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Abstract 

Previous attempts at characterizing the spatial specificity of the blood oxygena-
tion level dependent functional MRI (BOLD fMRI) response by estimating its 
point-spread function (PSF) have conventionally relied on spatial representa-
tions of visual stimuli in area V1. Consequently, their estimates were con-
founded by the width and scatter of receptive fields of V1 neurons. Here, we 
circumvent these limits by instead using the inherent cortical spatial organiza-
tion of ocular dominance columns (ODCs) to determine the PSF for both Gra-
dient Echo (GE) and Spin Echo (SE) BOLD imaging at 7 Tesla. By applying 
Markov Chain Monte Carlo sampling on a probabilistic generative model of 
imaging ODCs, we quantified the PSFs that best predict the spatial structure 
and magnitude of differential ODCs’ responses. Prior distributions for the ODC 
model parameters were determined by analyzing published data of cytochrome 
oxidase patterns from post-mortem histology of human V1 and of neurophysio-
logical ocular dominance indices. The most probable PSF full-widths at half-
maximum were 0.82 mm (SE) and 1.02 mm (GE). Our results provide a quan-
titative basis for the spatial specificity of BOLD fMRI at ultra-high fields, which 
can be used for planning and interpretation of high-resolution differential 
fMRI of fine-scale cortical organizations. 

Introduction 

Functional magnetic resonance imaging (fMRI) of the human brain is increas-
ingly being used to investigate fine-scale structures such as cortical columns 
(Cheng	  et	  al.,	  2001;	  De	  Martino	  et	  al.,	  2015;	  Goodyear	  and	  Menon,	  2001;	  Menon	  
et	  al.,	  1997;	  Shmuel	  et	  al.,	  2010;	  Yacoub	  et	  al.,	  2008;	  2007;	  Zimmermann	  et	  al.,	  
2011). To optimally plan high-resolution fMRI studies and to correctly inter-
pret their results it is necessary to know the inherent limits of the fMRI spatial 
specificity relative to the sites where changes in neuronal activity occur. 

The most commonly used fMRI approach relies on gradient echo (GE) 
blood oxygenation level dependent (BOLD) contrast (Bandettini	   et	   al.,	   1992;	  
Kwong	  et	  al.,	  1992;	  Ogawa	  et	  al.,	  1990;	  1992). GE BOLD is sensitive to the intra- 
and extravascular effects of activation-induced changes in the deoxy-
hemoglobin content of blood. At standard magnetic field strengths (1.5 T, 3 T) 
the signal is dominated by contributions from larger blood vessels. At higher 
magnetic field strengths the strong intravascular component of these large 
blood vessels decreases, while the extravascular signal changes around capil-
laries and smaller vessels increase (Uludağ	  et	  al.,	  2009;	  Yacoub	  et	  al.,	  2001). Ad-
ditional weighting towards the microvasculature can be achieved by using spin 
echo (SE) BOLD imaging, which suppresses extravascular signal contributions 
from larger blood vessels (Uludağ	  et	  al.,	  2009;	  Yacoub	  et	  al.,	  2003). 

The first study to quantify the spatial specificity of the BOLD response (En-‐
gel	  et	  al.,	  1997) used an elegant phase-encoding paradigm that induced travel-
ing waves of retinotopic neural activity in the primary visual cortex (V1). As-
suming a shift-invariant linear response, Engel et al. (1997) estimated the 
point-spread function (PSF), which represents the spatial response that would 
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be elicited by a small point stimulus. They found the full-width at half-
maximum (FWHM) of the GE BOLD PSF to be 3.5 mm at 1.5 T. Similar values 
(3.9 mm for GE BOLD and 3.4 mm for SE BOLD) have been reported at 3 T 
(Parkes	   et	   al.,	   2005) using a paradigm similar to that used in Engel et al.  
(1997). To estimate the GE BOLD PSF at 7 T, we previously measured the spa-
tiotemporal spread of the fMRI response in grey matter regions around the V1 
representation of edges of visual stimuli (Shmuel	  et	  al.,	  2007). To reduce con-
tributions from macroscopic veins, we excluded voxels that showed vessel-like 
response features. The mean measured and estimated FWHMs were 2.34 ± 
0.20 mm and < 2 mm, respectively. The spatial specificity of SE BOLD fMRI at 
ultra-high magnetic fields has not yet been quantified. 

All previous attempts at characterizing the spatial specificity of the BOLD 
fMRI response (Engel et al., 1997; Parkes et al., 2005; Shmuel et al., 2007) 
relied on an implicit assumption that neuronal responses to small visual stimu-
li  are point-like. However, to estimate the spatial specificity of the BOLD re-
sponse, these studies have conventionally relied on spatial representations of 
visual stimuli in area V1. Unlike the implicit assumption of point-like respons-
es, the receptive fields of neurons in V1 have non-zero spatial extents (Hubel 
and Wiesel, 1968). In addition, electrode measurements in macaque V1, ori-
ented orthogonally relative to the surface of cortex have demonstrated sub-
stantial scatter in the center of receptive fields (Hubel and Wiesel, 1974). 
Therefore, the pattern of neural activity parallel to the cortical surface is a 
blurred representation of the visual stimulus. This implies that receptive field 
size and scatter pose a lower limit on any BOLD fMRI PSF width that is esti-
mated using spatial representations of visual stimuli in V1. Consequently, the 
previously computed estimates of the spatial specificity of the fMRI response 
were confounded by the width and scatter of receptive fields of V1 neurons. 
Such estimates are limited in that they solely measure the capacity of the 
BOLD response to resolve retinotopic representations; they do not measure its 
ability to resolve more fine-grained neural activity. Yet only this latter resolva-
bility matters for functional imaging at the spatial scale of cortical columns. 

Here, we estimate and compare the PSF widths of GE and SE BOLD imag-
ing at 7 T using a novel approach. We circumvent the limits posed by the reti-
notopic representation of visual stimuli by instead using the inherent cortical 
spatial organization of ocular dominance columns (ODCs). To this end, we fit 
a model of ODCs imaging (Chaimow et al., 2011) to ODCs responses acquired 
at 7 T (Yacoub et al., 2007). We quantify the width of the PSF that best pre-
dicts the spatial structure and magnitude of differential ODC responses.  Since 
we do not have access to the underlying anatomical ODC patterns and neuro-
physiological responses, we use a probabilistic modeling approach. We con-
strain the model ODC parameters by estimating features of real ODC patterns 
taken from post-mortem cytochrome oxidase (CO) maps of human ODCs (Ad-
ams et al., 2007) and neurophysiological response distributions in primates 
(Berens et al., 2008; Hubel and Wiesel, 1968). We then fit our model by Mar-
kov Chain Monte Carlo (MCMC) sampling. Our results provide a quantitative 
basis for the spatial specificity of differential BOLD fMRI at ultra-high fields. 
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Methods 

Overview 
We developed a probabilistic generative model of imaging ODCs in order to 
estimate widths of GE and SE BOLD PSFs that would best explain our previ-
ously obtained fMRI data of differential ODC maps (Yacoub	  et	  al.,	  2007). 

The measured fMRI maps consisted of voxel estimates of the difference in 
BOLD responses to left and right eye stimulation.  We modeled these responses 
as the sum of predictions from an ODC imaging model and measurement 
noise. The predictions from the ODC imaging model were completely deter-
mined by a set of parameters. Accounting for the effect of the measurement 
noise allowed us to first express the probability of observing the measured 
fMRI maps as a function of model parameters. In a second stage, we derived 
the posterior probability of the model parameters given the observed data and 
the prior probability of parameters. 

 
Fig. 1 Overview of Markov Chain Monte Carlo fitting. The model was fitted to the fMRI data using Mar-
kov Chain Monte Carlo (MCMC) sampling. For an arbitrary given set of parameters, the model generated 
a differential fMRI map (left). This map was compared to the measured fMRI map (right) and the likeli-
hood of parameters given the data was calculated. The MCMC algorithm uses this likelihood together 
with parameter priors to further traverse the parameter space. After sufficiently many iterations the re-
sulting parameter samples are distributed according to their joint posterior probability distribution. 

Model of imaging ODCs 
We implemented a model of imaging ODCs (Chaimow	  et	  al.,	  2011;	  see	  Fig.	  1	  for	  
an	  overview;	  see	  Appendix	  A	   in	   the	  Suppl.	  Material	   for	   the	  detailed	  equations). 
The first component of the model, i.e. the modeling of realistic ODCs, followed 
(Rojer	  and	  Schwartz,	  1990). It consisted of band-pass filtering of spatial white 
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noise using an anisotropic filter. The filtering was followed by applying a sig-
moidal point-wise non-linearity, which controlled the smoothness of transi-
tions between left and right eye preference regions.  

The spatial BOLD response was modeled as a convolution of the ODCs pat-
tern with a Gaussian PSF. We modeled separate BOLD responses for the GE 
and SE maps. However, as these maps were obtained from the exact same re-
gion in area V1 in each subject, the model constituted one ODC map underly-
ing both the GE and SE responses. MRI k-space sampling was modeled by re-
stricting the spatial frequency space to its central part in accordance with the 
modeled field of view, sampling matrix and voxel size (Haacke	  et	  al.,	  1999).  

All model parameters are listed in Table 1. Three parameters controlled 
general ODC properties: the main (peak) spatial frequency ρ, the degree of ir-
regularity δ and the branchiness ϵ.  The spatial white noise served as a high-
dimensional parameter determining the specific manifestation of the ODC pat-
tern. A parameter ω  controlled the smoothness of transitions between regions 
showing left and right eye preference. The PSFs of the BOLD responses were 
parameterized by amplitudes 𝛽!"  and 𝛽!"  and by their FWHM 𝑓𝑤ℎ𝑚!"  and 
𝑓𝑤ℎ𝑚!" (the parameters of interest). 

Relative to our previously published model, we made 2 slight modifica-
tions. First, to simplify derivation of the gradient we subsequently used for im-
plementing the MCMC sampling, we modified the formulation of the band-
pass filtering kernel (see Appendix A). Second, due to consideration of step 
size determined by the MCMC algorithm, we defined and used a smoothness 
parameter ω instead of using its inverse, the sharpness parameter α which we 
used previously. 

Model implementation 
The model was implemented in MATLAB (The MathWorks Inc., Natick, MA, 
USA). All model computations were carried out on a Cartesian grid of 0.125 × 
0.125 mm2 resolution. Spatial filtering used for the ODC and BOLD PSF model-
ing was carried out in the frequency domain using discrete Fourier transforms. 
The discrete Fourier transform assumes signals to be periodic, thereby forcing 
opposite edges of the grid to be continuous. In order to minimize this effect on 
modeling, the simulated area was extended relative to the data by doubling 
the length of each dimension. 

Prior estimation 
Table 1 presents an overview of employed priors for all parameters. The spa-
tial Gaussian white noise had an independent multivariate normal distribution 
with a standard deviation of 1 as its prior. Priors for the ODC model parame-
ters were estimated from anatomical and neurophysiological data as described 
in the following sections. 
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Table 1 Model Parameters. Free parameters are probabilistic parameters. We used MCMC to sample 
from their joint distribution. Fixed parameters were estimated directly from the data and were held con-
stant during MCMC sampling. 

Free  
parameters 

Description Prior MCMC starting value 

𝒏𝒊,𝒋 Spatial white noise to be 
filtered, determines 
specific ODC pattern 

Multivariate standard 
normal distribution 

Up-sampled differential 
fMRI map, normalized to 
have a standard deviation 
of 1 

     
𝝆 Main spatial frequency of 

ODC 
Limited normal 
distribution, parameters 
estimated from 
anatomical data 

Set to mean of estimates 
from anatomical data 

𝜹 Irregularity Normal distribution, 
parameters estimated 
from anatomical data 

Set to mean of estimates 
from anatomical data 

𝝐 Branchiness Normal distribution, 
parameters estimated 
from anatomical data 

Set to mean of estimates 
from anatomical data 

𝝎 Smoothness of 
transitions 

Uniform between 0.3 and 
2 based on 
neurophysiology data 

Set to mean of limits 

𝜽 Orientation of ODC Flat 𝜋/2 (corresponds to ODC 
bands parallel to medio-
lateral direction) 

    
𝒇𝒘𝒉𝒎𝑮𝑬 GE point-spread-function 

width (full width at half 
maximum) 
 

Flat 2 mm 

𝒇𝒘𝒉𝒎𝑺𝑬	   SE point-spread-function 
width (full width at half 
maximum) 
 

Flat 2 mm 

Fixed 
parameters 

Description Estimation  

𝜷𝑮𝑬	   GE response amplitude Twice the median across voxels of the average between 
GE responses to left and right eye stimulation 

𝜷𝑺𝑬	   SE response amplitude Twice the median across voxels of the average between 
SE responses to left and right eye stimulation 

𝝈𝟐𝑮𝑬	   GE measurement noise 
variance 

Mean across voxels of estimation variance of differential 
GE response  

𝝈𝟐𝑺𝑬	   SE measurement noise 
variance 

Mean across voxels of estimation variance of differential 
SE response  

 

Estimation of priors from cytochrome oxidase data 
Four single hemisphere images of complete patterns of ODCs in the human 
brain taken from Adams et al. (2007) were reanalyzed. These images were 
originally obtained by postmortem staining for CO activity in human subjects 
who had lost one eye. The goal of this analysis was to find model parameters 
that gave rise to modeled ODC maps whose spatial power spectra most closely 
resemble those of real human ODCs (Fig. 2). 
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Fig. 2 Overview of cytochrome oxidase fitting. In order to constrain the parameters of the ODC model 
(main spatial frequency, irregularity and branchiness), cytochrome oxidase (CO) maps of human ODCs 
(Adams et al., 2007) were analyzed. Model parameters were optimized so that the spatial power spectra 
of binary ODC maps generated by the model (left) resembled those of the CO maps (right). 

Two rectangular regions from each image, which corresponded in cortical 
location and extent to our fMRI ODC maps, were selected. To this end, V1 
boundaries and the representation of the fovea were delineated. The eccen-
tricity for each point in V1 was computed from the cortical distance to the fo-
vea 𝑑!"#$% as 0.75+ exp !!"#$%

!".!
  (Horton	   and	   Hoyt,	   1991). For every point in 

the map, the two locations on the upper and lower V1 boundary (representing 
the vertical meridians) with eccentricity equal to that of the considered point 
were identified. The angular distances (along points with the same eccentrici-
ty) from the point under consideration to each of those two points on the 
boundary were calculated. The horizontal meridian was defined as the set of 
all V1 points for which those two distances were equal (green line in Fig. 3A).  

The two regions to be selected, corresponding to the upper and lower 
banks of the calcarine sulcus, were then defined using the following criteria. 
First, the spatial extent was set to 15.7 mm x 8 mm, so that the area was equal 
to the mean area of our fMRI regions of interest (ROI) and the aspect ratio was 
equal to the mean aspect ratio of our fMRI ROIs. Second, ROIs had to be 5 mm 
away from the horizontal meridian and centered within an eccentricity range 
of 3° to 10°, corresponding to the expected location of the flat regions of the 
calcarine sulcus (Cheng	  et	  al.,	  2001). 

The pattern of the CO map was binarized, in order to obtain the pattern of 
absolute ocular dominance (i.e. left or right eye preference). Then, for each 
map, we fitted the parameters of the ODC part of the model such that the spa-
tial power spectra of the simulated binarized ODC maps were similar to those 
of the CO maps of ODCs (Fig. 3B, measured ODC; Fig. 3C, simulated ODC). 
For a model that consists of the filtering of spatial white noise only (i.e. with-
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out a sigmoidal point-wise non-linearity or binarization), the frequency spec-
trum of the output is expected to resemble the filter shape. Here, the spatial 
frequency spectra of the binarized CO maps were used to obtain first estimates 
of the ODC filter parameters. To that end, spectra were resampled to polar co-
ordinates and their radial and angular averages were computed. Model equa-
tions for the radial and angular filter components (see Appendix A) were fitted 
to these averages using the MATLAB Curve Fitting Toolbox, enabling the ex-
traction of parameter estimates (𝜌, 𝛿,𝜃, 𝜖). Random binary ODC patterns (400 
in each step) were simulated using these estimates as initial values. Their 
power spectra were averaged, and the sum of squared differences between the 
data spectrum and the average simulated spectrum was computed. An optimi-
zation algorithm in MATLAB (fminsearch;	   Lagarias	   et	   al.,	   1998) was used to 
find parameters that minimized this sum of squared differences. 

 
Fig. 3 Results of cytochrome oxidase ODC map analysis. A Cytochrome oxidase ODC maps from human 
V1 were imported from Adams et al. (2007). Regions of interest (ROIs) were selected to be comparable 
in size and location to our fMRI data. B The ODC pattern from the selected upper bank region (left) is 
shown next to its spatial power spectrum (right). C Model parameters were optimized to produce simu-
lated patterns (left) whose average spectrum (right) was comparable to the spectrum of the data in B. D 
The patterns from the upper and lower bank regions of all four cases are shown with color-coded sur-
rounds. E The estimated values of model parameters from all patterns are shown as vertical lines using 
the same colors as in D. Dashed lines indicate values from patterns that were classified as outliers in the 
distribution of spatial frequency, irregularity, or branchiness. The mean and standard deviation of the 
remaining values were used to define Gaussian distributions (black) to be used as priors for fitting the 
model to the fMRI data. 
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Three maps and their fitted parameters showed outlier features.  For ex-
ample, ‘case5R upper’ (Fig 3D, red surround) showed very thin bands in one 
region (upper left) immediately adjacent to a region of thicker bands (bottom 
right), resulting in outlier estimates of irregularity and branchiness (red lines 
in Fig. 3E, middle and bottom panels). Such abrupt changes may have resulted 
from the processing of anatomical specimens or from the presence of curved 
boundaries between locally flat regions. 

In order to avoid atypical parameters estimates, parameter values whose 
absolute deviation from the median exceeded 3.7 times the median absolute 
deviation (corresponding	   to	   2.5	   standard	   deviations	   of	   a	   normal	   distribution;	  
Leys	  et	  al.,	  2013) were marked as outliers. Maps in which at least one parame-
ter was marked as an outlier were excluded from further analysis. This proce-
dure resulted in the exclusion of three maps (cases 2R, 3R and 5R upper) from 
further analysis. 

For each parameter, model priors were defined as normal distributions 
with means and standard deviations equal to the sample means and standard 
deviations of parameter values from the remaining maps. In order to further 
discourage extreme parameter values, we set the prior for 𝜌  outside two 
standard deviations from the mean to zero.  

Estimation of a prior for the smoothness parameter 𝜔 
A prior for the smoothness parameter 𝜔 was constructed on the basis of ocular 
dominance indices (ODIs) as reported in the neurophysiological literature. We 
assumed that ODI distributions in humans are similar to those in the macaque. 

ODIs are defined as 𝑂𝐷𝐼 =    !!"#$!!!"#!!
!!"#$!!!"#!!

 , where 𝑦!"#$ and 𝑦!"#!! denote the 

response values to stimuli presented to the left and right eye respectively (e.g.	  
Berens	  et	  al.,	  2008). ODIs were calculated from differential ODC maps generat-
ed by our model and fit to ODI distributions from the literature (Berens	  et	  al.,	  
2008;	  Hubel	  and	  Wiesel,	  1968). 𝜔 was allowed to vary while all other parame-
ters were fixed as the mean of their anatomical data estimates. The value of 𝜔 
that resulted in the smallest Kullback-Leibler divergence between the modeled 
and the target distribution was selected. 

In order to fit modeled ODI distributions to the seven-class classification of 
Hubel and Wiesel (1968), classes 1 and 7 were collapsed into an exclusively 
responding class (left or right eye). Classes 2, 3, 5 and 6 were collapsed into 
an intermediately responding class, with class 4 responding indifferently. 
Modeled ODI distributions were also transformed into these three classes. The 
range of absolute ODIs that were assigned to the exclusively responding class 
and to the indifferently responding class were defined by a class width param-
eter. The values of 𝜔 and of the width parameter that together resulted in the 
smallest Kullback-Leibler divergence between the modeled and the target dis-
tribution were selected. 

fMRI Data acquisition 
7 T BOLD fMRI data from Yacoub et al. (2007) were reanalyzed. The data 
were obtained from three subjects in six sessions each, using GE (three ses-
sions) and SE (three sessions) imaging. The target ROI of one subject was unu-
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sually and densely covered by large blood vessels. We therefore excluded the 
data from this subject and used the two other datasets. A single slice was im-
aged; it was selected such that it was parallel to and maximally overlapping 
with a flat gray matter region of the calcarine sulcus. The in-plane resolution 
was 0.5 × 0.5 mm2 and the slice thickness was 3 mm. Each run included a 
baseline epoch, in which a blank gray image was presented, and alternating 
epochs of left or right eye stimulation. Detailed descriptions of the methods 
used for data acquisition can be found in Yacoub et al. (2007). 

fMRI Data processing 

Data reconstruction 
The measured k-space data were preprocessed using dynamic off-resonance in 
k-space (DORK) to remove respiration-induced fluctuations in resonance fre-
quency (Pfeuffer	  et	  al.,	  2002). Subsequently, a Fourier transformation was ap-
plied in order to transform the data to the image space. Three datasets (subject 
2, SE)  were acquired using partial Fourier and were reconstructed using a 
homodyne reconstruction algorithm (Noll	  et	  al.,	  1991). 

Motion correction 
Residual head motion was corrected using AFNI’s 3dvolreg (Cox	   and	   Jesman-‐
owicz,	   1999). This algorithm requires multiple slices; therefore, identical cop-
ies of the slice were concatenated from above and below. The additional slices 
were later discarded from the output of the algorithm. The reference volume 
in each run was set to the volume with the highest average correlation to all 
other volumes. Each run was motion-corrected using the two-passes option 
and Fourier interpolation. All volumes for which any voxel was displaced more 
than 1 mm relative to the reference volume were marked as motion outliers 
and were later excluded from the general linear model (GLM) analysis. All re-
sulting transformation matrices were saved. 

Between-run motion correction was carried out by first averaging all with-
in-run corrected volumes from each run. Next, the series created from concat-
enating these single-run averages was corrected in the same manner as de-
scribed above. Again, all transformation matrices were saved. 

Finally, the within-run corrected data was transformed by applying the 
saved between-run transformations. The resulting combination of two interpo-
lations (within- and between-runs) was created for intermediate use only. For 
our quantitative analysis of the PSF, only one interpolation was applied. This 
one interpolation accounted for all alignments and registrations of the data 
(see below). 

Outlier volume detection 
For every volume, the measured fMRI signal in each voxel was compared to 
the entire time-course of that voxel by computing the z-score of the measured 
fMRI signal relative to the voxel’s time series across all other volumes. Volumes 
that were already marked as motion outliers were not included in this calcula-
tion. The volume under consideration was marked as an outlier volume if the 
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average of z-scores across all voxels was larger than 2. Outlier volumes were 
later excluded from the GLM analysis. 

Between-days and between-modality registration 
ROIs for each session were imported from our previous analysis of the data 
(Yacoub	  et	  al.,	  2007). For each modality (GE or SE), between-days registration 
was performed using mean intensity images averaged over all runs of a given 
day. First, the single-day ROIs were aligned according to their centers of mass. 
Next, each day’s mean intensity image was cropped such that all images con-
tained the same amount of space around their ROIs, the ROIs were in the same 
position, and all cropped images were of equal size. Weight masks were calcu-
lated for each day by assigning a weight of one to all voxels inside the ROI and 
zero to all voxels further away from the ROI than 25 mm. Voxels outside of the 
ROI but closer than 25 mm were assigned an intermediate weight that varied 
smoothly between one and zero according to the function 
0.5 cos 𝜋 !!"#

!"  !!
+   1 , where 𝑑!"# is the shortest distance to the ROI. Out of 

the three days, the one whose mean intensity image had the highest average 
correlation to those of all other days (weighted by the mask) was selected as 
the reference day. Each day was registered to the reference day using FSL’s 
flirt 2D registration without large-scale search (Jenkinson	  et	  al.,	  2002;	  Jenkinson	  
and	   Smith,	   2001), using the weight masks and normalized correlation as the 
cost function. All transformations were saved. 

Initial between-modality (GE and SE) registration was carried out using the 
registered GE and SE images averaged over all days. A procedure similar to 
that used for within-modality registration was employed, except that the corre-
lation ratio served as the cost function. For the data of subject 1, AFNI’s 
3dvolreg (using the same options as in motion correction) produced a better 
registration than FSL’s flirt based on visual inspection, and was therefore used 

All registration results were visually inspected. Residual misalignments 
found in one day of subject 1 and one day of subject 2 were manually correct-
ed. 

Data resampling 
In order to avoid smoothing of the data due to multiple interpolations, all 
transformation matrices (within-run motion correction, between-run motion 
correction, between-days within-modality registration and between-modalities 
registration) were combined. All unprocessed data was transformed using one 
single Fourier interpolation per volume using AFNI’s 3drotate (Cox	   and	   Jes-‐
manowicz,	  1999). 

GLM analysis 
For each run, a GLM was fit to each single voxel time-course. The model con-
sisted of a constant predictor and the two stimulation paradigms (left and right 
eye stimulation) convolved with a standard hemodynamic response function. 
Volumes that were previously determined to be outliers due to extensive head 
motion or imaging artifacts were excluded from the fit. Relative responses 
were calculated by dividing the estimated stimulus response magnitudes by the 
estimated constant baseline. Differential responses were calculated as the dif-
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ference between left and right eye responses. Unspecific responses were calcu-
lated as the average between left and right eye responses. In addition, stand-
ard errors of all estimates were calculated. For visualization purposes only, es-
timated response maps as well as modeled response maps were interpolated to 
0.25 × 0.25 mm2 resolution by zero-padding in spatial frequency space and 
were band-pass filtered for eliminating cycles shorter than 1.25 mm and longer 
than 12 mm. 

Multi-run and multi-day averaging 
Standard errors were comparable between runs and days. Accordingly, single-
day responses were calculated by averaging the GLM estimates of the single-
run responses. Likewise, responses for each subject and imaging modality (GE 
or SE) were estimated by averaging single-day responses. 

Standard errors for these averaged responses were estimated as standard 
errors of the mean from the distribution of single-day responses. Averaged re-
sponse maps from all three days were used for further processing for subject 1. 
For subject 2, between-days correlation of a pair of SE sessions was significant-
ly lower than those obtained from all other pairs in our data. We therefore av-
eraged only the two most reproducible SE sessions (highest correlation of dif-
ferential responses) and, separately, the two most reproducible GE sessions in 
order to achieve equal processing between SE and GE. 

Optimization of between-modality registration using differential maps 
Between-modality registration was further optimized. The GE and SE differen-
tial maps were shifted relative to each other vertically and horizontally by mul-
tiples of a quarter voxel up to three voxels in each direction and the set of 
shifts that resulted in the highest correlation between differential GE and SE 
maps was saved. To avoid multiple interpolations, this shift was combined 
with all previously found transformations (i.e. motion correction and registra-
tion) into a single transformation and interpolation. All unprocessed data were 
transformed over again as described above, followed by GLM analysis, multi-
run and multi-day averaging. 

Quantities used for MCMC fitting 
Image artifacts, noise and blood vessels may result in some voxels with ex-
treme differential responses that would have a disproportionate effect on fit-
ting the model. For this reason, all voxels with a differential response showing 
absolute deviation from the median exceeding 3.7 times the median absolute 
deviation (corresponding	   to	   2.5	   standard	   deviations	   of	   a	   normal	   distribution;	  
Leys	   et	   al.,	   2013) were excluded (percentage of excluded voxels in subject 1: 
5.0% GE and 4.1% SE, in subject 2: 2.8% GE and 2.3% SE). Note that alt-
hough this procedure may have removed some voxels with large vessel contri-
butions, it was not meant to systematically remove all voxels with such contri-
butions (see discussion). We then calculated the median unspecific response 
and the root mean square (RMS) of the differential response standard errors 
from the remaining voxels. We set the maximum response amplitudes 𝛽!" and 
𝛽!" to twice the median of the left/right averaged GE and SE responses, re-
spectively, as defined by the model. 
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MCMC fitting 
The posterior probability of GE and SE PSF widths given the data and priors 
over parameters was estimated using MCMC sampling (Fig. 1). MCMC sam-
pling was implemented using a Hamiltonian Monte Carlo algorithm (Duane	  et	  
al.,	  1987;	  see	  Neal,	  2011	  for	  a	  more	  recent	  review). 

The algorithm requires input in the form of a function that computes the 
negative log posterior probability (the potential energy of the model; see Ap-
pendix B in the Suppl. Material) and its gradient (see Appendix C in the Suppl. 
Material). The log posterior probability depends on model parameter values, 
their prior probabilities, the data and the uncertainty of the data. The data in 
this sense were the maps of measured differential GE and SE responses within 
the ROI that were not excluded as outliers. The uncertainty of the data was 
characterized by the RMS of differential response standard errors, calculated 
separately for GE and SE. The exact form of the log posterior probability and 
derivations of the formulae for efficient computation of its gradient are de-
scribed in the Appendix. 

Two parameters determine the dynamics of parameter space exploration. 
The first parameter, the number of leapfrog steps per iteration, was set to a 
value of 20. The second parameter, the step size, was initially set to 0.005 and 
was adjusted adaptively so that the acceptance probability stayed close to the 
theoretical optimum of 0.651 (Neal,	  2011). In addition, the step size was var-
ied randomly within a range of ±20% to avoid periodicity in the trajectories 
(Neal,	  2011). 

Initial values used for all model parameters can be found in Table 1. 
The MCMC algorithm was run for 512,000 iterations, of which every 256th 

sample was retained. The set of all retained samples is an approximation to the 
joint posterior probability distribution of all parameters given the data and the 
model, while taking prior distributions into account.  

See the attached video, that demonstrates the initial stages of the fitting. 

Analysis of MCMC sampling results 
The samples of PSF widths were binned into 0.04 mm wide intervals. We then 
identified the bin that contained the highest number of samples, which is the 
maximum a posteriori probability estimate obtained from the marginal distri-
bution for the PSF width. Highest marginal posterior density credible intervals 
at the 95% level were computed by selecting the narrowest intervals contain-
ing 95% of the PSF width samples. 

MCMC sampling diagnostics 
The quality of the MCMC sampling process was assessed by visual inspection 
of parameter sample traces, autocorrelation estimates of the samples traces 
and the Geweke diagnostic, which is a z-test for difference between sample 
means in the first 10% and last 50% of samples (Geweke,	  1991).  

Estimation of 𝑇!/𝑇!∗ blurring or sharpening effect 
Imaging modulation transfer functions (MTF) were estimated from the last 
volume of each run in which the phase-encode gradients were switched off 
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(Kemper	  et	  al.,	  2015). This resulted in read-out lines that were expected to vary 
in amplitude only, according to the phase-encode direction imaging MTF (re-
flecting  𝑇!/𝑇!∗ decay as experienced by all normally acquired volumes). First, 
the peak position along the read-out direction was found from the average of 
the absolute magnitudes computed over all read-out lines. Next, the imaging 
MTF was estimated by combining the absolute magnitudes of all read-out lines 
at the peak position into a vector. 

We estimated the blurring or sharpening due to 𝑇!/𝑇!∗ decay as a separate 
effect from the effect of finite and discrete MR sampling (for	  more	  details	  see	  
Chaimow	  and	  Shmuel,	  2016). To this end, the complex imaging PSF was com-
puted by applying a discrete Fourier transform to the estimated imaging MTF.  

Convolution of the original pattern with the real component of the complex 
imaging PSF is an approximation to the full MRI acquisition (Chaimow	   and	  
Shmuel,	   2016), including the last stage of taking the absolute of the complex 
values obtained at the end of the reconstruction.  

We computed the inverse discrete Fourier transform of the real component 
of the complex imaging PSF, resulting in its MTF. Two Gaussian functions with 
zero means were separately fitted to the MTF of the real component of the 
complex PSF and to its inverse. Then, we compared the goodness of fit (R2) 
obtained by the two fitted Gaussians. If the better fit was obtained by fitting a 
Gaussian to the MTF of the real component of the complex PSF, the effect of 
𝑇!/𝑇!∗  could be described as Gaussian blurring. If the better fit was obtained 
by fitting a Gaussian to the inverse of the MTF of the real component, the ef-
fect of 𝑇!/𝑇!∗  could be described as a sharpening that could reverse a specific 
Gaussian blurring. 

We therefore computed the FWHM of the Gaussian with the better good-
ness of fit (obtained by fitting to either the MTF of the real component or to its 
inverse).  

Note that in the case of sharpening, the computed FWHM characterizes the 
Gaussian ‘used’ for blurring which would be reversed by the sharpening effect 
of the 𝑇!/𝑇!∗ decay. FWHM estimates for each modality were first averaged 
over all runs of each session (day) and then over all sessions of each subject. 

Inclusion of T2/T2* blurring in the model 
A version of our model that included the effect of 𝑇!/𝑇!∗ decay was fitted to our 
data. Depending on whether the 𝑇!/𝑇!∗ decay effect resulted in blurring or 
sharpening, the BOLD MTF (Appendix A, BOLD response) was changed to: 
𝑀𝑇𝐹!,! 𝑓𝑤ℎ𝑚,𝛽 = 𝛽 ∙ 𝑒!!!!!!"#$

! ∙! !,! ∙ 𝑒!!!^!∙!!"#
! ∙!!  (for blurring) or 

𝑀𝑇𝐹!,! 𝑓𝑤ℎ𝑚,𝛽 = 𝛽 ∙ 1/𝑒!!!!!!"#$
! ∙! !,! ∙ 𝑒!!!^!∙!!"#

! ∙!!(for sharpening), where  
𝜎!"# = 𝑓𝑤ℎ𝑚!"#/2 2𝑙𝑜𝑔2    and 𝑓𝑤ℎ𝑚!"#  is the estimated FWHM of the 
Gaussian blurring kernel that models the effect of 𝑇!/𝑇!∗ decay. We assumed 
the second dimension (associated with index l) to be the phase-encode dimen-
sion. 
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Results 

Our goal was to fit a probabilistic generative model to maps of ODCs obtained 
with GE- and SE-based BOLD fMRI (Fig. 1). We aimed to infer posterior prob-
ability distributions of model parameters, specifically the width of the GE and 
SE BOLD fMRI PSF. 

Parameter priors obtained from real human ODC 
The ODC imaging model (Chaimow	  et	  al.,	  2011) consisted of simulating realis-
tic ODCs by the filtering of spatial white noise (Rojer	  and	  Schwartz,	  1990) fol-
lowed by a spatial BOLD response and MRI k-space sampling.  

Before we fitted our model to fMRI data, we determined priors for the ODC 
parameters by incorporating statistical information obtained from real human 
ODC patterns (Fig. 2). To this end, we analyzed CO maps of ODCs from hu-
man V1 taken from Adams et al. (2007). 

It should be noted that CO labeling intensities are expected to provide a 
fairly accurate estimate of the preferred eye. However, there are multiple, po-
tentially non-linear transformations between neuronal activity, staining inten-
sity and the final processed image. These make it unlikely that the CO intensi-
ties quantitatively reflect the relative ocular dominance. Therefore, we only 
used binarized versions of these maps, thresholded to represent the absolute 
preference to either left or right eye stimulation). We eventually determined 
priors on ocular dominance from neurophysiological recordings (Berens	  et	  al.,	  
2008;	  Hubel	  and	  Wiesel,	  1968). 

We first restricted the maps of the entire V1 to small regions (Fig. 3A) 
whose size and location were similar to those of our fMRI data (with origins in 
flat regions of the calcarine sulcus). Then, for each map, we fitted the parame-
ters of the ODC part of the model such that the spatial power spectra of the 
simulated binarized ODC maps were similar to those of the CO maps of ODCs 
(Fig. 3B, measured ODC; Fig. 3C, simulated ODC). Simulated maps generated 
using these parameters looked qualitatively similar to the true CO maps (Fig. 
3C). The set of all imported maps is shown in Figure 3D and the estimated pa-
rameters from all maps are shown color-coded in Figure 3E.  

For each parameter we defined Gaussian priors that fit the distribution of 
all remaining parameter estimates (black curves, Fig. 3E). In particular, the 
prior for the main pattern frequency 𝜌 had a mean of 0.57 cycles/mm with a 
standard deviation of 0.1 cycles/mm, which corresponds to an average column 
width of 0.87 mm. 

Smoothness of ODC maps 
In order to construct a prior for the smoothness parameter 𝜔 we analyzed dis-
tributions of ocular dominance indices (ODIs) as reported in the neurophysio-
logical literature. ODIs quantify the relative contributions of each eye to meas-
ured responses, and their distribution is tightly linked to the smoothness pa-
rameter 𝜔. Small values of 𝜔 result in sharp transitions between columns asso-
ciated with ODIs close to +1 or -1. Large values of 𝜔 result in smooth transi-
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tions, with few locations reaching absolute monocular responses and most 
ODIs being close to 0. 

We analyzed ODI distributions taken from Hubel and Wiesel (1968) and 
Berens et al. (2008) by fitting ODI distributions computed from our model as a 
function of smoothness 𝜔. We found a value of 𝜔 = 1.5 to best explain ODI 
distributions corresponding to the data in Berens et al. (2008), whereas the 
data in Hubel and Wiesel (1968) were best fitted with 𝜔 = 0.36. Both datasets 
came from macaque monkeys. Berens et al. (Berens	   et	   al.,	   2008) used multi-
unit activity, a measure whose ODIs are expected to be blurred relative to sin-
gle neuron responses and are therefore expected to match a higher 𝜔.  Data 
from Hubel and Wiesel (Hubel	   and	   Wiesel,	   1968) presented single-unit re-
sponses but were less quantitative. We therefore chose a uniform prior distri-
bution for 𝜔, limited by 0.3 from below and 2 from above, effectively reflect-
ing the range of uncertainty associated with 𝜔. 

GE and SE BOLD maps of ODC 
Having constructed a generative model with realistic priors, the next step was 
to process the fMRI data and to extract all quantities needed to fit the model. 
We reanalyzed fMRI data from two subjects (Yacoub	  et	  al.,	  2007) using a gen-
eral linear model (GLM) to estimate responses to left and right eye stimulation 
(Fig. 4). The single-eye response maps were dominated by global unspecific 
responses and superimposed band-shaped modulations (Fig. 4A). 

We separated these two components by first calculating the voxel-wise dif-
ference between left and right eye responses, yielding the differential ODC 
maps (Fig. 4C). Here, the band-shaped organization is clearly visible. The 
range of differential contrasts as defined by their standard deviation was 1.8% 
(GE) and 1.5% (SE) for subject 1, and 1.0% (GE) and 1.0% (SE) for subject 2. 

In addition, we calculated voxel-wise averages of left and right eye re-
sponses (Fig. 4B). According to our model, which assumes antagonistic pat-
terns of neuronal responses, this average response is expected to be independ-
ent of the local ocular preference. Furthermore, it is expected to be equal to a 
spatially homogeneous response with half the amplitude of the highest possi-
ble ocular dominance (with no response to the non-preferred eye). 

We calculated the median of this left/right average response over all 
voxels. It was 3.0% (GE) and 1.9% (SE) for subject 1, and 3.7% (GE) and 
2.0% (SE) for subject 2. In accordance with the model, we then set the ampli-
tudes of the model PSFs to twice these values. 

Finally, we estimated the measurement noise level of the differential maps 
as the root mean square (RMS) of all standard errors estimated by the GLM 
(Fig. 4D). It was 0.9% (GE) and 0.9% (SE) for subject 1, and 0.6% (GE) and 
0.8% (SE) for subject 2. 
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Fig. 4 fMRI ODC data. Results from the GLM analysis of fMRI data from subject 1 for GE (left) and SE 
(right). A Responses to left and right eye stimulation relative to baseline. B The response maps to the left 
and right eyes from A were averaged. B shows the distribution of the average response. Its median (in 
green) was used to set the overall amplitude of the BOLD response model.  C The difference between left 
and right eye responses yields the differential ODC map. D The distribution of standard errors of all dif-
ferential responses. From this distribution we estimated the noise level used by the model. The color 
look-up-table applies to all response maps. 

Estimation of GE and SE point-spread widths 
We went on to estimate the probability distributions of GE and SE PSF widths 
given our data. Theoretically, this requires integrating the posterior probability 
distribution of model parameters over all other parameters (including the 
high-dimensional spatial noise parameter). However, exact integration over 
this high dimensional space is not feasible. We therefore used MCMC to sam-
ple from the posterior probability distribution. Every sample contains all the 
parameters necessary to simulate one anatomical ODC map and the resulting 
GE and SE fMRI differential maps. The algorithm draws parameter samples 
with a probability proportional to how likely these parameters are to have 
generated the measured data given all the priors. 
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Fig. 5 Results of point-spread width estimation. The probability distribution of PSF given the data was 
estimated using Markov Chain Monte Carlo Sampling. The model simulated GE and SE maps each with 
their own BOLD parameters and with a common underlying ODC map. Results are shown for both sub-
jects. The first row shows the measured differential ocular dominance map from the GE (left) and SE 
(right) experiments. The second row shows the modeled underlying ODC maps (left) and the modeled 
differential fMRI maps from the maximum a posteriori (MAP) sample. The bottom part of the figure 
shows the joint and marginal distributions of GE and SE point-spread full-widths at half-maximum 
(FWHM). The gray rectangles show the 95% credible intervals (highest posterior density interval). The 
scatter plots show that the vast majority of individual GE PSF samples were wider than their SE PSF 
counterparts. The MAP estimates (green bars) obtained from the marginal distributions of the FWHMs of 
the PSFs were 1.04 and 1.0 mm (GE), and 0.8 and 0.84 mm (SE) for subjects 1 and 2 respectively. 

Figure 5 (second row, common ODC) shows one of many possible ODC 
patterns generated by our model. It was generated using the parameter sample 
with the highest posterior probability. Differential BOLD fMRI maps modeled 
as arising from this shared ODC pattern (Fig. 5 second row, model GE and 
model SE) resemble the data closely (Fig. 5 first row, data GE and data SE). 
The distribution of PSF widths from all samples (Fig. 5 bottom) is an estimate 
of the true probability distribution of PSF widths for that data (see the at-
tached video that demonstrates the initial iterations of the fitting procedure). 
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Figure 5 (bottom) and Table 2 present the results of PSF widths. For sub-
ject 1, the most probable (maximum a posteriori estimate obtained from the 
marginal distribution of FWHMs) GE PSF width was 1.04 mm (FWHM), with 
95% of the values falling between 0.85 mm and 1.21 mm. The most probable 
SE PSF width was 0.80 mm, with 95% of the values falling between 0.54 mm 
and 1.03 mm. For subject 2, the most probable GE PSF width was 1.00 mm, 
with 95% of the values falling between 0.84 mm and 1.31 mm. The most 
probable SE PSF width was 0.84 mm, with 95% of the values falling between 
0.53 mm and 1.15 mm. 

Furthermore, the samples of GE and SE PSF widths were correlated. This 
means that ODC model parameters that resulted in a relatively higher GE PSF 
width also resulted in a relatively higher SE PSF width. Across all modeled un-
derlying anatomical ODC patterns, the GE PSF was almost always wider than 
the SE PSF. We calculated the resulting posterior distribution of differences 
between GE and SE PSF widths. The bottom part of Table 2 summarizes the 
estimated differences for the two subjects. For subject 1, the most probable dif-
ference was 0.24 mm, with 95% of the values falling between 0.14 mm and 
0.38 mm. The most probable difference obtained for subject 2 was 0.24 mm, 
with 95% of the values falling between 0.05 mm and 0.42 mm. 

 

Evaluation of model fit 
The validity of our results depends on how well the MCMC samples approxi-
mate the target distribution. The MCMC sampling distribution approaches the 
target distribution when the number of iterations goes to infinity (e.g.	  see	  Neal,	  
1993). For sufficiently large number of iterations, MCMC effectively samples 
from the target distribution. 

While there cannot be proof that the target distribution has been reached, 
there are a number of indications that are considered reliable. The first is that 
the traces of samples of all parameters have settled into a stationary distribu-
tion, with no slow drifts over iterations. This can be seen in the single parame-
ter trace plots (Fig. 6, first column) and their autocorrelation plots (Fig. 6, se-
cond column). In addition, the Geweke diagnostic (Geweke,	  1991) shows that 
for all single parameters the mean of the first 10% of the samples was not sig-
nificantly different from the last 50% of the samples (|z|<1.96). The Geweke 
diagnostics for the high-dimensional noise follow a standard normal distribu-
tion (Fig. 6, bottom, distribution of z-scores), as would be expected by chance 
under the hypothesis that the means are not different. Figure 6 also shows the 
dependences between PSF widths and ODC parameters (last two columns). As 
can be seen, higher levels of smoothness parameter (𝜔) values and to a lesser 
extent lower levels of the main spatial frequency parameter (𝜌) values made a 
narrower PSF more likely. 
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Fig. 6 Convergence diagnostics of Markov Chain Monte Carlo sampling. Markov Chain Monte Carlo 
needs to run for a sufficient number of iterations in order to yield samples from the modeled probability 
distribution. Indications for convergence are: (1) stationarity of the parameter sampling distributions, 
and (2) sample autocorrelations decrease rapidly with increasing lag, relative to the total number of 
samples. This figure examines convergence for subject 1. The upper part of the figure (A) shows diagnos-
tics for the standard model parameters. The bottom part (B) shows diagnostics for the white noise values 
that act as parameters to determine the ODC pattern. The first column (A and B) shows traces of the 
sampled parameters. For the noise values (B), one exemplary trace is shown from the center of the map. 
The second column (A and B) shows sample autocorrelations as a function of lag. The horizontal blue 
lines (A) indicate the 95%-confidence bounds around 0 for a white noise process. Consecutive samples 
(lag=1) show low autocorrelation. However, samples of lag 2 (and higher) show autocorrelation esti-
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mates that are comparable to those obtained from uncorrelated white noise. In B, the autocorrelation 
from the noise samples are summarized by the histogram of lag-2 autocorrelations from all coordinates 
together. Here, 95%-confidence bounds for a white noise process are indicated by vertical blue lines. The 
third column (A and B) presents the Geweke convergence (stationarity) diagnostic, which is a z-test (z-
scores shown in green) for testing whether the means of the first 10% and last 50% of samples are differ-
ent. In A, 2 histograms per each parameter show how similar their respective distributions are. In B, the 
z-scores from the noise samples are shown as a histogram together with a blue plot of the standard nor-
mal probability density representing the null-hypothesis of z=0.  The last two columns (A) show the 
sample covariation between each parameter (vertical axis) and the GE and SE point-spread function 
FWHM (horizontal axis). 

Discussion 

Possible confounds: our estimates are upper bounds of BOLD fMRI spatial 
specificity 
The PSF widths that we estimated (1.02 mm for GE BOLD, 0.82 mm for SE 
BOLD) reflect the realistically achievable spatial specificity of BOLD signals at 
ultra-high field strength (7T). However, they are only upper bounds for the 
true BOLD PSF widths. Subjects’ head motion, data interpolation and intra-
acquisition 𝑇!/𝑇!∗ decay can all introduce additional blurring (but see section 
below on the effect of 𝑇!/𝑇!∗ decay), causing the estimated PSF to be wider 
than the true PSF. 

In order to minimize head motion, data was acquired from trained subjects 
using a bite bar. Before each scan, the position of the region of interest (ROI) 
was checked and the slices repositioned if necessary. We corrected the data for 
residual head motion and discarded any problematic volumes. We aligned data 
from multiple days and checked the alignment carefully. In order to further 
optimize between-modality registrations, we also took the differential fMRI 
response patterns into account, making use of the fact that they emerged from 
the same underlying neuronal ODC pattern.  

Motion correction and between-day registration required spatial interpola-
tion of the data. We minimized any blurring effects by applying all spatial 
transformations combined using one single Fourier interpolation (Cox and 
Jesmanowicz, 1999). 

All high spatial resolution BOLD fMRI experiments will be influenced by 
these effects to a similar degree as ours, making our reported PSF widths good 
estimates for the practically relevant compound effect. 

Possible confounds: the contribution of the imaging PSF to the total BOLD 
fMRI PSF 
In addition to the effects of the hemodynamic and metabolic responses on the 
spatial specificity of fMRI, the MRI acquisition process influences the effective 
resolution of the acquired images. Specifically, the sampling of k-space by 
means of temporal gradient encoding defines the spatial resolution. However, 
the effective spatial resolution along the phase encoding direction in EPI ac-
quisitions can be subject to blurring or sharpening, because of 𝑇!/𝑇!∗ decay 
while the k-space is being sampled. This can potentially contribute to the over-
all measured spread of the BOLD fMRI signal. 
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In order to minimize this effect, our data were acquired using a reduced 
field-of-view (in SE) and multiple segments. These measures limited the total 
read-out duration per segment (25.6 ms for GE and 24 ms for SE) to approxi-
mately the 𝑇!∗ of the tissue (Uludağ	   et	   al.,	   2009) and are expected to result in 
only minor blurring or sharpening (Haacke	  et	  al.,	  1999)). 

We estimated the blurring or sharpening and their contributions to the to-
tal BOLD PSF. In general, MRI data acquisition using EPI has two distinct ef-
fects on the effective spatial resolution. The first is the effect of the finite and 
discrete MR sampling with no decay. However, in the current study MR sam-
pling was part of the model and therefore has already been accounted for. The 
second effect is the already mentioned 𝑇!/𝑇!∗ decay blurring or sharpening. 
This effect is limited to the phase encode direction (vertical direction in all 
presented maps). In order to characterize it, we estimated the imaging modu-
lation transfer functions (MTF) along the phase encoding direction from a ref-
erence volume obtained in each run, in which the phase-encode gradients 
were switched off (Kemper	  et	  al.,	  2015).  

Using a model of Gaussian convolution and MRI sampling (Chaimow	   and	  
Shmuel,	  2016,	   in	  preparation) we obtained Gaussian functions that can model 
the separate effect of 𝑇!/𝑇!∗   decay. We then used MCMC to fit a separate ver-
sion of our model to our data, where we applied the decay effect to the simu-
lated ODC patterns by modulating the values acquired in the simulated k-
space. The results presented in Table 2 show that the effect of the signal decay 
on the total BOLD PSF was small. For GE, while accounting for the signal de-
cay, we obtained PSFs wider than the effective PSF obtained directly from the 
BOLD fMRI response. This indicates that signal decay in the GE fMRI used for 
obtaining our data has a sharpening effect. In contrast, the signal decay in the 
SE fMRI used for obtaining our data has a blurring effect. These results 
demonstrate that the physiological BOLD response measured with GE fMRI 
(that theoretically does not include signal decay) is less spatially specific than 
the same physiological BOLD response measured with SE fMRI (with no signal 
decay). This difference in spatial specificity of the GE and SE BOLD responses 
(with no signal decay) is even slightly larger than the corresponding effective 
difference obtained from the overall measured fMRI responses with signal de-
cay. 

What do our estimated point-spread function widths describe? 
The BOLD PSF describes the spatial specificity of the BOLD fMRI signal by 
characterizing the spatial response that would be elicited by a small point 
stimulus. Specifically, our BOLD PSF width measures the spread of the BOLD 
fMRI response (I) elicited by a small spot of neuronal activity, (II) along the 
cortical manifold, (III) using a differential response analysis, (IV) assuming 
that in a differential analysis paradigm the average spread can be described by 
a Gaussian function, and (V) considering a relatively long time scale.  

(I) BOLD PSF relative to the local neuronal activity 
To the best of our knowledge, our PSF estimates are the first to quantify the 
BOLD spread in human subjects relative to local neuronal activity. We previ-
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ously estimated the FWHM of the 7 T GE BOLD PSF to be smaller than 2 mm 
by measuring the spread of the BOLD fMRI response around the V1 represen-
tation of edges of visual stimuli (Shmuel	  et	  al.,	  2007). We expect that our pre-
vious estimates as well as others’ (Engel et al., 1997; Parkes et al., 2005) in-
cluded contributions from non-zero extent of receptive fields and the scatter of 
receptive field position of neurons in V1. 

Hubel and Wiesel (1974) reported that in the macaque “… a 2 mm × 2 
mm block of cortex contains the machinery needed to analyze a region of visu-
al field roughly equal to the local field size plus scatter””. 

These observations suggest that visual stimuli will result in neuronal activi-
ty that is blurred on the surface of human V1. All PSF widths that have been 
estimated using spatial representations of visual stimuli included this neuronal 
spread by nature of their experimental design. In the current study, we instead 
used a spatial structure of neuronal responses that is inherent to the cortex—
ODC patterns. This allowed us to estimate a PSF that does not contain contri-
butions from the spatial spread of responses to visual stimuli. 

There are a number of measures of neuronal activity that a BOLD PSF 
could potentially relate to, notably single-unit activity (SUA), multi-unit activi-
ty (MUA) and local field potentials (LFP). Under specific circumstances, these 
measures can show very different activity. Under most conditions, however, 
they are highly correlated. This is likely to be true when mapping a cortical co-
lumnar organization. The main difference is that the spatial extent (that influ-
ences the smoothness of the spatial response pattern) of these signals increases 
from SUA to MUA to LFP. We estimated a smoothness prior using ODI distribu-
tions of SUA and MUA.  Consequently, our PSF is based on these signals. The 
BOLD PSF from LFP would be narrower than our estimate because of the wid-
er cortical spread of LFP compared to MUA activity (Xing et al., 2009). 

(II) Spatial BOLD response along the cortical manifold 
It has been demonstrated (Polimeni et al., 2010) that the PSF consists of dif-
ferent radial and tangential components relative to the cortical surface. The 
radial component describes the spread across cortical layers while the tangen-
tial component describes the spread parallel to the cortical surface. Here we 
investigated the tangential PSF, averaged over all layers. This is the compo-
nent that is most relevant for imaging the representation of cortical columns 
parallel to the cortical surface. Accordingly, the location and orientations of 
voxels, the ROI, and the voxel size were all optimized to sample gray matter 
tangentially and to obtain an average from all layers. 

It should be noted that there are some differences in cerebrovascular or-
ganization with respect to radial and angular direction (Duvernoy et al., 
1981). The largest blood vessels are the pial surface veins that extend in vari-
ous orientations along the tangential plane. Somewhat smaller are cortical-
penetrating veins that are organized radially, traversing the different cortical 
layers. The smallest vessels, the capillaries, form a fine mesh that locally ap-
pears to be isotropic. However, their density varies with cortical layers (Weber 
et al., 2008). For these reasons, we cannot directly apply our PSF to the imag-
ing of cortical layers. In addition, the distinctiveness and finite extent of layers 
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appear to make a PSF convolution model ill-suited for fMRI of cortical layers. 
However, some recent results (De	   Martino	   et	   al.,	   2015;	   Fracasso	   et	   al.,	   2016;	  
Muckli	  et	  al.,	  2015;	  Olman	  et	  al.,	  2012) suggest it is possible to differentially re-
solve layer-specific signals on the scale of 1 mm or less. 

(III-IV) On modeling the average differential BOLD response as a Gaussian PSF 
We assumed the average (over space) PSF to be a Gaussian function. However, 
the shape of the spread in specific cortical locations may be more complex and 
location-dependent (Kriegeskorte	   et	   al.,	   2010;	   Polimeni	   et	   al.,	   2010). Also, its 
width as well as the magnitude of the response may vary due to local varia-
tions in vascular geometry. In fact, the relatively wide distribution of average 
responses in our data (Fig. 4, distribution of l/r averg. resp.) supports this lat-
ter intuition. Therefore, a convolutional model with a single Gaussian function 
can only be an approximating simplification. Nevertheless, we believe that 
such a simplifying approach provides a useful approximation for planning and 
interpretation of high-resolution fMRI studies and for quantitative modeling. 

As part of our pre-processing before fitting the model to the data, we re-
moved 1.5 - 5.0 % of voxels that had extreme differential values (see methods 
section for precise criterion for exclusion). Part of these voxels were located in 
areas that were previously shown to contain blood vessels (Shmuel	   et	   al.,	  
2010). However, for our current analysis we did not explicitly and systemati-
cally remove voxels that were affected by larger blood vessels. Our reasoning 
was that a consistent removal of all voxels suspected to be influenced by larger 
blood vessels would have reduced contiguous areas of ODCs, which would 
have made the model fitting more difficult.  

We expect the influence of geometric variations in local vasculature to be 
higher for veins and venules than for capillaries because of their respective di-
ameters and densities. Consequently, the GE BOLD signal, which is more sensi-
tive to larger pial surface veins will be more affected by these local variations. 
As a result, GE BOLD imaging does not only suffer from a slightly wider PSF 
than SE BOLD, but it is also subject to local distortions when larger blood ves-
sels are present. 

However, although draining veins may show responses with a preference to 
a subset of features encoded in a columnar organization (Shmuel et al., 2010), 
differential analysis reduces contributions from macroscopic vessels because of 
their tendency to drain blood from a region larger than that of a small number 
of columns.  Taken together, a Gaussian PSF model by itself is likely not a 
good model for single-condition imaging when influenced by large blood ves-
sels (e.g. in GE BOLD imaging). In contrast, we expect that a Gaussian PSF is a 
good model in a differential analysis paradigm, which reduces contributions 
from macroscopic vessels. The BOLD PSFs we report here reflect the spatial 
specificity that can be achieved in a differential paradigm. They do not reflect 
the spatial specificity expected from single-condition imaging that involves con-
tributions from macroscopic vessels, such as single-condition GE fMRI and to a 
lesser extent, single-condition SE fMRI. 
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(V) Spatial specificity as a function of stimulus duration 
It has been shown that the early phase of the positive BOLD response (up until 
~4 s after stimulus onset) is spatially more specific than the later phase 
(Goodyear and Menon, 2001; Shmuel et al., 2007). On the other hand, stimu-
lation paradigms that use very brief stimulation durations suffer from a highly 
reduced contrast-to-noise ratio, because the response does not develop to its 
highest potential amplitude.  

We found previously that after 4 s the spatial BOLD response remained sta-
ble and that the entire spatiotemporal response could be well approximated by 
the first spatial principle component (Shmuel et al., 2007). Aquino et al. 
(2012) modeled the BOLD response as a travelling wave evolving in time and 
found that deconvolution of neural dynamics using such a model resulted in 
physiologically more plausible spatiotemporal patterns than when using a 
model separable in space and time (Aquino et al., 2014). The spatial profile 
alone, however, was very similar for both models. 

Taken together, long stimulation paradigms are an efficient way of high-
resolution imaging and their spatial PSF can be well described by a single 
time-independent component. The stimulation periods for our data were 48 s 
long, thereby making our PSF most applicable to long stimulation paradigms. 

Spatial specificity of the BOLD response 

Constraints on the spatial specificity of BOLD 
The positive BOLD signal depends on decreases in deoxyhemoglobin content in 
the capillaries which then propagate downstream to draining venules and 
veins. These decreases are caused by elevated cerebral blood flow (CBF) and 
only smaller fractional increases in the oxygen consumption rate, following in-
creases in neuronal activity. CBF is regulated at a sub-millimeter scale: (Duong 
et al., 2001). Similarly, Vazquez et al. (2014) reported a spread of cerebral 
blood volume (CBV) of 103 – 175 µm (FWHM) in mice using optical imaging. 
Although this measure is not directly comparable to the CBF spread in a differ-
ent species (human subjects), it demonstrates that hemodynamic signals can 
show very high spatial specificity. The CBF response is the ultimate lower limit 
for the spatial specificity of any BOLD-based technique. 

The deoxyhemoglobin content changes in the draining venules and veins 
are ultimately diluted downstream, because the draining veins pool blood not 
only from active but also from non-active regions. For an activated area of 100 
mm2, Turner et al. (2002) estimated the maximal extent of undiluted oxygena-
tion changes along a vein to be 4.2 mm. For these reasons, we can expect the 
PSF width of any BOLD-based imaging technique to fall in this range; that is, 
less than 1 mm (Duong et al., 2001) to approximately 4.2 mm (Turner, 2002). 
The values will be determined by how much weighting towards the microvas-
culature can be achieved and on the actual presence of larger draining veins in 
the region of interest. 

PSF dependence on field strength  
At standard magnetic fields, the width of the BOLD PSF has been estimated to 
be 3.5 mm for 1.5 T GE BOLD (Engel	   et	   al.,	   1997), 3.9 mm for 3 T GE BOLD 
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and 3.4 mm for 3 T SE BOLD (Parkes	   et	   al.,	   2005). These estimates of PSF 
widths were confounded by the above described receptive field and scatter ef-
fects. We can make a rough estimate of what the non-confounded PSF widths 
at lower fields would be. We assume that on average the receptive field effect 
can be modeled as another convolution with a Gaussian. It follows that the 
square of the confounded PSF width is equal to the sum of squares of the re-
ceptive field effect width and the non-confounded PSF width. For the receptive 
field effect we get an FWHM of 2.12 mm when using 2.35 mm as the 7 T GE 
BOLD confounded PSF width (Shmuel et al., 2007) and 1.02 mm as the corre-
sponding non-confounded PSF width (results from our current study). This in 
turn results in non-confounded estimates of 2.8 mm (1.5 T GE BOLD), 3.3 mm 
(3 T GE BOLD) and 2.7 mm (3 T SE BOLD). 

These PSF widths are considerably larger than the estimates from the cur-
rent study (1.02 mm for 7T GE BOLD, 0.82 mm for 7T SE BOLD). The reason 
for this is that the BOLD signal (both GE and SE BOLD) at lower field strengths 
is dominated by intravascular signals from draining veins (Jochimsen	   et	   al.,	  
2004;	  Uludağ	  et	  al.,	  2009). At higher field strengths, the contributions from in-
travascular signals are reduced due to a shortening of the venous blood 𝑇!. In 
parallel, the relative contributions of extravascular signals around small vessels 
increase (Duong	  et	  al.,	  2003;	  Uludağ	  et	  al.,	  2009;	  Yacoub	  et	  al.,	  2003;	  2001). 

All PSF widths from field strengths of up to 3 T appear to fall close to the 
wider end of possible PSF widths. In contrast, PSF widths using SE and GE at 7 
T appear close to their theoretical minimum. 

𝑻𝟐∗   and 𝑻𝟐 based imaging methods: GE, SE and GRASE 
We found the SE BOLD PSF to be narrower than the GE BOLD PSF. This is ex-
pected because the refocusing pulse in SE imaging suppresses the extravascu-
lar signal around larger blood vessels while leaving the signal around the mi-
crovasculature intact. As a result, compared to GE BOLD fMRI, SE BOLD sig-
nals obtained at 7T have relatively larger contributions from the spatially more 
specific microvasculature, whereas at lower field strength the signal of either 
SE or GE BOLD fMRI is dominated by intravascular contributions of large 
blood vessels. 

However, the suppression of extravascular signal around larger blood ves-
sels by SE at high fields is not perfect. Only the k-space data that is sampled at 
the exact echo time will result in absolute suppression (pure 𝑇! weighting as 
compared to 𝑇!∗ weighting). The extent to which sampled k-space data is af-
fected by 𝑇!∗ weighting increases with increasing total read-out time. Conse-
quently longer total read-out times in SE result in decreased spatial specificity 
(Goense and Logothetis, 2006) and are expected to have a wider point-spread 
function (though still narrower than GE). 

Other 𝑇! based functional imaging methods such as GRASE (Oshio and 
Feinberg, 1991) and 3D-GRASE (Feinberg et al., 2008) are expected to have 
similar spatial specificity as SE. Whether their PSFs are slightly wider or nar-
rower will mainly depend on the 𝑇!∗ weighting component associated with such 
methods (i.e. echo train lengths of gradient recalled echoes employed in be-
tween successive 180° pulses), in addition to their 𝑇! component. In fact, Kem-
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per et al. (2015) have reported that 3D-GRASE had a smaller bias towards pial 
surface veins owing to the smaller 𝑇!∗ contribution when a reduced field of 
view is employed in zoomed 3D-GRASE compared to the longer in-plane echo-
train of 2D-SE EPI.	  

Although we found a wider PSF for GE BOLD than for SE BOLD fMRI, the 
difference was relatively small (1.02 mm for GE BOLD, 0.82 mm for SE 
BOLD). We believe that this is due to the fact that the influence of larger blood 
vessels can be reduced by using a differential imaging paradigm, even when 
using 7T GE BOLD fMRI. Consequently, both GE and SE BOLD imaging tech-
niques seem capable of resolving cortical columns when applying differential 
imaging analysis. 

However, GE maps are more susceptible to confounds introduced in voxels 
containing blood vessels which may not be fully suppressed in differential im-
aging. Therefore, obtaining results of high spatial specificity using GE depends 
on the region of interest and on methods to mask out blood vessels.   

SE is less susceptible to large-vessel confounds, that may not be suppressed 
by differential imaging. The response amplitude of SE is lower than that of GE.  
However, for imaging of highly granular structures such as ODC’s at such high 
resolutions, the differential contrast is similar for GE and SE fMRI. Overall, we 
believe that SE is the method of choice for mapping finer structures, especially 
when relying on single-condition analysis. However, which data acquisition 
method is optimal depends on the goal of the study and the spatial scale of the 
neuronal architecture under investigation. 

The application of probabilistic models of cortical columns and MR imaging 
We have extended our quantitative model for imaging ODCs to a probabilistic 
generative model and used it to infer the PSF widths by means of MCMC sam-
pling. 

A critical component to the successful application of MCMC to our model is 
the Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987), which 
makes use of the gradient of the model posterior probability. Importantly, we 
were able to derive an efficient way to compute this gradient (Appendices C 
and D). HMC has the advantage of very efficiently exploring the parameter 
space. However, for high-dimensional problems such as ours, every step may 
take a long time because the gradient components for all variables need to be 
computed. Because of the specific form of the computations in our model 
(convolutions and a point-wise non-linearity), it was possible to compute the 
gradient efficiently as a combination of convolutions and point-wise non-
linearities as well. In principle, such efficient computation should be possible 
for a wide range of similar models, making HMC a powerful method for fitting 
such models. 

We believe that the novel approach we introduce to the field of imaging 
cortical columns, of fitting a model of imaging columns to corresponding 
measured data, will be useful beyond our current study. For example, when 
imaging an unknown columnar structure, questions about its organization 
(e.g. isotropy, spatial frequency, irregularity) can be addressed via inference 
on model parameters. 
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Conclusion 
We have quantified the BOLD PSF in human subjects relative to neuronal ac-
tivity, avoiding the confounding effects of scatter and size of visual receptive 
fields which were not eliminated in previous estimations (Engel et al., 1997; 
Parkes et al., 2005; Shmuel et al., 2007). As a result, our BOLD PSF estimates 
characterize the spatial specificity when employing imaging of fine scale corti-
cal organizations such as cortical columns. Previous studies have shown that 
BOLD fMRI at 4 T and 7 T is capable of resolving cortical columns on the sub-
millimeter scale when differential analysis is employed (Cheng et al., 2001; 
Menon and Goodyear, 1999; Yacoub et al., 2008; 2007; Zimmermann et al., 
2011). Our results provide a quantitative basis for this resolvability and facili-
tate planning and interpretation of high-resolution fMRI studies of fine scale 
cortical organizations. 
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Appendix A. Model of imaging ocular dominance columns

Preliminaries
Simulations before MRI sampling were carried out on a grid of size Nsim

1 ⇥ Nsim
2 . Simulations of

MRI data were of size NMRI
1 ⇥ NMRI

2 . We use i, j and k, l as indices of 2-dimensional image and spatial
frequency space, respectively. Furthermore, r(k, l) is the absolute spatial frequency and �(k, l) the
orientation that the point with indices k, l represents. The two-dimensional discrete Fourier transform
and its inverse (D.3 and D.4) are denoted as dft2 and idft2.

Overview over model computations
The ocular dominance columns (ODCs) imaging model can be described as a function

f (q) =
�

fGE(q), fSE(q)
�

,

that takes the the list of model parameter values q = ((ni, j),⇢,�,✏,✓ ,!, fwhmGE, fwhmSE) and the
fixed parameters �GE and �SE (see Table 1) as input and generates differential fMRI maps of ODC
fGE(q) = (mriGE

i, j ) and fSE(q) = (mriSE
i, j) in a number of steps:
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h⇣
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(mriGE
i, j ) = idft2

2

4

0

@dft2
h

(boldGE
i, j )
i

k=IMRI
1 (1),...,IMRI

1 (NMRI
1 ),

l=IMRI
2 (1),...,IMRI

2 (NMRI
2 )

1

A

3

5

NMRI
1 NMRI

2

Nsim
1 Nsim

2

, (A.5)

(mriSE
i, j) = idft2

2

4

0

@dft2
h

(boldSE
i, j)
i

k=IMRI
1 (1),...,IMRI

1 (NMRI
1 ),

l=IMRI
2 (1),...,IMRI

2 (NMRI
2 )

1

A

3

5

NMRI
1 NMRI

2

Nsim
1 Nsim

2

. (A.6)

(A.1): The ODC pattern (odci, j) was modeled by filtering two-dimensional Gaussian white noise
(ni, j) using a non-isotropic filter (FODC

k,l ) and followed by (A.2) a point-wise sigmoidal non-linearity s
that controlled the smoothness of transitions between left and right eye preferrence columns. (A.3 and
A.4): The BOLD response was modeled as a convolution with a Gaussian point-spread function. It was
implemented as multiplication in spatial frequency space with its Fourier transform the modulation
transfer function (MTFk,l). (A.5 and A.6): MRI sampling was simulated by restricting the spatial
frequency space representation to its central part (indices given by index functions IMRI

1 and IMRI
2 ) in

accordance with the voxel size. The last factor corrects for the reduction in scale caused by applying
idft2 to the reduced grid size.

We can combine operations A.3 and A.5, as well as A.4 and A.6:

(mriGE
i, j ) = idft2

2

4

0

@dft2
h

(odcGE
i, j )
i

k=IMRI
1 (1),...,IMRI

1 (NMRI
1 ),

l=IMRI
2 (1),...,IMRI

2 (NMRI
2 )

· F
BOLD
MRI

k,l (fwhmGE,�GE)

1

A

3

5 ,

(mriSE
i, j) = idft2

2

4

0

@dft2
h

(odcSE
i, j)
i

k=IMRI
1 (1),...,IMRI

1 (NMRI
1 ),

l=IMRI
2 (1),...,IMRI

2 (NMRI
2 )

· F
BOLD
MRI

k,l (fwhmSE,�SE)

1

A

3

5 ,

where (F
BOLD
MRI

k,l ) is of size NMRI
1 ⇥ NMRI

2 with:

F
BOLD
MRI

k,l (fwhm,�) =MTFIMRI
1 (k),IMRI

2 (l)(fwhm,�)
NMRI

1 NMRI
2

Nsim
1 Nsim

2
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  ODC filter
An unnormalized ODC filter F̃ODC

k,l was defined in spatial frequency space as the product of radial
and angular components:

F̃ODC
k,l = F̃ODCrad

k,l · F̃ODCang

k,l .

The radial component F̃ODCrad
k,l is the sum of two Gaussian functions centered on +⇢ and �⇢, where ⇢

is the main spatial frequency of the pattern.

F̃ODCrad
k,l = F̃

ODC+rad
k,l + F̃

ODC�rad
k,l ,

F̃
ODC+rad
k,l = e�

(r(k,l)�⇢)2
2�2 ,

F̃
ODC�rad
k,l = e�

(r(k,l)�(�⇢))2
2�2 .

The angular component is the sum of two von Mises distribution functions centered on +✓ and �✓ ,
where ✓ is the orientation of the pattern:

F̃
ODCang

k,l = F̃
ODC1

ang

k,l + F̃
ODC2

ang

k,l ,

F̃
ODC1

ang

k,l = e
cos(�(k,l)�✓ )

✏2 ,

F̃
ODC2

ang

k,l = e
cos (�(k,l)�(✓+⇡))

✏2 = e
� cos (�(k,l)�✓ )

✏2 .

In order for the filter output to have the same variance as the input (independent of filter parameter
values) we normalized the filter:

FODC
k,l =

F̃ODC
k,l

CODC ,

where

CODC =

v

u

u

t

PNsim
1 ⇥Nsim

2
k,l=1 (F̃ODC

k,l )
2

Nsim
1 Nsim

2

.

Sigmoidal non-linearity
The point-wise sigmoidal non-linearity s(x ,!) was defined as:

s(x ,!) = 2
Å

s̃
Å x

!

ã

� 0.5
ã

,

with the standard sigmoidal function defined as:

s̃(x) =
1

1+ e�x .

BOLD response
The BOLD response modulation transfer function was defined as

MTFk,l(fwhm,�) = � · e�2⇡2�2
BOLD·r(k,l)2 ,

with:

�BOLD =
fwhm

2
p

2 log2
⇡ fwhm

2.35
.

It is the Fourier transform of a Gaussian point-spread function with a full-width at half-maximum of
fwhm. It is scaled such that a spatially extended neuronal response of 1 results in a BOLD response of
amplitude � .
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  MRI sampling
MRI sampling was simulated by restricting the spatial frequency representation according to the

following index functions:

IMRI
1 (k) =

(

k if k  NMRI
1

2

k� NMRI
1 + Nsim

1 if k >
NMRI

1

2

,

IMRI
2 (l) =

(

l if l  NMRI
2

2

l � NMRI
2 + Nsim

2 if l >
NMRI

2

2

.

Appendix B. Posterior probability and potential energy

Posterior probability

Let D =
n

(dataGE
i, j ), (dataSE

i, j)
o

be the data of differential fMRI maps imaged using GE and SE BOLD
fMRI, respectively. The likelihood - the probability to observe the data D given a specific set of model
parameter values q is:

P[D|q] = P
h

(dataGE
i, j ) = fGE(q) + (⌫GE

i, j ), (dataSE
i, j) = fSE(q) + (⌫SE

i, j )|q
i

,

where (⌫GE
i, j ) and (⌫SE

i, j ) are patterns of measurement noise.
We assume the measurement noise to be independent between voxels and imaging modalities and

to be distributed normally with (estimated) variances �̂2
GE and �̂2

SE. Furthermore we define (dGE
i, j ) =

(dataGE
i, j )� (mriGE

i, j ) and (dSE
i, j ) = (dataSE

i, j)� (mriSE
i, j) to be the patterns of deviations of the data from the

model prediction. The likelihood can then be expressed as:

P[D|q] = 1
�

2⇡�̂GE�̂SE
�NMRI

1 NMRI
2

NMRI
1 ⇥NMRI

2
Y

i, j=1

e
�
Å

dGE
i, j

ã2

2�̂2
GE
�
Å

dSE
i, j

ã2

2�̂2
SE .

From this result we can calculate the posterior probability of parameters q given the data D:

P[q|D] = P[D|q]P[q]
P[D]

= A · P[q] ·
NMRI

1 ⇥NMRI
2
Y

i, j=1

e
�
Å

dGE
i, j

ã2

2�̂2
GE
�
Å

dSE
i, j

ã2

2�̂2
SE , (B.1)

where A = 1

P[D]·(2⇡�̂GE�̂SE)N
MRI
1 NMRI

2
is a constant factor that is independent of q and P[q] is the prior

probability over parameters.
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Prior probability
The prior probability over all parameters q was defined as:

P[q] =

8

<

:

if ! < 0
0 or fwhmGE < 0

or fwhmSE < 0
P[(ni, j)] · P[⇢] · P[�] · P[✏] · P[!] otherwise

,

with individual parameter priors were defined as:

P[(ni, j)] / e�
P

Nsim
1 ⇥Nsim

2
i, j=1 n2

i, j
2 ,

P[⇢]/

8

<

:

0 if |⇢�µ⇢|> 2�⇢

e
�(⇢�µ⇢)

2

2�2
⇢ otherwise

,

P[�]/

8

<

:

0 if � < 0

e
� (��µ�)

2

2�2
� otherwise

,

P[✏]/
(

0 if ✏< 0

e
� (✏�µ✏)

2

2�2
✏ otherwise

,

P[!]/

8

<

:

0 if ! <!min

0 if ! >!max

1 otherwise
,

where µ⇢,µ�,µ✏ and �⇢,��,�✏ are the means and standard deviations of the ODC priors that were
estimated from cytochrome oxidase data and!min and!max are lower and upper limits for! that were
set based on results from the neurophysiological literature.

Potential energy
The potential energy of a state of parameter values q is its negative log-posterior probability plus

an arbitrary constant C:

E(q) = � log P[q|D] + C .

We apply B.1 and express the energy as the sum of three parts:

= EGE(q) + ESE(q) + E(q)prior,

with:

EGE(q) =
NMRI

1 ⇥NMRI
2
X

i, j=1

⇣

dGE
i, j

⌘2

2�̂2
GE

,

ESE(q) =
NMRI

1 ⇥NMRI
2
X

i, j=1

⇣

dSE
i, j

⌘2

2�̂2
SE
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and

Eprior(q) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

if |⇢�µ⇢|> 2�⇢
or � < 0
or ✏< 0

1 or ! >!min

or ! >!max

or fwhmGE < 0
or fwhmSE < 0

PNsim
1 ⇥Nsim

2
i, j=1 n2

i, j

2
+ (

⇢�µ⇢)2
2�2
⇢

+ (
��µ�)2

2�2
�

+ (
✏�µ✏)2

2�2
✏

otherwise

.

Appendix C. Potential energy gradient

We start by deriving derivatives for functions used by the model.

Derivatives of the ODC filter
The derivatives of the unnormalized radial and angular filter component parts with respect to their

prarameters are:

@ F̃
ODC+rad
k,l

@ ⇢
= F̃

ODC+rad
k,l · r(k, l)�⇢

�2 ,

@ F̃
ODC�rad
k,l

@ ⇢
= F̃

ODC�rad
k,l ·� r(k, l)� (�⇢)

�2 ,

@ F̃
ODC+rad
k,l

@ �
= F̃

ODC+rad
k,l · (r(k, l)�⇢)2

�3 ,

@ F̃
ODC�rad
k,l

@ �
= F̃

ODC�rad
k,l · (r(k, l)� (�⇢))2

�3 ,

@ F̃
ODC1

ang

k,l

@ ✓
= F̃

ODC1
ang

k,l · sin (�(k, l)� ✓ )
✏2 ,

@ F̃
ODC2

ang

k,l

@ ✓
= F̃

ODC2
ang

k,l ·�sin (�(k, l)� ✓ )
✏2 ,

@ F̃
ODC1

ang

k,l

@ ✏
= F̃

ODC1
ang

k,l ·�2
cos (�(k, l)� ✓ )

✏3 ,

@ F̃
ODC2

ang

k,l

@ ✏
= F̃

ODC2
ang

k,l · 2cos (�(k, l)� ✓ )
✏3 .
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We combine these derivatives to form derivatives of the full radial and angular components:

@ F̃ODCrad
k,l

@ ⇢
=
@ F̃

ODC+rad
k,l

@ ⇢
+
@ F̃

ODC�rad
k,l

@ ⇢,

@ F̃ODCrad
k,l

@ �
=
@ F̃

ODC+rad
k,l

@ �
+
@ F̃

ODC�rad
k,l

@ �
,

@ F̃
ODCang

k,l

@ ✓
=
@ F̃

ODC1
ang

k,l

@ ✓
+
@ F̃

ODC2
ang

k,l

@ ✓
,

@ F̃
ODCang

k,l

@ ✏
=
@ F̃

ODC1
ang

k,l

@ ✏
+
@ F̃

ODC2
ang

k,l

@ ✏
,

and in turn to form the derivatives of the full unnormalized filter:

@ F̃ODC
k,l

@ ⇢
=
@ F̃ODCrad

k,l

@ ⇢
· F̃ODCang

k,l ,

@ F̃ODC
k,l

@ �
=
@ F̃ODCrad

k,l

@ �
· F̃ODCang

k,l ,

@ F̃ODC
k,l

@ ✓
= F̃ODCrad

k,l ·
@ F̃

ODCang

k,l

@ ✓
,

@ F̃ODC
k,l

@ ✏
= F̃ODCrad

k,l ·
@ F̃

ODCang

k,l

@ ✏
.

The derivatives of the normalization constant are:

@ CODC

@ ⇢
=

1

2

r

PNsim
1 ⇥Nsim

2
k,l=1 (F̃ODC

k,l )
2

Nsim
1 Nsim

2

· 1

Nsim
1 Nsim

2

·
Nsim

1 ⇥Nsim
2
X

k,l=1

2 · F̃ODC
k,l ·

@ F̃ODC
k,l

@ ⇢

=

PNsim
1 ⇥Nsim

2
k,l=1 F̃ODC

k,l

@ F̃ODC
k,l

@ ⇢

CODCNsim
1 Nsim

2

,

@ CODC

@ �
=

PNsim
1 ⇥Nsim

2
k,l=1 F̃ODC

k,l

@ F̃ODC
k,l

@ �

CODCNsim
1 Nsim

2

,

@ CODC

@ ✓
=

PNsim
1 ⇥Nsim

2
k,l=1 F̃ODC

k,l

@ F̃ODC
k,l

@ ✓

CODC Nsim
1 Nsim

2

,
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@ CODC

@ ✏
=

PNsim
1 ⇥Nsim

2
k,l=1 F̃ODC

k,l

@ F̃ODC
k,l

@ ✏

CODC Nsim
1 Nsim

2

,

resulting in the following derivatives of the complete normalized filter:

@ FODC
k,l

@ ⇢
=

@ F̃ODC
k,l

@ ⇢
· CODC � F̃ODC

k,l · @ CODC

@ ⇢

(CODC)2
,

@ FODC
k,l

@ �
=

@ F̃ODC
k,l

@ �
· CODC � F̃ODC

k,l · @ CODC

@ �

(CODC)2
,

@ FODC
k,l

@ ✓
=

@ F̃ODC
k,l

@ ✓
· CODC � F̃ODC

k,l · @ CODC

@ ✓

(CODC)2
,

@ FODC
k,l

@ ✏
=

@ F̃ODC
k,l

@ ✏
· CODC � F̃ODC

k,l · @ CODC

@ ✏

(CODC)2
.

Derivatives of the sigmoidal non-linearity
The derivative of the standard sigmoidal function s̃(x) is:

s̃0(x) = s̃(x)(1� s̃(x)).

Using this result we get the following derivatives for our sigmoidal non-linearity s(x):

@ s(x)
@ x

=
@ s(x)
@ s̃(x/!)

· @ s̃(x/!)
@ (x/!)

· @ (x/!)
x

=
2

!
s̃(x/!)(1� s̃(x/!),

@ s(x)
@!

=
@ s(x)
@ s̃(x/!)

· @ s̃(x/!)
@ (x/!)

· @ (x/!)
@!

=
�2x

!2 s̃(x/!)(1� s̃(x/!)).

Derivative of the BOLD modulation transfer function
The derivative of the BOLD modulation transfer function is:

@MTFk,l(fwhm,�)
@ fwhm

=
@MTFk,l(fwhm,�)

@ �BOLD

@ �BOLD

@ fwhm

=
�4MTFk,l r(k, l)2⇡2fwhm

8 log2

The derivative of the combined BOLD-MRI filter is:

@ F
BOLD
MRI

k,l (fwhm,�)

@ fwhm
=
@MTFIMRI

1 (k),IMRI
2 (l)(fwhm,�)

@ fwhm

NMRI
1 NMRI

2

Nsim
1 Nsim

2

.
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Potential energy gradient components
The energy gradient is composed of the following derivatives:

@ E(q)
@ ni, j

=
@ EGE(q)
@ ni, j

+
@ ESE(q)
@ ni, j

+
@ Eprior(q)
@ ni, j

,

@ E(q)
@ ⇢

=
@ EGE(q)
@ ⇢

+
@ ESE(q)
@ ⇢

+
@ Eprior(q)
@ ⇢

,

@ E(q)
@ �

=
@ EGE(q)
@ �

+
@ ESE(q)
@ �

+
@ Eprior(q)
@ �

,

@ E(q)
@ ✏

=
@ EGE(q)
@ ✏

+
@ ESE(q)
@ ✏

+
@ Eprior(q)
@ ✏

,

@ E(q)
@ ✓

=
@ EGE(q)
@ ✓

+
@ ESE(q)
@ ✓

,

@ E(q)
@!

=
@ EGE(q)
@!

+
@ ESE(q)
@!

,

@ E(q)
@ fwhmGE

=
@ EGE(q)
@ fwhmGE

,

@ E(q)
@ fwhmSE

=
@ ESE(q)
@ fwhmSE

.

The gradient is not defind for |⇢ � µ⇢| > 2�⇢ or � < 0 or ✏ < 0 or ! < !min or ! > !max or
fwhmGE < 0 or fwhmSE < 0 (regions were Eprior(q) =1).

Energy gradient with respect to noise variables
The derivatives of the GE energy component are:

@ EGE(q)
@ ni, j

=
1

�̂2
GE

NMRI
1 ⇥NMRI

2
X

i0, j0=1

dGE
i0, j0
@mrii0, j0

@ ni, j

=
1

�̂2
GE

NMRI
1 ⇥NMRI

2
X

i0, j0=1

dGE
i0, j0

Nsim
1 ⇥Nsim

2
X

i00, j00=1

@mrii0, j0

@ odci00, j00

@ odci00, j00

@›odci00, j00

@›odci00, j00

@ ni, j

=
1

�̂2
GE

NMRI
1 ⇥NMRI

2
X

i0, j0=1

dGE
i0, j0

Nsim
1 ⇥Nsim

2
X

i00, j00=1

@mrii0, j0

@ odci00, j00
s0(›odci00, j00)

@›odci00, j00

@ ni, j

=
1

�̂2
GE

Nsim
1 ⇥Nsim

2
X

i00, j00=1

s0(›odci00, j00)
@›odci00, j00

@ ni, j

NMRI
1 ⇥NMRI

2
X

i0, j0=1

dGE
i0, j0
@mrii0, j0

@ odci00, j00

For both sums we apply D.8 (see D.2 for the definition of the zero-padding operation zp
Nsim

1 ,Nsim
2

IMRI
1 ,IMRI

2
):

=
1

�̂2
GE

dft2

2

4

 

FODC
k,l · idft2

ñÇ

s0(›odci00, j00) · zp
Nsim

1 ,Nsim
2

IMRI
1 ,IMRI

2



dft2
✓

F
BOLD
MRI

k0,l 0 · idft2
h⇣

(dGE
i0, j0

⌘i

k0,l 0

◆��

i00, j00

åô

k,l

!

3

5

i, j

.

Similarily for the SE energy component we get:

@ ESE(q)
@ ni, j
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=
1

�̂2
SE

dft2

2

4

 

FODC
k,l · idft2

ñÇ

s0(›odci00, j00) · zp
Nsim

1 ,Nsim
2

IMRI
1 ,IMRI

2



dft2
✓

F
BOLD
MRI

k0,l 0 · idft2
h⇣

dSE
i0, j0

⌘i

k0,l 0

◆��

i00, j00

åô

k,l

!

3

5

i, j

.

The contribution of the prior energy component is:

@ Eprior(q)
@ ni, j

= ni, j.

Energy gradient with respect to ODC filter parameters
The derivatives of the GE energy component are:
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The last two factors together can be regarded as a pattern indexed by i0, j0. We apply D.7:
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is the derivative of the ODC filter output ›odci0, j0 with respect to a filter parameter. We apply D.9:
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The derivatives of EGE(q) with respect to the remaining ODC filter parameters �, ✏ and ✓ differ only
in the derivative of FODC

k0,l 0 :
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Similarily for the SE energy components we get:
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The contributions of the prior energy components are:

@ Eprior(q)
@ ⇢
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.

Energy gradient with respect to the smoothness parameter
The derivatives of the GE component are:
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for the second sum we apply D.7:
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Similarily for the SE components we get:
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Energy gradient with respect to BOLD PSF width
The derivatives of the GE component are:
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We apply D.9:
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Similarily for the SE components we get:
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Appendix D. Efficient computation of some expressions consisting of derivatives of filtering op-

erations

Let us assume we have a pattern (xi, j) of size Nin
1 ⇥ Nin

2 (the input), whose discrete Fourier trans-
form is (Xk,l). We filter (or equivalently: convolve) that pattern using a linear filter (Fk,l) defined in
frequency space and of size Nout

1 ⇥ Nout
2 . The filtering is carried out as:

Yk,l = Fk,l · XI1(k),I2(l), (D.1)

where (Yk,l) is the discrete Fourier transform of the filtered, Nout
1 ⇥Nout

2 sized pattern (ym,n) (the output).
I1 and I2 are index functions that allow to assign a specific subset of elements of (Xk,l) to (Yk,l) (e.g.
when restricting the spatial frequency space representation in order to simulate MRI sampling). Note
that for Nout

1 = Nin
1 , Nout

2 = Nin
2 , I1(k) = k and I2(l) = l this formalism describes a normal filtering

operation in which the size and structure of the spatial frequency space is not altered.
Our goal here is to derive alternate formulations for some derivative expressions that result in a

more efficient computation of gradients for models that contain such filtering operations.

Definitions

We define a zero-padding operation zp
Nin

1 ,Nin
2

I1,I2
that allows us to up-sample patterns with size equal to

the output pattern to match the size of the input pattern:

(Ȳk,l) = zp
Nin

1 ,Nin
2

I1,I2

î

(Yk,l)
ó

, (D.2)

where (Ȳk,l) is of size Nin
1 ⇥ Nin

2 such that:

Ȳk,l =
⇢

Yk0,l 0 if there exist (k0, l 0) with I1(k0) = k and I2(l 0) = l
0 otherwise .

We use the following definitions of the two-dimensional discrete Fourier transform (Xk,l) = dft2
î

(xi, j)
ó

and its inverse (xi, j) = idft2
î

(Xk,l)
ó

, where (xi, j) and (Xk,l) are of size N1⇥ N2:

Xk,l =
N1⇥N2
X

i, j=1

xi, j e
� 2⇡ (i�1)(k�1)

Nin
1 e

� 2⇡ ( j�1)(l�1)
Nin

2 , (D.3)
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xi, j =
1

N1N2

Nin
1 ⇥Nin

2
X

k,l=1

Xk,l e
2⇡ (k�1)(i�1)

Nin
1 e

2⇡ (l�1)( j�1)
Nin

2 , (D.4)

with partial derivatives given as:

@ Xk,l

@ xi, j
= e
� 2⇡ (i�1)(k�1)

Nin
1 e

� 2⇡ ( j�1)(l�1)
Nin

2 , (D.5)

@ xi, j

@ Xk,l
=

1

Nin
1 Nin

2

e
2⇡ (k�1)(i�1)

Nin
1 e

2⇡ (l�1)( j�1)
Nin

2 . (D.6)

Weighted sums of derivatives with respect to input
The first expression of interest is the weighted sum (weights given as (gi, j)) of the derivatives of an

arbitrary output element yi, j with respect to all input elements xi0, j0 . We derive a formula that allows
to compute this expressions for all output elements yi, j simultaneously using one dft2 and one idft2
operation.

Nin
1 ⇥Nin

2
X

i0, j0=1

gi0, j0
@ yi, j

@ xi0, j0

=
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2
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2
X

k0,l 0=1

@ Yk,l

@ Xk0,l 0

@ Xk0,l 0

@ xi0, j0
.

Because of D.1, the second to last term is equal to Fk,l , if (k0, l 0) = (I1(k), I2(l)) and 0 otherwise:

=
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X
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Furthermore making use of D.5 and D.6 we get:

=
Nin

1 ⇥Nin
2
X

i0, j0=1

gi0, j0
1

Nout
1 Nout

2

Nout
1 ⇥Nout

2
X

k,l=1

e
2⇡ (k�1)(i�1)

Nout
1 e

2⇡ (l�1)( j�1)
Nout

2 e
� 2⇡

(i0�1)(I1(k)�1)

Nin
1 e

� 2⇡
( j0�1)(I2(l)�1)

Nin
2

=
1

Nout
1 Nout

2

Nout
1 ⇥Nout

2
X

k,l=1

e
2⇡ (k�1)(i�1)

Nout
1 e

2⇡ (l�1)( j�1)
Nout

2

Nin
1 ⇥Nin

2
X

i0, j0=1

gi0, j0e
� 2⇡

(i0�1)(I1(k)�1)

Nin
1 e

� 2⇡
( j0�1)(I2(l)�1)

Nin
2

=
1

Nout
1 Nout

2

Nout
1 ⇥Nout

2
X

k,l=1

Fk,l e
2⇡ (k�1)(i�1)

Nout
1 e

2⇡ (l�1)( j�1)
Nout

2 dft2
î

(gi0, j0)
ó

I1(k),I2(l)
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⌘i

i, j
. (D.7)

A related expression is the weighted sum of the derivatives of all output elements yi0, j0 with respect
to an arbitrary but specific input element xi, j. Again, we derive a formula that allows to compute this
expressions for all input elements xi, j simultaneously using one dft2 and one idft2 operation.

Nout
1 ⇥Nout

2
X

i0, j0=1

gi0, j0
@ yi0, j0
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.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 29, 2016. ; https://doi.org/10.1101/097287doi: bioRxiv preprint 

https://doi.org/10.1101/097287
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46 

=
Nout

1 ⇥Nout
2
X

i0, j0=1

gi0, j0

Nout
1 ⇥Nout

2
X

k,l=1

@ yi0, j0

@ Yk,l

N in
1 ⇥Nin

2
X

k0,l 0=1

@ Yk,l

@ Xk0,l 0

@ Xk0,l 0

@ xi, j

Because of D.1, the second to last term is equal to Fk,l , if (k0, l 0) = (I1(k), I2(l)) and 0 otherwise:
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Furthermore making use of D.5 and D.6 we get:
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Instead of summing over the output indices k, l = 1, ..., Nout
1 ⇥Nout

2 , we can zero-pad Fk,l idft2
î

(gi0, j0)
ó

k,l

and sum over the input indices k0, l 0 = 1, ..., Nin
1 ⇥ Nin

2 . The additional elements are 0 due to the zero-
padding and will not contribute to the sum.
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. (D.8)

Derivative with respect to a filter parameter
Let us assume that the filter representation (Fk,l) depends on some parameter q. We derive a

formula that allows to calculate the partial derivatives of all output elements ym,n with respect to q
simultaneously using one dft2 and one idft2 operation.

@ yi, j

@ q
=

Nout
1 ⇥Nout

2
X

k0,l 0

@ yi, j

@ Yk0,l 0

Nout
1 ⇥Nout

2
X

k00,l 00

@ Yk0,l 0

@ Fk00,l 00

@ Fk00,l 00

@ q

Because of D.1, the second to last term is equal to XI1(k0),I2(l 0) if (k00, l 00) = (I1(k0), I2(l 0)) and 0 otherwise:

=
Nout

1 ⇥Nout
2
X

k0,l 0

@ yi, j

@ Yk0,l 0
XI1(k0),I2(l 0)

@ Fk0,l 0

@ q

We apply D.6:
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e
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0�1)(i�1)
Nout

1 e
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2 XI1(k0),I2(l 0)
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·
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. (D.9)
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Supplementary Material 

 
Sup. Fig. 1 fMRI ODC data. Results from the GLM analysis of fMRI data from subject 2 for GE (left) and 
SE (right). A Responses to left and right eye stimulation relative to baseline. B The response maps to the 
left and right eyes from A were averaged. B shows the distribution of the average response. Its median 
(in green) was used to set the overall amplitude of the BOLD response model.  C The difference between 
left and right eye responses yields the differential ODC map. D The distribution of standard errors of all 
differential responses. From this distribution we estimated the noise level used by the model. The color 
look-up-table applies to all response maps. 
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Sup. Fig. 2 Convergence diagnostics of Markov Chain Monte Carlo sampling. Markov Chain Monte Carlo 
needs to run for a sufficient number of iterations in order to yield samples from the modeled probability 
distribution. Indications for convergence are: (1) stationarity of the parameter sampling distributions, 
and (2) sample autocorrelations decrease rapidly with increasing lag, relative to the total number of 
samples. This figure examines convergence for subject 2. The upper part of the figure (A) shows diagnos-
tics for the standard model parameters. The bottom part (B) shows diagnostics for the white noise values 
that act as parameters to determine the ODC pattern. The first column (A and B) shows traces of the 
sampled parameters. For the noise values (B), one exemplary trace is shown from the center of the map. 
The second column (A and B) shows sample autocorrelations as a function of lag. The horizontal blue 
lines (A) indicate the 95%-confidence bounds around 0 for a white noise process. Consecutive samples 
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(lag=1) show low autocorrelation. However, samples of lag 2 (and higher) show autocorrelation esti-
mates that are comparable to those obtained from uncorrelated white noise. In B, the autocorrelation 
from the noise samples are summarized by the histogram of lag-2 autocorrelations from all coordinates 
together. Here, 95%-confidence bounds for a white noise process are indicated by vertical blue lines. The 
third column (A and B) presents the Geweke convergence (stationarity) diagnostic, which is a z-test (z-
scores shown in green) for testing whether the means of the first 10% and last 50% of samples are differ-
ent. In A, 2 histograms per each parameter show how similar their respective distributions are. In B, the 
z-scores from the noise samples are shown as a histogram together with a blue plot of the standard nor-
mal probability density representing the null-hypothesis of z=0.  The last two columns (A) show the 
sample covariation between each parameter (vertical axis) and the GE and SE point-spread function 
FWHM (horizontal axis). 
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