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ABSTRACT9

We present an open source software toolkit for training deep learning models to call genotypes in high-
throughput sequencing data. The software supports SAM, BAM, CRAM and Goby alignments and the
training of models for a variety of experimental assays and analysis protocols. We evaluate this software
in the Illumina Platinum whole genome datasets and find that a deep learning model trained on 80% of the
genome achieves a 0.986% accuracy on variants (genotype concordance) when trained with 10% of the
data from a genome. The software is distributed at https://github.com/CampagneLaboratory/
variationanalysis. The software makes it possible to train genotype calling models on consumer
hardware with CPUs or GPU(s). It will enable individual investigators and small laboratories to train and
evaluate their own models and to make open source contributions. We welcome contributions to extend
this early prototype or evaluate its performance on other gold standard datasets.
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INTRODUCTION21

We recently presented an approach to call somatic variations with deep learning models, using no gold22

standard variations (Torracinta et al. [2016], Campagne [2016]). In this study, we use high-throughput23

sequencing data and available labels from gold-standard datasets to train deep-learning models that24

can call genotypes. We built on the variationanalysis software we presented in Torracinta et al. [2016],25

Campagne [2016] and distribute release 1.2 of the project, which now also supports training and using26

genotyping models. In this preprint, we present the methods we used to train and evaluate genotyping27

models, discuss how our approaches differ from the recently presented study of Pollin et al, and present28

evaluation data on the Illumina platinum genome data.29

The methods we present rely on deep learning models that are trained from data. These methods are30

general and can be adapted to the characteristics of new experimental or analysis protocol by retraining31

models with sequence data obtained with commercially available DNA samples Torracinta et al. [2016],32

Campagne [2016], Poplin et al. [2016]. We present a brief protocol demonstrating how deep learning33

models can be trained with the open-source variationanalysis project. To our knowledge, our study is the34

first to offer an open-source implementation of a deep learning genotype caller and provide automated35

protocols to train models for new assays. The methods developed for this caller support diploid as well as36

polyploid organisms.37

RESULTS38

We developed a deep learning genotype caller. Briefly, the caller uses the Goby framework (Campagne et al.39

[2013]) to observe characteristics of read alignments against a reference genome, and the variationanalysis40

project (Torracinta et al. [2016], Campagne [2016]) to vectorize these characteristics into features and41

labels suitable for training a feed forward neural network.42

The caller can be trained using alignments in BAM, CRAM or Goby formats (Li et al. [2009], Fritz43

et al. [2011], Campagne et al. [2013]) and associated labels. Labels necessary to train neural networks44
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are obtained from gold-standard datasets. Here, we used the Illumina Platinum Genomes (Eberle et al.45

[2016]) as a source of alignments and true genotypes. In this first study, we called SNPs and disregarded46

indels. All performance metrics are presented for SNPs.47

We assembled a training dataset using all variants matching sites in the Platinum Genome NA1287748

sample and 10% of other non-variant sites. This dataset was split in a training set (80% of sites),49

validation set (10% of sites, further sub-sampled on non-variant sites) and test set (10% of sites). The50

variationanalysis project provides tools to simplify assembling datasets (and make their production51

consistent). See Material and Methods for a summary of the protocol and project documentation online52

for details).53

In this study, we mapped alignment data to 642 features for each site. Table 1 summarizes the54

characteristics of these datasets.55

Dataset #Training Sites #Validation Sites #Test Sites #Variants #Features

PG NA12878 chr21 (dev) 923,680 4,776 114,972 11,200 642
PG NA12877 whole (test) 25,550,404 274,955 3,193,235 245,420 642

Table 1. Characteristics of Datasets

Initial feature mapper development was conducted on a development dataset composed exclusively56

of chromosome 21 alignments from NA12878. This smaller dataset is independent of the final training57

dataset since it was sequenced from a different individual. The purpose of feature mapper development is58

to identify a mapping from alignment data to feature and label vectors that result in predictive models on59

independent test datasets. We iteratively developed and tested about 15 mappers, identifying and fixing60

software bugs through error analysis after each iteration. Error analysis consists in examining the types61

of errors that the model makes (e.g., using a genome browser to visualize sites of prediction and the62

alignment) on the test dataset. This process often suggests features that should be presented as input to63

the network to facilitate learning. We stopped this process when performance seemed to reach a plateau64

on the small development set, suggesting that we needed more data to train the model.65

Table 2 shows the performance metrics obtained on the development set with a reasonably tuned66

mapper. While these performance metrics are still far from the state of the art, they indicate that the67

mappers do a reasonably good job of mapping alignments to vectors since a reliable model can be trained68

with just one chromosome worth of data.69

Dataset Accuracy Recall Precision F1 GC AUC

chr21 dev 0.997 0.977 0.924 0.950 0.977 0.889

Table 2. Performance on Development Set. GC: Genotype Concordance. AUC: Area Under the
Received Operating Curve for correct variant identification. Precision and Recall: estimated over variants
only. F1: harmonic mean of Precision and Recall. Accuracy: estimated overall all genotypes.

The performance of deep neural networks are known to improve markedly when models are trained70

with larger numbers of training examples. To determine the improvement that more training data would71

bring, we trained a model with 10% of the data from the genome. Training was stopped when performance72

measured on the validation set did not increase after 10 epochs (complete passes over the training set).73

Table 3 shows the performance obtained when the model is trained with data from 10% of the genome74

(excluding 90% of non-variants containing sites, but keeping all variant containing sites). Performance75

metrics include all the gold-standard variants reported by the Platinum genome project (we did not limit76

this analysis to variant sites that overlap confident regions, but used all variants).77

These results show that more data can indeed markedly improve the performance of the trained78

model. These results place the open-source caller that we present within less than 1% of genotype79

concordance performance reported by Poplin and colleagues, while their models were training with data80

from complete genomes. Importantly, the recall of the models is close to optimal (0.986), while precision81

is still sub-optimal (0.936), suggesting that error analysis on the 10% dataset and future feature mapper82

optimizations could quickly bring performance in a competitive range.83
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Accuracy Recall Precision F1 numVariants GC AUC [AUC95 AUC95]

0.994 0.986 0.936 0.961 225,941 0.986 0.908 0.904 0.911

Table 3. NA12877: Performance on the Test Set (10% of sites in the genome. The number of variants
is the actual number of variants in the test set, used to estimate Precision, Recall and AUC. The AUC
point estimate and 95% confidence intervals are estimated on a random sample of 50,000 of these sites.

MATERIALS AND METHODS84

Alignment Data85

Alignments were not pre-processed and were used directly after download from ftp://ussd-ftp.86

illumina.com/2016-1.0/hg19/small_variants/. Limited preprocessing was performed87

with Goby to realign variations around indels to eliminate mis-alignment artifacts. Minimal pre-processing88

is in contrast to Poplin et al. [2016] which used a haplotype realigner and several preprocessing steps that89

already cleaned up the data before providing it to the model.90

Source of Gold Standard Genotypes91

We used all genotypes contained in the VCF files distributed at ftp://ussd-ftp.illumina.com/92

2016-1.0/hg19/small_variants/. In contrast to the study of Poplin et al. [2016], we did not93

restrict the gold standard variations to regions of high-confidence because this only trains the models on94

simpler regions of the genome and may limit its ability to discriminate variants in other regions.95

Software implementation96

Source Code97

The source code of the software used for this study is distributed under the open-source Apache 2.098

license at https://github.com/CampagneLaboratory/variationanalysis.99

Using trained models100

Models trained in this study are being integrated into release 3.2+ of the Goby genotype caller (distributed101

at http://github.com/CampagneLaboratory/goby3). Goby3 supports alignments in the102

Goby, CRAM, SAM or BAM formats. A parameter is used to specify the path to a model to call103

genotypes.104

Training new models105

Models for new assays can be trained by constructing a training, validation and test datasets. We106

provide scripts to automate this activity. Detailed steps are documented with the software (see https:107

//github.com/CampagneLaboratory/variationanalysis), but briefly, the datasets are108

produced by converting alignments to .sbi files with the Goby SEQUENCE BASE INFORMATION output109

format. True genotypes can be introduced in the .sbi file at this step. The .sbi file is randomized and110

randomly split into training, validation and test sets. The training of the model uses the training and111

validation sets for early stopping. Final model performance is estimated on the test set to verify that the112

model generalizes. Models are saved to disk during training.113

Neural Network Architecture114

Feature Mappers115

Feature mappers convert alignments about one sample into a fixed set of features suitable for train-116

ing with neural networks. Regardless of the number of reads aligned at a genomic position, map-117

pers need to produce a fixed-length output so that these outputs can be concatenated consistently118

into a fixed-length input vector. At each genomic site, a mapper generates the number of reads sup-119

porting each genotype (counts), the number of distinct locations in the read that support the geno-120

type (distinct read indices). Hundreds of features are derived for each site and a complete list is121

provided in the source code. Mappers are implemented in the variationanalysis project available at122

GitHub https://github.com/CampagneLaboratory/variationanalysis. This study123

used org.campagnelab.dl.genotype.mappers.GenotypeMapperV13.124
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Model Architecture125

Models were developed with the DeepLearning4J (DL4J) framework (http://deeplearning4j.org/), ver-126

sion 0.7.1. DL4J was selected because it is a Java framework and the models it produces can be127

integrated with the Goby framework more easily than frameworks in other languages. Models were128

formulated as 4 fully connected layers with RELU activation and a fully connected output layers with129

soft-max activation. The number of output layers depends on the specific label mapper used. The130

dense inner layers contain 5 times the number of input features. The exact model architecture used131

is encoded in the class called org.campagnelab.dl.genotype.learning.architecture132

.graphs.CombinedWithIsVariantGenotypeAssembler distributed in the variationanalysis133

project Torracinta and Campagne [2016].134

Label Mapper135

We have experimented with different methods to map genotypes to label vectors. One method calls136

alleles individually, and encodes the number of alleles. (Implemented with org.campagnelab.dl137

.genotype.mappers.NumDistinctAllelesLabelMapper and 10 org.campagnelab.dl138

.genotype.mappers.GenotypeLabelsMapper). This method is suitable for genomes of arbi-139

trary ploidy (e.g., plants). Another method is similar to that described in Poplin et al. [2016] and is limited140

to diploid genomes.141

Early Stopping142

We trained models with early stopping. Briefly, performance of the model was measured on a validation143

set and training was stopped when performance on the validation set did not increase for 10 epochs. We144

used the harmonic mean of F1 and AUC as validation performance measure.145

Analysis Protocol Summary146

A summary of a typical analysis protocol is provided here. Runnings these steps requires defining some147

environment variables and is fully explained in the software documentation. Training a model is performed148

in two high-level steps:149

• Transform an alignment (BAM,CRAM or Goby format) into an .sbi file (input for feature and label150

mappers):151

parallel-genotype-sbi.sh 10g NA12878_S1.bam152

This step produces the files NA12878 S1-train.sbi and NA12878 S1-train.sbip and two pairs of153

files, one for validation (used for early stopping) and for test set.154

• Train and evaluate the model with a choice of feature mapper (the number 1 is the index of the155

GPU to train the model on):156

iterate-genotype.sh org.campagnelab.dl.genotype.\157

mappers.GenotypeMapperV13 1158

This produces a model trained with the mapper on the training set and performance statistics on the159

validation set (printed during training, also stored in the model directory for reference), and finally160

runs the model on the test set, printing and storing statistics.161

DISCUSSION162

We presented a novel approach to call genotypes in high-throughput sequencing data using neural networks.163

The approach used in this study relies on deep neural networks to call genotypes and can be trained from164

gold-standard data. It differs from previous approaches in the following ways.165

Training deep learning models to call genotypes is a straightforward adaption of some of the ideas that166

we presented in Torracinta et al. [2016], Campagne [2016]. Given the existence of gold standard data for167

genotype calls and the ability of deep neural networks to reliably estimate probabilities, the development168

of a deep learning caller is a logical step. Our method differs from published genotype callers (e.g.,169

GATK) which rely on carefully designed probabilistic models McKenna et al. [2010], Nielsen et al. [2011].170
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Our approach is to train probabilistic models from data. The key advantage is that new models can be171

trained and adapted quickly to new experimental assays or data analysis protocols (e.g., combination of172

aligners and read preprocessing techniques).173

Poplin and colleagues have recently demonstrated that a similar idea performs extremely well across174

a variety of datasets (Poplin et al. [2016]). In this work, these authors have leveraged the expertise of175

Google in deep learning for images. They converted alignment data to images and trained models with176

the Inception v2 architecture. Their work is a clear demonstration that deep learning can be used for177

genotype calling and can result in state of the art genotype calling performance (as measured by genotype178

concordance, and precision/recall or F1 for the identification of variants).179

The approach of Poplin et al has several drawbacks. First, as presented, it only supports calling180

genotypes for diploid organisms (the network predicts three states for the genotype: AA A/B or BB).181

A universal caller should also be applicable to plants and other non diploid organisms. Our approach182

supports and already implements label mappers that can be used with arbitrary ploidy. The computational183

procedure described in Poplin et al. [2016] has another important drawback: its computational efficiency.184

Converting alignments to images requires assembling a 10,000 by 300 pixel image for each site where a185

prediction is required. The DeepVariant model therefore uses at least 3 million pixels per site. In contrast,186

our approach uses less than a 1,000 floats to represent both features and labels. Since our approach uses187

orders of magnitude fewer features, the training and evaluation datasets can be stored in a few tens of188

gigabytes and model training can be conducted on a workstation with one or a few GPU cards (we trained189

and evaluated models for this study on a workstation costing less than $10K). Computational efficiency is190

important to allow individual researchers to replicate results, make and evaluate method improvements,191

and develop models for new experimental assays or analysis protocols.192

Our methods also differ from Poplin et al. [2016] in the amount of preprocessing applied to alignment193

data before it is provided to the neural network. We applied limited preprocessing (realignment around194

indels), when Poplin et al used the GATK haplotype caller, which implements local reassembly. We195

believe that many of the pre-processing/clean-up operations currently implemented by ad-hoc software196

can be trained by back propagation given suitable training data. The fact that the test performance of the197

models we trained with minimal preprocessing are closing in on state of the art performance suggests that198

this hypothesis has merit.199

Another point of difference between our study and the work of Poplin et al. [2016] is that we distribute200

the software we developed under an open-source license. The immediate availability of the software201

and detailed model training protocols will make it possible for other researchers to train models for new202

platforms as well as to contribute to method development and evaluation.203

Finally, we are looking for collaborators interested in helping develop and evaluate improved versions204

of this genotype caller on a wide range of platforms. Training new models will be required when data205

from new platforms becomes available and for this reason we feel that a community effort is best suited to206

efficiently developing these technologies.207

The software that we presented here (see also Torracinta et al. [2016], Campagne [2016]) provides a208

test-bed infrastructure where new ideas can be tested and evaluated quickly. We hope that it will enable a209

community of researchers to experiment with neural networks for genomic applications.210
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