0.5 mm wide voxels). In contrast, GE 
at 7 Tesla has a high-pass filter effect, reversing a Gaussian blurring with a PSF 
FWHM of 0.59 voxels (0.30 mm for 0.5 mm wide voxels). We conclude that 
signal decay in SE fMRI with full k-space acquisition at 7 Tesla has a more 
moderate blurring effect compared to the effect implied by the commonly used 
FWHM of the magnitude PSF. We further conclude that signal decay in GE 
fMRI at 7 Tesla (and also at other field strengths, not shown) has a high-pass 
filtering effect, opposite to what can be expected from describing the effect of 
signal decay on GE fMRI by the FWHM of the corresponding magnitude PSF. 
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Appendix A. Modeling and simulating MR imaging

This section provides detailed equations of the MR imaging model as used in our simulations. The
theory follows Haacke et al. (1999).

We consider the phase-encode dimension only and analyze it separately from the read-out dimen-
sion. This is justified because of the separability of the Fourier transform. Let y(x) be a spatial pattern
and s(k) = F ⇥y(x)⇤ its k-space representation obtained by Fourier transform. Furthermore, let L be
the field-of-view and N = 2n the matrix size with voxel width �x = L/N .

MR sampling with no signal decay

MRI samples k-space in steps of �k = 1/L from �n�k to (n� 1)�k. The reconstructed imaged
pattern (yMRI

q

), where q 2 [�n, ..., n�1], is obtained by taking the absolute values of an inverse discrete
Fourier transform, such that

y

MRI

q

=

������x�k

n�1X

p=�n

s(p�k)e ⇡pq/n

����� . (A.1)

Defining MTF(k) =�x�k

P
n�1
p=�n

�(k� p�k), A.1 can be rewritten as:

y

MRI

q

=

�����

Z 1

�1
MTF(k)s(k)e 2⇡kq�xdk

�����=
��F�1 [MTF(k)s(k)] (q�x)

�� . (A.2)

This shows that MTF(k) is the modulation-transfer function of the linear part of the MRI process (up
to taking absolute values). As such it has an associated point-spread function psf(x) =F�1 [MTF(k)],
allowing us to express A.2 as a convolution:

y

MRI

q

=
���

y ⇤ psf

�
(q�x)
�� . (A.3)

MR sampling in the presence of signal decay

Let t(k) be the time that an individual k-space point k is being acquired and let f (k) = f (t(k)) be
the relative signal decay amplitude at that time. Such an acquisition in the presence of signal decay
results in an effective k-space representation f (k)s(k), changing A.1 to

y

MRI

q

=

������x�k

n�1X

p=�n

f (p�k)s(p�k)e ⇡pq/n

����� . (A.4)

In this situation the MR imaging equations A.2 and A.3 still apply, if we absorb f (k) into the
modulation-transfer function, now defined as MTF(k) =�x�k f (k)

P
n�1
p=�n

�(k� p�k).

Appendix B. Linear approximation of the MR imaging process

Let r : [�L/2, L/2]! R be a spatial pattern of relative responses of BOLD contrast and let

y[r](x) =
⇢

1+ r(x) if x 2 [�L/2, L/2]
0 otherwise ,

be the associated pattern of absolute BOLD signal.
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First we compute the result of convolving such a signal pattern with a point-spread function defined
according to Appendix A.

�
y[r] ⇤ ps f

�
(x) =

Z 1

�1
y[r](x 0)psf(x � x

0)dx

0

=
Z

L/2

�L/2

�
1+ r(x 0)

�
psf(x � x

0)dx

0

=
Z

L/2

�L/2

psf(x � x

0)dx

0+
Z

L/2

�L/2

r(x 0)psf(x � x

0)dx

0

=
Z

L/2

�L/2

Z 1

�1
MTF(k)e 2⇡k(x�x

0)dkdx

0+
Z

L/2

�L/2

r(x 0)psf(x � x

0)dx

0

=
Z

L/2

�L/2

Z 1

�1
�x�k f (k)

n�1X

p=�n

�(k� p�k)e 2⇡k(x�x

0)dkdx

0+
Z

L/2

�L/2

r(x 0)psf(x � x

0)dx

0

=�x�k

n�1X

p=�n

f (p�k)
Z

L/2

�L/2

e

2⇡p(x�x

0)/Ldx

0+
Z

L/2

�L/2

r(x 0)psf(x � x

0)dx

0

=�x f (0) +
Z

L/2

�L/2

r(x 0)psf(x � x

0)dx

0. (B.1)

We define an operator MRI that models the MRI acquisition process by mapping the spatial pattern
r(x) onto a measured MRI pattern (MRI[r]

q

)�nqn�1 according to A.3, such that

MRI[r]
q

=
��(y[r] ⇤ psf)(q�x)

��

=
∆

Re
��

y[r] ⇤ ps f

�
(q�x)

�2+ Im
��

y[r] ⇤ ps f

�
(q�x)

�2

=

vuut
 
�x f (0) +

Z
L/2

�L/2

r(x 0)psfRe(x � x

0)dx

0

!2

+

 Z
L/2

�L/2

r(x 0)psf Im(x � x

0)dx

0

!2

, (B.2)

where psfRe(x) = Re
�
psf(x)

�
and psf Im(x) = Im

�
psf(x)

�
.

We also note that

MRI[0]
q

=

vuut
 
�x f (0) +

Z
L/2

�L/2

0 · psfRe(x � x

0)dx

0

!2

+

 Z
L/2

�L/2

0 · psf Im(x � x

0)dx

0

!2

= Re
��

y[0] ⇤ ps f

�
(q�x)

�

=
Z

L/2

�L/2

psfRe(x � x

0)dx

0. (B.3)

In order to linearly approximate the MR imaging process, we compute MRI

0[0][r]
q

, the functional
derivative of MRI[r]

q

with respect to r, evaluated at r0 = 0 (representing no response, only baseline).
This functional derivative is a linear operator that maps a response pattern r(x) onto an MRI response
pattern (MRI

0[0][r]
q

)�nqn�1, resulting in a linear approximation of the true MRI measurement ac-
cording to MRI[r]

q

⇡MRI[0]
q

+MRI

0[0][r]
q

.

We calculate MRI

0[0][r]
q

from B.2 using the chain rule and the fact that
R

L/2

�L/2
r(x 0)psfRe(x� x

0)dx

is already a linear operator on r:
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MRI

0[0][r]
q

=
1

2
p�
�x f (0)
�2 2
�
�x f (0)
�Z L/2

�L/2

r(x 0)psfRe(x � x

0)dx

0

=
Z

L/2

�L/2

r(x 0)psfRe(x � x

0)dx

0 (B.4)

Finally, using B.3 and B.4 the linear approximation of MRI[r]
q

is

MRI[r]
q

⇡MRI[0]
q

+MRI

0[0][r]
q

=
Z

L/2

�L/2

psfRe(x � x

0)dx +
Z

L/2

�L/2

r(x 0)psfRe(x � x

0)dx

0

= y[r] ⇤ psfRe. (B.5)
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