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Abstract

The inward current flowing inside the post-synaptic terminal of a neuron modu-
lates transiently the membrane voltage potential. Most of the excitatory connections
are made on dendritic spines characterized by a large variability in their geometry.
How the voltage in a spine is modulated by geometry remains elusive due in part
to the absence of direct measurements. To understand the spine voltage-current
relation, we develop here a model for the voltage and we use it to extract electrical
properties from live cell imaging data. We first deconvolve the genetically encoded
voltage sensor expressed in hippocampal neurons and then use electro-diffusion the-
ory, to compute the electric field and the ionic flows induced in a dendritic spine.
The ionic flow is driven by the electric field coupled to the charge densities that
interact through the non-cylindrical spine geometry. We determine the I-V relation
and conclude that the spine effective resistance is mostly determined by the neck
geometry. This modulation of synaptic inputs by the spine neck is significantly
larger than what was expected from traditional cable models. Thus modulating
the postsynaptic current can be achieved by changing the number of receptors or
by altering the spine geometry which independently affects the transformation of
current into voltage.

Significance statement:Dendritic spines are geometrical structures receiving most
of the excitatory transmission, yet how they modulate voltage from the synaptic current is
not clear due to their submicron small size and specific non-cylindrical geometry. We study
here the conversion of the synaptic current into voltage modulated by the spine geometry.
Our approach is based on the electro-diffusion theory and we show that the spine neck is
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the main resistance filter, while the voltage is maintained constant in the head. Finally,
we extract the effective resistance using a deconvolution of the genetically encoded voltage
indicators expressed in hippocampal neurons. The present approach allows studying the
electrical properties of many other structures such as glial small protrusions, cilia, and
many others.

Introduction

Neurons communicate through synaptic microdomains, where an input current generates
a voltage change in the post-synaptic neuron. This voltage change reflects the strength
of the synaptic connection between two interacting neurons [1, 2, 3, 4, 5] and depends
on two components: the first is the number of glutamatergic receptors for excitatory
neurons and the second is the geometry of the post-synaptic terminal. However the
relative contribution between these two factors is still unclear. For example, the post-
synaptic structure is often a dendritic spine, the geometry of which can modulate the
time scale of diffusion [6, 7, 8, 9]. In parallel, increasing the number of receptors on that
terminal leads to a larger synaptic current. But, given the influence of electric fields on
ionic species, diffusion alone is not sufficient to interpret the synaptic response driven
by electro-diffusion, involving the coupling of diffusion to the voltage gradient. Electro-
diffusion was applied successfully for studying ionic fluxes and gating of voltage-channels
[10, 11], because at the nanometer scale, cylindrical symmetry of a channel model reduces
to a one-dimension for the electric field and charge densities in the channel pore [12, 13].
Moreover, the current in the synaptic cleft has already been shown to reflect the coupling
between moving ions and the local electrical field [14, 15].

In a dendritic spine, voltage changes during the synaptic response should be generated
by the interactions between the ionic flow and the spine geometry. Dendritic spines are
heterogenous microdomains at the limit of optical resolution and for that reason, voltage
changes were estimated for many years using modeling and numerical simulations of the
cable equations, the basis for the Hodgkin-Huxley model [16]. This approach is however
not appropriate for spines because the micro-geometry is significantly different from that of
a cable. Also, cable theories break down when applied to small neuronal compartments,
such as dendritic spines, because they assume spatial and ionic homogeneity. Linear
approximations of electro-diffusion that couples the electric field with the ionic flow have
been used to improve the estimation of the voltage changes in spines, approximated as
cylinders of various sizes, but assuming local electroneutrality [4]. Recent advent in
monitoring the voltage changes at a sub-micrometer resolution [17, 18, 19] can now reveal
the electrical properties of dendritic spines [20, 21], but the heterogeneity of the results
[22, 23] and the absence of a robust computational framework and theory to interpret
data challenges our understanding of electrical properties of these structures and cellular
microdomains in general.

We develop here an electro-diffusion framework to compute the voltage-current re-
lation and the local voltage variations generated by synaptic inputs. We also present
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a deconvolution procedure to recover the time scale of voltage responses from voltage-
sensitive indicator hippocampal neurons. After we present the deconvolution procedure
to transform the voltage dye arclight response into voltage dynamics, we use the Poisson-
Nernst-Planck theory for electrodiffusion to extract the current flowing in the spine neck
and the electrical resistance. Numerical simulations of the voltage drop in the entire spine
reveal how a change in the neck length and radius alters the voltage changes in the entire
spine. We conclude here that while the numbers and the types of receptors determine the
injected current, the geometry of a dendritic spine controls the conversion of current into
synaptic voltage.

Results

Converting the Arclight signal into a fast voltage response

For these experiments we used optical measurements of Archlight fluorescence to extract
voltage estimates of the response of dendritic spines and neighboring dendrites from cul-
tured hippocampal neurons.

The Arclight dye indicator responds to voltage with an intrinsic delay [24], such that
a fast voltage response leads to a convolve light response. In that context, a synaptic
input entering a dendritic spine generates a light response that needs to be deconvolved
in order to recover the electrical time course. As the voltage intensity has already been
deconvolved in [24], we focus here on the time dependent response. The basis of the
method is to find the kernel of the deconvolution K (), which is obtained by comparing
the electrophysiological and the light responses in the soma (see Methods). Once the
kernel is found, we apply it to recover the voltage dynamics in smaller structure such as
spines and portions of dendrites.

Fig. 1A-B show the soma region to be deconvolved. The deconvolution procedure
transforms the fluorescence dye (green) signal into the voltage response (black) (Fig. 1B).
The deconvolve signal is the dashed line (green) which superimposes with the electro-
physiological recordings (continuous black line). We confirm the validity of the method
by using the direct convolution (black large arrow) of the electrophysiological recording
by the kernel, which leads to a response (black curve) that exactly super-imposes with the
fluorescence soma signal (Fig. S1). Regions of interest are shown in Fig. 1C, where we
shall deconvolve the fluorescent responses. Indeed, once the kernel of the deconvolution
K(t) is determined from the soma, we shall apply it to deconvolve the signal in smaller
structures such as spines, where the signal contains large fluctuations (Fig. 1D-E dashed
curves). The results are shown in Figs. 1D-E for the voltage the spine head and dendrite.
The procedure to remove the fluctuation is described in the Method section and in Fig.
S2. Due to the slow time scale of glutamate uncaging, that can last for hundred of mil-
liseconds, the voltage responses we obtained in the dendritic spines are slower than the
expected direct synaptic response.
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Electro-diffusion theory for ionic flows in dendritic spines

To interpret the voltage dynamics in a dendritic spine, we use the electro-diffusion model
that couples positive ¢,(z,t) and negative ¢,,(x,t) charge concentrations with the electri-
cal potential V(x,t). The model is the phenomenological Poisson-Nernst-Planck (PNP)
equations, where the ionic flow is driven by diffusion and an electric force. The voltage
potential is described by the classical Poisson equation for the charges [25] (see Methods).
We use this ensemble of equations to model the flow of ions when a current I(t) is injected
at the entrance of a dendritic spine. While cations can enter or exit the spine domain,
we assume that negative charges stay confined. We recall that the electrical potential
generated by a flow of ions is defined to an additive constant.

We apply the electrodiffusion approach at the nano-micrometer scale, by reducing the
neck geometry to a one dimensional segment (Fig. 2A-B). Due its large size, the dendrite
constitutes a ionic reservoir compared to a dendritic spine. We fix in the dendrite the
voltage V' = 0 mV. We thus interpret the potential V' (t) = V(¢, L) computed at the end
of the neck (Fig. 2A-D) as the difference of potential between the entrance and the exit
of the spine neck. To describe the response of an input current I(¢) inside the spine neck,
we approximate the thin cylinder as a one dimensional wire of length L (see egs. 8-9-10).

From the classical theory of electricity [25], it is not possible to extract the current
passing through a passive devise from the difference of potential when the resistance
is unknown. However, by using a model for the current in the spine head, we shall
reconstruct the voltage in the neck and recover the current in the entire spine. Indeed,
following a synaptic input, the current I(¢) flowing in the spine is driven mostly by positive
sodium charges c¢,(x,t). Because there is no direct measurement of this current, we
developed here a procedure (see SI) to estimate this current from the measured membrane
potential ¢(¢) in the spine head. We model the current () as the sum of a resistance
and a capacitive:

It = G¢(t)+o%t), (1)

where G is the intrinsic conductance of the spine and C' is the capacitance. To estimate
the two constants C' and GG and the voltage drop across a spine neck, we solve numerically
eqs. 8-9-10 and compare the simulations with the deconvolved Arclight fluorescent voltage
response, following glutamate uncaging stimulations at the top of the spine head (Fig.
1C). We solve numerically the PNP equations for the distribution of positive ¢,(x,t)
and negative ¢,,(z,t) charges, as well as the potential difference V(x,t) (Fig. 2C-D). To
estimate the voltage difference AV(t) across the neck, we grounded the potential to 0 mV
at the dendritic shaft (before stimulations, the voltage is described by eq. 9).

To assess whether the potential difference Af/(t) = Vhead(t) = Viena(t) can be predicted
from the electro-diffusion model, we fix the input voltage ¢(t) = Vieaa(t). We then
compare the voltage obtained by solving eqs. 8-9-10 (Fig. 2C-D) to the measured voltage
Viena(t) in region R2 (blue) at the dendritic shaft (Fig. 2B). Although region R1 includes
the head and the neck, we neglected the fluorescence in the neck due to its small thinness
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< 100nm. We found a good agreement between the experimental data and numerical
simulations (Fig. 2E) showing that the difference of voltage between the head and dendrite
can be predicted from the input voltage Vjeqq(t). In addition, we estimated the injected
current (Fig. 2D) (see Methods and eq. 1) directly without any direct electrophysiological
recordings. We conclude at this stage that the electro-diffusion theory allows estimating
the electrical properties (capacitance and resistance) of a dendritic spine and the injected
current (of the order of tens of pA) in the spine neck, triggered by a synaptic current.
We apply systematically the electro-diffusion approach to extract the capacitance C
and the conductance G of several spines (SI Fig. S3-5). Using an optimization procedure,
we explore the parameter space for computing C' and G (SI Fig. S3-4). We minimize the
error between the solution of the electro-diffusion equation and the voltage output of the
dendrite during a small time interval at the beginning of the response (SI Fig. S4). The
resistance is computed by averaging along the time response over the voltage. We use for

the estimator the expression R, = W In all cases, we find a good agreement

(SI Fig. S5) between the measured and computed voltage drop across the spine neck,
where we estimated the current injected in the neck from the head of several spines.

In summary, the average resistance is (R) = 99.2+34.5M (see table 1). To conclude,
the electro-diffusion model allows computing the injected current in the spine neck from
the head. We also reported here a large variability in the spine resistance, while the
capacitance is negligible.

Voltage transduction in a spine and predictions of electro-diffusion

To analyze how a dendritic spine shapes its voltage response to a synaptic input, we
simulate the three dimensional PNP equations (see Methods) in a ball of radius Rpeqq
and a spine-like geometry. We computed the distribution of the electrical potential for
short spine necks, where the head contains two narrow openings: one of radius r, = 100nm
representing the junction with the neck, and the other of radius r; = 10nm that receives
the steady current Iy, of positive charges (Fig. 3B). We computed the distribution of
positive ¢,(x) and negative ¢,,(x) charge concentrations as well as the voltage ¢(x) when
the potential ¢ which is grounded to 0 volts at the end of the spine neck, representing
the voltage difference induced by the injected current Ig;,,. We find the distribution of
the voltage along the x-axis (blue) Fig. 3B-C when Iy, = 150pA is injected in the
spherical geometry as shown in Fig. 3B-E: there are two narrow layers due to the small
entry and exit, but the injected current induces a 15 mV drop that can propagate to
hundreds of nanometers only inside the spine head. Outside these layers, the voltage is
quite uniform, leading to a reduced field convection kgTV¢ (eq. 8), demonstrating that
diffusion is dominant inside the spine head. The regions of large convection are of small
sizes (=~ 100nm at the limit of actual resolution (= 0.116um/pixel). At this stage, we
demonstrated numerically using PNP equations that the voltage drop in the spine head
is negligible (less than a quarter of mV), in contrast with the classical cable theory (Fig.
S7), which suggests that the motion of ions is driven by the voltage gradient.
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To conclude, inside a spherical domain, diffusion is the dominant driving forces and
the potential drop is reduced significantly. We observe that most of the voltage drop
is carried by the spine neck (Fig. 3D-E). Interestingly, it is not equivalent to decrease
the neck length to compensate for a decrease in the injected current (see result with an
injected current of 150 versus 300 pA), suggesting that changing the synaptic weight by
adding or removing receptors or modifying spine neck length have different consequences
on the spine voltage. At this stage, electro-diffusion theory predicts that the voltage in
the spine head Vjeqq(t) is spatially homogeneous, supporting the approximation of eq. 1,
except near the post-synaptic density or at the entrance of the spine neck. The spine
head resistance is thus negligible since the potential drop occurs just at the end of the
neck and thus Rgpine = Ryeck. However, we predicted here that near the post-synaptic
density where the current is injected, there should be a nanodomain where the voltage
should drop significantly.

Spine geometry determines the I-V relation

To study the influence of the geometrical parameters on the electrical property of a spine,
we first estimated the effect of the spine head radius Rj.qq for five spines (Fig. S5). By
measuring their projected area Sp..q from the two-photon images, we use the relation

Shead

Ryead = (Fig. 4A) to extract the equivalent radius. We then use the PNP model

associated to the short spine with no neck (Fig. 3B) to estimate the average voltage
difference (for a current of 100 pA) between the north and the south pole of a spine head
(V)pau- We find that the mean voltage varies in a range of 1.5 — 1.6mV’, when the radius
of the head varies in the range 0.3 — 1.5um. This result shows that the head radius had
little influence on the mean voltage.

We then investigated the role of the spine neck length (Fig. 4B) when a current of
20pA was injected. We compare Ohm’s law with the solution of the PNP equation (ratio
voltage/current) in a segment (see Methods). For a resistivity of R; = 109Q¢m (the other
parameters are presented in table 1), the difference between the cable and PNP models
can be significant as shown in Fig. S7. Furthermore, electrodiffusion in a segment predicts
that for the mean current input extracted from data, there is a significant change in the
local concentration of positive charges along the segment of length L = 0.7um at the
time-to-peak (g = 55ms). Indeed, the difference in concentration is 33mM (the imposed
concentration on the other end is 163 mM), leading to a concentration gradient between
the dendrite and the spine head (Fig. 4C-D).

Finally, we estimated how the spine neck resistance R,... depends on the neck length
and width, usually unaccessible using classical microscopy approaches: we find both theo-
retically and experimentally that the resistance increases (blue stars) with the neck length
L (Fig. 4E and Fig. 2E). Note that the size of the head is not correlated with the re-
sistance (table 1). Finally, using the electrodiffusion theory and the spine parameter
Rpeaq = 0.5um, L = 1um, we estimated the I-V relation for various neck radius, showing
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a saturation for large current (Fig.4F). These curves show that the neck radius is one of
the most critical parameter in defining the conversion of current into voltage.

In summary, we used the electro-diffusion theory and the Arclight data to characterize
the electrical properties of a dendritic spine. With respect to a synaptic input, a spine
can be electrically characterized as a diode device (Fig. 5AB) with a finite resistance (for
a small current), saturating for large currents (Fig. 5C). The voltage difference varies
from few to tens of mV. However, from the perspective of a Back Propagation Action
potential, the equivalent circuit of a spine is a diode with zero resistance (no leak current)
Fig. 5D.

Discussion

We developed here a computational approach based on the electro-diffusion theory to
estimate the electrical properties of dendritic spines. After we deconvolved the Arclight
fluorescent signal, we applied the electro-diffusion theory to estimate the resistance and the
capacitance from in vivo hippocampal neuron data. Our approach contrasts with classical
estimation of the resistance of the spine neck and the electric properties of dendritic spines
in general, that have been extracted in the context of the electrical circuit approximation,
cable theory and even diffusion approximation [16, 6]. We found here that the electro-
diffusion coupling is the main driving force for the ionic current in the spine neck (Fig.
3), while the diffusion approximation is sufficient to describe the motion of ions inside
the head. Indeed, we found that the electric field is negligible in the head, except very
close to the entrance of the synaptic input and at the exit with the neck. Electro-diffusion
theory reveals that the spine head geometry imposes that the voltage is almost constant
in the head, while the neck is responsible for most of the voltage drop. This is in contrast
with the predictions of the cable theory or previous approximations of electro-diffusion
[16, 4], based on electroneutrality and no gradient of charges. We also demonstrated here
that the ion conduction is mostly driven by diffusion in the spine head, suggesting that
the head resistance is negligible compared to the neck.

It remains difficult to study the exact local balance of positive by negative charges,
because in transient regimes or at equilibrium, positive charges are all the time in excess.
Possibly the sum of negatively ionic charges plus the negative charges located on immobile
proteins can balance positive charges at a tens to hundreds of nanometers. Long-range
electro-diffusion effects have already been described for directing the current flow in the
synaptic cleft into the post-synaptic terminal [14, 29], showing in a different context that
electro-diffusion drives ionic flows and the voltage in neuronal microdomains.

Time deconvolution of the Arclight fluorescent signal

Traditional tools to study neuronal voltage are based on recording electrodes. We showed
here how the Arclight signal can be deconvolved in small and large microdomains, so
that we can now access the voltage dynamics and electrical properties from live cell
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imaging. Genetically encoded activity sensors combined with novel microscopies are now
classically used [30] to record and manipulate the activity of neural circuits. We show
here how the fluctuation contained in the fluorescent can be filtered and the voltage time
course is recovered from the empirical kernel K (t) (Methods). This approach can be apply
to any encoded activity sensors expressed in neurons and only requires to compare the
electrophysiological recording with the florescence in the soma. The present deconvolution
could also be used to recover the electrical activity from slow calcium indicators [30].

Influence of the neck radius on the spine resistance

The spine neck radius cannot be spatially resolved, so any geometrical fluctuation is likely
to result in a drastic change in the resistance. For diffusion alone, the rate of extrusion

CyVi R
5 2Dh3 PR where D is the diffusion coefficient, V' is the
a a

volume of the spine, L theqength of the neck, R, the radius of curvature at the base of
the neck-head junction, V}, the volume of the head and 5 a constants and a is the radius
of the neck [31]. This expression shows that a small change in the radius a (dividing by
two for example) leads to a significant change of at least 4 for the diffusion time scale. We
addressed the radius neck uncertainty here in the context of electro-diffusion by computing
the neck resistance for different radii (Fig. 3E and S6).

Spine intrinsic electrical characteristics are revealed by the impedance which is the
ratio of the voltage to the injected current. For example, for a steady state current of
I = 50pA, the Ohmic resistance of a spine of radius 100nm (resp. 50nm) is (Rpeck) =
120M€), (resp. (Rpeek) = 350MQ). Interestingly, the spine resistance of a dendritic
spine is inversely proportional to the radius of the neck ry, and not by the square r2, as
classically described for electrical devices (SI Fig. S6)[6]. This result shows that the neck
size has a key effect in modulating the spine electrical resistance. Another prediction of
the present theory is that a synaptic current injected in a spine head should be of the
order of 100 pA (as suggested in fig. 3E). Obtaining the shortest diameter of a spine
neck along its length is certainly a key factor that could drastically affect its resistance.
Indeed, the critical geometrical parameter is the minimal shortest constriction along the
neck [31], that could further be influenced by the internal endoplasmic reticulum [21].

in first approximation is

The geometry of dendritic spines modulate the voltage changes
independently of the input current

Dendritic spines are involved in modulating two- and three dimensional receptor trafficking
(32, 33, 34], molecular post-synaptic density composition, calcium diffusion [5, 7], synaptic
transmission and plasticity. We have shown here using the electro-diffusion framework
that the voltage in dendritic spines can also be controlled by changing the neck length
geometry. This modulation obtained by changing the geometry is complementary to the
possible changes in the number of receptors resulting in a long-term modification of the


https://doi.org/10.1101/097279

bioRxiv preprint doi: https://doi.org/10.1101/097279; this version posted December 29, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

synaptic current, reflecting synaptic plasticity.

Changing the spine neck length can thus regulates the local dendritic voltage, that
contributes to the genesis of an action potential. We further confirm previous experimental
findings [17, 18], showing that the synaptic amplitude is inversely correlated with the neck
length, but we found here a much stronger effect compared to previously evaluated [22].
However, in agreement with [22], we do not need to use any additional active channels in
the electro-diffusion model to account for the voltage in the spine, suggesting that they
might not play a predominant role.

To conclude, voltage changes in dendrites can now be detected at the nanometer scale
and the electro-diffusion theory allows interpreting these data and predicts a nonlinear
current-voltage relation imposed by the specific geometry of dendritic spines. While the
spine geometry controls voltage, the synaptic current is set by the number of receptors [32,
33, 34]. These two mechanisms are independent and they are both involved in controlling
the synaptic response. It would certainly be interesting to study how changes in one
affects the other.
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Methods

Arclight signal

We briefly described here the experimental data we have used for our electrodiffusion the-
ory and time deconvolution. There are fully described in [24]. The protein-based voltage
indicator ArcLight is injected in primary cultured hippocampal neurons. ArcLight ex-
pressing dissociated hippocampal culture neurons in DIV 12-16 were recorded in artificial
cerebrospinal fluid (ACSF) containing ions of various concentration. Two-photon gluta-
mate uncaging was done with a custom-made two-photon laser scanning microscope. In
glutamate uncaging, the location of stimulation was selected with 1-2 um distance from
dendritic spines, not closer than 1 um. The whole-cell patch clamp and the glutamate
uncaging were performing while doing the wide-field one photon imaging of ArcLight flu-
orescence. Finally, we used the voltage deconvolved from the fluorescence signal, based
on a two-state model of voltage dependent ArcLight fluorescence described in [24].

Deconvolution Kernel

To recover the intrinsic voltage dynamics h(t) from the slow Arclight signal G(t), we
compare the electrophysiological patch-clamp recording in the soma with the ArcLight
fluorescence extracted from the somatic region delimited in the image (Figure 1A). This
comparison is at the basis of the deconvolution method of the causal fluorescent signal.
Indeed, the slow Arclight reporter convolves the fast electrical voltage signal, modeled
by a kernel function K (t) with the intrinsic dye dynamics, leading to a slow fluorescent
response. The kernel K (t) describes the time delay of the fluorescence activation compared
to the voltage dynamics. We model the kernel by the function

K(t) = Ate™~, (2)

where the value of the parameters A and 7 are obtained by comparing the Arclight
response in the soma with the convolution of the electrophysiological recordings (Fig. 2).
Indeed, for a voltage signal h, the Arclight signal G(t) is expressed by the convolution
product

G(t) = /0 K(t — s)h(s)ds (3)

To recovered h from the Arclight signal G, we first calibrated the kernel so that the
Arclight signal peaks exactly at the one monitored by the electrophysiological signal
(Figure 1B) and we obtain 7 = .05s. The other parameter A is a scaling that will be
adjusted for each experimental data. We denote the normalized kernel by K, (t) = te~r

(plotted in SI Fig. 1).
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Noise filtering and approximation

In small dendrite and dendritic spine regions, the Arclight data contains a large noise
that should be removed. For that purpose, we use a Savitzky-Golay filter [36], to increase
the signal-to-noise ratio. The detail of that procedure is explained in the SI. Once the
noise is removed, we define a new step which consists in approximating the signal using
a family of analytical functions

f51762:71772,0¢(t) = ta(b}lei%t + B26772t)7 (4>

where the parameters (i, 82,71, 72, @ are obtained by a best approximation (see SI Fig.
S2).

Microdomain Arclight deconvolution

In the final step, we shall use the deconvolution procedure to compute the voltage. Indeed,
once the kernel K (t) is determined (see above) from the somatic signal and after the step
of noise filtering, we shall retrieve the voltage dynamics from dendrites and dendritic
spines, where direct electrophysiological recordings are not possible. Using the analytical
approximation G(t) = f5, g,1.a(t) of the Arclight fluorescent response (relation 4)
described in the previous subsection, we shall now compute the voltage h using K (t)
(eq.2) by inverting equation 3 using the Laplace’s transform:

ﬁ(w) _ f617521’717"/2706(w)’ (5)
K(w)
where the Laplace’s transform of the kernel is K (p) = I K(s)ePds = ﬁ and
; A B
a =T 1 , 6
Frmneno(®) = Tt D) (o + e ©)

where T" is the Gamma function [38]. The final expression for the voltage is derived in
the SI and is given by

-7t
h(t) = BleT (7 (t(1 = 27m) 4 27a) + 7277 ((tn)* + o — a — 2m1at))
Boe™ 2t 1 2,02 2 2
+ 1 (1 (1 = 2790) 4+ 27) + 772 7% ((t12)? + o — a — 2at)) . (7)

Note that in practice the value of the parameter A is calibrated so that the maximum
amplitude of the voltage before and after the deconvolution are identical. We applied
this procedure to recover the voltage h in dendritic spines. This procedure is the time
deconvolution of the voltage dynamics from the Arclight fluorescent signal.
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Electro-diffusion model in the spine neck

The Poisson-Nernst-Planck (PNP) equations express the coupling between the ionic flow
and the voltage (Poisson equation). We present here the one-dimensional version of these
equations. They reduce for the voltage V' and the concentration of positive ¢,(x) and
negative ¢,,(x) to

0’V —-F

w(%t) = T%(Cp(mjt) — cnl(z,t))

Jc, B 0 (0c, e ov

a(% t) = Dpé)_x <%($at) + I@_Tcp(gc’t)%(x’t)) (8)
ey, B o (0c,, e oV

Where D,, D, are diffusion coefficients, e the electronic charge, the valencies for each
specie is z = £1 and kgT is the thermal energy.

Equations 8-8-9 are used to compute the voltage drop when a current /(t) is injected at
the tip of the spine neck. During the simulations, the ionic concentrations in the dendrite
(ionic reservoir) are the boundary conditions fixed at the values C, and C,, (see table 2).
We recall that the electrical potential is defined to an additive constant. The initial and
boundary conditions are

V(z,00 = 0
cp(2,0) =C, and c¢p(z,0)=C,.

oV
%(xat) T 0 9)
OC, B
E(%t) . 0
dc, e ov B I(t)
%(‘T,t)—f—kB—TCp(l',t)a—x(l',t) . = DpF|Szn|7 (10)

V(L,t) =0, c,(L,t) =C, and cp(L,t) = Chp.

In summary, eqs. 8-9-10 describe the ionic response of an input current I(¢) inside a
thin cylinder reduced to a one dimensional segment. We simulate these equations using
Comsol to determine the voltage drop (Fig. 2).

3 dimensional PNP-equations in a Ball and a dendritic spine
shape

We present now the steady-state PNP equations, that describe the concentration of pos-
itive ¢,(2) and negative ¢,,(x) charge concentrations and the voltage ¢() inside a three
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dimensional bounded domain that we use in Figure 3. The equations are given by
-F
Ap(w) = — (p(®) — cm(2)) (11)

E&n
0 = D,V (Ve (@) + ——c,Vo(x)
kgT
0 = D,V (ch(:c) — kBLTcmVMw)) :
The boundary is decomposed into three subdomains: the current is injected into 0f2;.

Charges can exit in 0€), and the impermeable membrane is represented by 0f2.. The
boundary conditions are

o¢
- = Q. 12
an(ar:) 0 on 09, U 0Q; (12)
dc, _ gy B
a—n(zc) = (z) = 0 on 09,
an € a¢ Istim
“p = bl — _“stim 0.
on () + k:BTCp(m>8n(m) WT?FDP on oY
0c,, e 0¢

= 0 on 0¢

()

o(x) = 0 on 09,
() = C, on 0,
(k) = C) on 09,.

In that model, only positive charges can enter the spine domain. We use the Comsol
platform to solve numerically equations 11 presented in fig. 3.
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Figure 1: Voltage drop across a dendritic spine measured from Arclight.A. A
region of interest is selected around the soma to estimate the fluorescence during a synap-
tic stimulation. B. The deconvolution of the fluorescence signal (dashed green) in the
soma uses the electrophysiological recording (continuous black) to obtain the deconvolved
voltage (continuous green). C. Deconvolution of the fluorescence signal in the dendritic
spine R1 and the dendrite R2 using the kernel K (¢) found in the soma deconvolution in
(A-B.). D-E. Deconvolution of the regions of interest (ROIs) R1 and R2 obtained from
a fluorescent Arclight response following a glutamate uncaging protocole (red dot). F.
Comparison of the filtered and deconvolved voltage signal in the spine head and parent
dendrite.
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Figure 2: Extracting the electrical parameters of a dendritic spine from a re-
duced model and voltage dynamics. A. Schematic representation of a dendritic
spine, divided into three regions: the head R1, the neck of length L and the close den-
drite R2. B. Reduced geometry of a dendritic spine neck of length L, approximated as a
dielectric wire. The input is the measured voltage Vi (t) of ROIs (of fig. 1) R1 at the head
(x = 0) and we use voltage V(t) (R2) in the parent dendrite (z = L) as an output for
comparison with the numerical computation. C. Comparison of measured and computed
voltage. D. Measured membrane potential (blue) in the spine head is used to compute
the ionic current (red) from eq. 1, after the parameters (C,G) are extracted from the
iterative method developed in the Methods
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Figure 3: Modeling electro-diffusion in a spine. A. Schematic representation of a
spine head where a current is injected in a 3D spherical cavity of radius Rpeqq = 0.5um.
B. Voltage profile (blue) along the x-axis computed from PNP equations, compared to
the potential averaged over the entire head (dashed green line) when the injected current
is Isim = 150pA. The south pole is grounded at 0 volts. C. Schematic representation
of a 3D-spine geometry composed by a spherical head of radius Rpe.q = 0.5pum and a
neck of length L = 1pum. The head has two narrow openings, one of radius 10nm at
which the steady current I;,, is injected and a second one of 100nm at the junction with
the neck. D. Potential drop along the x-axis computed from the top of the head to the
bottom of the spine. We compare the voltage drop between a spine where L = 1um and
Istim = 300pA (red) with L = 0.5um and I, = 150pA (blue).
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Figure 4: Electrical properties of dendritic spines. A. Averaged voltage computed
in a spine head using PNP (see fig. 3B): for various head radius, the voltage is almost
constant. We position (stars) the estimated radii of different spines head based of their
surface, determined from one photon images expressing ArcLight. B. Resistance com-
puted at steady state voltage and length of a cylindrical cytosol: we simulate PNP (see
Methods) on a wire by injecting a current of 20pA that we compare with the classical
expression for a resistance [16] with R; = 109Qcm. C. PNP simulation showing the con-
centration of positive charges at the end of the neck for the injected current described
in Fig. 2D. The response peaks at {5 = 0.055s. D. Distribution of charges at the peak,
computed from PNP, showing a large concentration difference of 33 mM (the total concen-
tration 163 mM). E. Estimated spine neck resistance (blue stars) computed as the ratio
of the voltage to the current averaged over the time responses R = (V(0,t))/(I(t))
for 5 different spines, revealing how the spine resistance depends on the neck length. F'.
Predicted I-V relation in a dendritic spine for different spine neck radius.
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Figure 5: Summary of dendritic spine electrical responses. A. Schematic represen-
tation of a dendritic spine and equivalent diode circuit where » = 0 means that the ideal
diode has no resistance. The characteristic of the Shockley diode is I, while for the
ideal diode, there is no resistance. B. Electrical response of a spine (Length and radius of
the head are L = R = 1pm) and the radius of the neck a = 0.1um )following a synaptic
input (/ = 100pA) and a BP action potential (BPAP), where the value depend on the
voltage in the dendrite, but it is constant in the spine. C. Modulation of the voltage
between the spine head and the dendrite: the voltage attenuation can be modeled as a

diode to account for the saturation behavior (Fig. 3F). D. Response to a BPAP showing
no voltage change in the spine.
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1 Tables
Table 1: Parameters extracted from modeling
Spine | Neck Length L | Head radius Intrinsic Intrinsic Effective neck
(pum) Thead (pm) | Capa. C(pF) | Res. 1/G (M) | Res. Rpect(MRQ)
1 0.58 1.18 <0.5 128.5 73.3
2 0.696 0.79 <0.5 163.4 57.1
3 0.812 0.67 18 212 99.15
4 1.044 0.75 10 252 132.6
5 1.16 0.60 <0.5 261 134.1

Table 2: Biophysical an geometrical parameters.

Parameter Description Value

z Valence of ions 1

D Diffusion coefficient 200pm? /s [37]

D, Diff. coeff. for + charges | D

D,, Diff. coeff. for — charges | D

C, + charge concentration | 167mol/m? [2§]

Ch, — charge concentration | 167mol/m? [28]

Q Spine head Q (volume || ~ 1fL) [5]
a Spine neck radius (typical) 0.1pm|[35]
L Spine neck length (typical) 1um

T Temperature 293.15K

E Energy kT = 2.58 x 1072%eV
e Electron charge 1.6 x 1071°C

€ Dielectric constant e =280

€0 Abs. Dielectric constant | 8.8 1072 F/m

k Boltzmann constant 1.38-107% J/K

F Faraday constant 96485 As/mol
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