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Abstract   

Learning from reward feedback is essential for survival but can become extremely challenging 

with myriad choice options. Here, we propose that learning reward values of individual features 

can provide a heuristic for estimating reward values of choice options in dynamic, multi-

dimensional environments. We hypothesized that this feature-based learning occurs not just 

because it can reduce dimensionality, but more importantly because it can increase adaptability 

without compromising precision of learning. We experimentally tested this hypothesis and found 

that in dynamic environments, human subjects adopted feature-based learning even when this 

approach does not reduce dimensionality. Even in static, low-dimensional environments, subjects 

initially adopted feature-based learning and gradually switched to learning reward values of 

individual options, depending on how accurately objects’ values can be predicted by combining 

feature values. Our computational models reproduced these results and highlight the importance 

of neurons coding feature values for parallel learning of values for features and objects. 
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Introduction  

Human behavior is marked by a sophisticated ability to attribute reward outcomes to appropriate 

choices and events with surprising nuance. Learning from reward feedback is essential for 

survival but can be extremely challenging in natural settings because choices have many features 

(e.g. color, shape, texture), each of which can take different values, resulting in a large number of 

options for which reward values must be learned. This is referred to as the “curse of 

dimensionality,” because the standard reinforcement learning (RL) models used to simulate 

human learning do not scale up with the increasing dimensionality and number of possible 

options in the environment (Barto & Mahadevan, 2003; Botvinick, 2012; Hastie, Tibshirani, & 

Friedman, 2001; Sutton & Barto, 1998).  

An increase in dimensionality creates two main difficulties for humans and the standard RL 

models that attempt to directly learn the value of individual options. First, such learning is too 

slow because a large amount of reward feedback is needed for an accurate estimate of all reward 

values, resulting in imprecise estimates of reward value if reward contingencies quickly change 

over time. For example, a child naturally learns the tastes of various fruits she consumes 

throughout her life (e.g. green crispy apples, red crispy apples, yellow mushy bananas, etc.), but 

it would take a long time to acquire preferences for all different types of fruits. Second, the value 

of unexperienced options cannot be known; for example, how should the child approach a green, 

mushy avocado never encountered before?   

A few approaches are proposed for how we overcome the curse of dimensionality. One approach 

is to construct a simplified representation of the stimuli and therefore, to learn only a small 

subset of features and ignore others (Niv et al., 2015; Wilson & Niv, 2012). However, there are 

behavioral and neural data suggesting that in order to make decisions in multi-dimensional tasks, 

humans process all features of each option simultaneously, rather than focus on a single feature 

at a time (Wunderlich, Beierholm, Bossaerts, & O’Doherty, 2011). Moreover, ignoring certain 

features could be detrimental in dynamic environments where previously non-informative 

features can suddenly become informative. Another approach is to combine multiple 

environmental states or actions, thereby reducing the number of states or actions to be learned 

(Botvinick, 2012; Ribas-Fernandes, et al., 2011). Finally, one could infer the structure of the task 
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and create rules to estimate reward values of options based on their features, which requires a 

much smaller set of values to be learned (Braun, Mehring, & Wolpert, 2010; Dayan & Berridge, 

2014; Gershman & Niv, 2010; Maia, 2009).  

A simple form of this rule-based approach is feature-based learning, in which the reward values 

of all features are learned in parallel, and then combined according to a specific rule for 

estimating the reward values for individual options. For example, a child could evaluate fruits 

based on their color and texture and learn about these features when she consumes them. This 

heuristic feature-based learning is only beneficial if a generalizable set of rules exist to construct 

the reward value of all options accurately by combining the reward values of their features. 

Unfortunately, this is often not the case; for example, not all green fruits are tasty. So, could the 

benefits of feature-based learning overcome a lack of generalizable rules and still make this 

learning approach a viable heuristic? Currently, there is no single, unified framework for 

describing how such properties of the environment influence learning strategy (e.g. feature-based 

vs. object-based). 

An important aspect of feature-based learning is that reward values of all features of the selected 

option can be updated based on a single reward feedback, as opposed to updating only the value 

of the selected option in object-based learning. This makes feature-based learning faster and 

more adaptable, without being noisier, than object-based learning. This is important because 

simply increasing the learning rates in object-based learning can improve adaptability but also 

adds noise in the estimation of reward values, which we refer to as the adaptability-precision 

tradeoff (Farashahi, et al., 2017; Khorsand & Soltani, 2017). Therefore, the main advantage of 

heuristic feature-based learning might be to mitigate the adaptability-precision tradeoff. To test 

this hypothesis, we propose a general framework for understanding the advantages of feature-

based learning and designed a series of experiments to characterize how multiple factors 

encourage the adoption of feature-based versus object-based learning. These factors include: 

dimensionality, the number of options or features to be learned; and generalizability, how well 

reward values of options can be estimated from the values of their features. Moreover, we 

designed and tested two alternative network models to elucidate neural mechanisms consistent 

with our experimental observations.  
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We found that in dynamic environments, humans adopted feature-based learning even when this 

approach did not reduce dimensionality, namely, when the same numbers of options and features 

have to be learned. Even in static, low-dimensional environments where dimensionality 

reduction due to feature-based learning was small, subjects initially adopted feature-based 

learning and only gradually switched to learning individual option/object values. The degree of 

switching to object-based learning, however, was much smaller with higher dimensionality or 

when objects’ values could be more accurately predicted by combining the reward values of their 

features (i.e. higher generalizability). Overall, these results confirmed our hypothesis and suggest 

feature-based learning as a powerful heuristic for learning in dynamic, multi-dimensional 

environments. Finally, we found that our experimental results can be better captured by a model 

that has separate systems for estimating reward values of objects and features, and combines the 

strongest signal from each of these two systems and accordingly adjusts their weights based on 

reward feedback. 

 

Results  

Feature-based learning could mitigate the adaptability-precision tradeoff. To test our 

hypothesis that feature-based learning is mainly adopted to mitigate the adaptability-precision 

tradeoff, we first developed a general framework for learning in dynamic, multi-dimensional 

environments (see Methods for more details). If options/objects contain m features, each of 

which can have n types, there would be nm possible objects in the environment. The decision 

maker’s task is to learn the reward values of options/objects via reward feedback in order to 

maximize the total reward when choosing between two alternative options on each trial. To 

examine the advantages of object-based and feature-based approaches, we simulated this task 

using two different model learners. The object-based learner directly estimates the reward values 

of individual objects via reward feedback, whereas the feature-based learner estimates the reward 

values of all feature instances, such as red, blue, square, or triangle. The latter is achieved by 

updating the reward values associated with all features of the object for which reward feedback 

is given. The feature-based learner then combines the reward values of features to estimate the 

reward values of individual objects. To examine how the performance of the two learners 
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depends on the reward statistics in the environment, we varied the relationship between the 

reward value of each object and the reward values of its features in order to generate multiple 

environments, each with a different level of generalizability. In a fully generalizable 

environment, the estimated reward probabilities based on features deviate from the actual reward 

probabilities by only a small degree (Supplementary Figure 1), but more importantly, the rank 

order of estimated and actual reward probabilities, which determines preference between objects, 

is also similar.  

Feature-based learning might be faster than object-based learning with the same learning rate 

because reward values of all features of the selected option can be updated after each reward 

feedback. In contrast, only the value of the selected option is updated in the object-based 

learning model. Given a sufficient amount of time, the object-based learner can accurately 

estimate all option values, whereas the accuracy of the feature-based learner is limited by the 

generalizability of the environment. By comparing the time course of information acquired by 

the object-based and feature-based learners when reward values are fixed and using the same 

learning rate, we computed the time at which the object-based learner had acquired more 

information than the feature-based learner (the ‘cross-over point’; see Methods).  

We found that for sufficiently large values of generalizability (> 0.5), the feature-based learner 

acquires more information early on, but ultimately, the object-based learner reaches the same 

level of information as the feature-based learner and later surpasses it. Thus, object-based 

learning will be ultimately more useful in a stable environment. On the other hand, feature-based 

learning might be more beneficial in volatile environments where reward contingencies change 

often. Moreover, the cross-over point occurs later for smaller learning rates, indicating that 

slowing down learning to increase precision would favor feature-based learning (Fig. 1a). The 

advantage of feature-based over object-based learning increases with the dimensionality of the 

environment, as the number of value updates per reward feedback increases with the number of 

features in each object (Fig. 1b). Finally, an environment with randomly assigned reward 

probabilities tends to be more generalizable as the dimensionality increases (Fig. 1b inset). This 

property further increases the advantage of adopting feature-based learning in high-dimensional 

environments.  
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Figure 1. A framework for understanding model adoption during learning in dynamic, multi-dimensional 

environments. (a) Cross-over point is plotted as a function of the generalizability index of the 

environment for different values of the learning rate. The cross-over point increases with generalizability 

and decreases with the learning rate. The larger learning rate, however, comes at the cost of more noise in 

estimation (lower precision). The arrow shows zero cross-over point indicating that the object-based 

learning is always superior for certain environments. (b) Cross-over point is plotted as a function of 

generalizability separately for environments with different values of dimensionality (for 𝛼 = 0.05). The 

advantage of feature-based over object-based learning increases with larger dimensionality. The inset 

shows the distribution of the generalizability index in randomly generated environments for three 

different dimensionalities. (c) The object-based approach for learning multi-dimensional options/objects 

requires learning nm values, where there are m possible features and n types per feature in the 

environment, whereas the feature-based approach requires learning only n*m values resulting in a 

dimensionality reduction equal to (nm - n*m). A feature-based approach, however, is beneficial if there are 

generalizable rules for estimating the reward values of options based on the combination of features’ 

values. A lack of generalizability should encourage using the object-based approach. On the other hand, 

frequent changes in reward contingencies (dynamic environment) should increase the use of feature-based 

learning, which can increase adaptability without compromising precision. 
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These simulations demonstrate how the adaptability-precision tradeoff might favor the adoption 

of feature-based over object-based learning in some environments. Because only the value of the 

selected option is updated after each reward feedback, object-based learning in a volatile 

environment requires a higher learning rate, which comes at the cost of lower precision. Feature-

based learning can mitigate this problem by speeding up the learning via more updates per 

feedback, instead of increasing the learning rate. 

Our simple framework also provides clear predictions about how different factors such as 

dimensionality reduction, generalizability, and volatility might influence the adoption of feature-

based learning. Frequent changes in reward contingencies and high dimensionality should force 

the decision maker to adopt feature-based learning in order to reduce dimensionality and to 

increase adaptability without adding noise (Fig. 1c). On the other hand, lack of generalizability 

of the reward values of features to all object values should encourage adopting more accurate 

object-based learning. But immediately after changes in reward values, feature-based learning 

should still be favored since it acquires reward information more quickly. We tested these 

predictions in four experiments. 

Feature-based learning in dynamic environments.  To test our hypothesis and explore 

different factors influencing model adoption in dynamic multi-dimensional environments, we 

designed four experiments in which human subjects learned the reward values of different 

objects through reward feedback. In all experiments, subjects chose between a pair of dissimilar 

objects associated with different reward probabilities, but the relationship between the reward 

probabilities of objects and those of their features (color, shape, etc.) was varied. 

In Experiment 1, the pair of objects in each trial consisted of colored shapes whose reward 

probabilities unpredictably changed over time. Importantly, the feature-based and object-based 

approach required learning the same number of reward values: four objects (red square, red 

triangle, blue square, and blue triangle) and four feature instances (red, blue, square, and 

triangle). Therefore, adopting feature-based learning did not reduce dimensionality in 

Experiment 1. Moreover, reward probabilities assigned to different objects could be reliably 

estimated by combining the reward values of their features if the environment was generalizable. 

By examining choice behavior during Experiment 1, we aimed to study specifically how 
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adaptability required in a dynamic environment influences the adoption of a model used for 

learning and decision making (Fig. 1c). Experiment 2 was similar to Experiment 1, except that 

reward probabilities assigned to different objects were not generalizable and could not be 

estimated accurately by combining the reward values of their features. Therefore, choice 

behavior in Experiment 2 could reveal how the adaptability required in a dynamic environment 

and a lack of generalizability both influence model adoption (Fig. 1c). Finally, in Experiments 3 

and 4, we increased the dimensionality of the environment to examine the effect of a small and 

moderate dimensionality reduction by feature-based learning. Reward probabilities, however, 

were fixed throughout both of these experiments and reward values assigned to features were not 

fully generalizable to objects. This design allowed us to study the influence of dimensionality 

reduction and lack of generalizability on model adoption (Fig. 1c).  

During Experiments 1 and 2, subjects completed 768 trials of a two-alternative choice task where 

on each trial, they selected between two colored shapes that provided reward probabilistically 

(Supplementary Figure 2). These shapes were drawn from a set of four colored shapes each of 

which was assigned a specific reward probability. These probabilities, which we collectively 

refer to as the reward schedule, changed between blocks of 48 trials in order to generate 

environments with dynamic reward schedules. Overall, most subjects (64 out of 92) performed 

above the statistical chance level in both environments, indicating that they learned the values of 

options as they changed over time (Fig. 2a).  

To examine the time course of learning, we computed the average probability of reward as well 

as the probability of selecting the more rewarding option in a given trial during each block of 

trials (when probabilities were fixed). The latter quantity measured how well the subjects 

discriminated between the four options based on their associated reward probabilities. This 

analysis revealed that on average, it took approximately 15 trials for a subject to reach maximum 

performance (Fig. 2c) or discrimination (Fig. 2d) after a reversal. Examining choice behavior and 

performance in different super-blocks of the experiments did not reveal any significant change in 

achieving this performance over the course of the experiment (Supplementary Figure 3a-d) but 

showed an overall decrease in learning in the last super-block of Experiment 2 (Supplementary 

Figure 3a-d). Together, these results indicate that subjects did not use information from early 
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reward schedules to predict future changes in reward schedules, a challenging task given that 

reward values for all four options changed between blocks.  

 

Figure 2. Dynamic reward schedules promote feature-based learning whereas a lack of generalizability 

promotes object-based learning. (a) Performance or the average reward harvested by subjects during 

Experiments 1 (generalizable environment) and 2 (non-generalizable environment). Dashed lines show 

the mean performance and solid lines show the threshold used for excluding subjects whose performance 

was not distinguishable from chance (0.5). (b) Plotted is the Bayesian information criterion (BIC) based 

on the best feature-based or object-based models, separately for each environment. The insets show 

histograms of the difference in BIC from the two models for the generalizable (blue) and non-

generalizable (red) environments. The dashed lines show the medians and the stars indicate significant 

difference from zero (two-sided rank-sum, P < 0.05). Subjects were more likely to adopt a feature-based 

approach in the generalizable environment and an object-based approach in the non-generalizable 

environment. (c-d) Time course of learning during each block of trials in Experiments 1 and 2. Plotted are 

the average harvested reward (c) and probability of selecting the better option (d) in a given trial within a 

block across all subjects (the shaded areas indicate s.e.m.). The dashed line shows chance performance. 

The solid blue and red lines show the maximum performance based on the feature-based approach in the 

generalizable and non-generalizable environments, respectively, assuming that the decision maker selects 

the more rewarding option based on this approach on every trial. The maximum performance for the 

object-based approach was similar in the two environments, and equal to that of the feature-based 

approach in the generalizable environment. 
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To identify the learning model adopted by each subject, we fit the experimental data in each 

environment using six RL models that relied on either an object-based or a feature-based 

approach (Methods). To ensure that this fitting procedure can actually detect a specific learning 

strategy adopted by individual subjects, we generated choice data using each of the six models 

over a wide range of model parameters and fit the resulting data with all the models (see 

Methods). This analysis revealed that our fitting method is able to distinguish between the 

alternative models used for generating the data (Supplementary Figure 4) and to estimate 

underlying parameters accurately (Supplementary Figure 5).  

By fitting subjects’ choice data we found that the coupled feature-based RL (coupled indicates 

that values of both chosen and unchosen options are updated in each trial) and feature-based RL 

with decay provided the best overall fits for the data in the generalizable environment 

(Experiment 1; Supplementary Table 1). More importantly, all feature-based models provided a 

better overall fit than their object-based counterparts. We also compared the goodness-of-fit 

based on the best feature-based and object-based models for each individual and found that 

feature-based models provided significantly better fits in the generalizable environment (BIC 

(best feature-based) - BIC (best object-based) (mean±std) = -34.61±47.55; two-sided sign-rank 

test, P = 3.2*10-5, N = 43, d = 0.73; Fig. 2b). By contrast, in the non-generalizable environment 

(Experiment 2), the object-based models provided significantly better fits than feature-based 

models (BIC (best feature-based) - BIC (best object-based) (mean±std) = 29.77±71.07, two-sided 

sign-rank test, P = 0.030, N = 21, d = 0.42). We found consistent results when we considered 

each of the four super-blocks separately, indicating that the observed pattern of model adoption 

was not due to the use of different strategies early and late in the experiments (Supplementary 

Figure 6 a-d). Finally, we analyzed choice behavior of the excluded subjects but did not find any 

evidence that those subjects adopted a strategy different than the one used by the remaining 

subjects in a given experiment. These subjects did not favor feature-based or object-based 

learning, nor did they change their strategy over the course of experiments. Instead, they likely 

did not engage in the experiment due to task difficulty, especially during Experiment 2 

(Supplementary Figures 6e-h and 7a-c).  

Together, these results illustrate that subjects tend to adopt feature-based learning in the 

generalizable environment and object-based learning in the non-generalizable environment. 
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Therefore, a dynamic reward schedule encouraged subjects to use feature-based learning, which 

improves adaptability without compromising precision, whereas a lack of generalizability led 

them to switch (as a group) to slower but more accurate object-based learning. 

Shift from feature-based to object-based learning in static non-generalizable environments. 

Our framework predicts that feature-based learning should be adopted initially until the acquired 

information derived from the object-based approach becomes comparable to information derived 

from the feature-based approach. To test this prediction, we designed two additional experiments 

(Experiments 3 and 4) in which human subjects learned the values of a larger set of objects in a 

static, non-generalizable environment (see Methods and Supplementary Figure 8). The purpose 

of the static environment was to isolate the influence of generalizability and dimensionality 

reduction on model adoption in the absence of changes in reward schedules studied in 

Experiments 1 and 2. Moreover, in order to assess the temporal dynamics of model adoption 

more directly, we asked subjects to provide their estimates of reward probabilities for individual 

objects during five or eight estimation blocks throughout the experiment. The reward assignment 

was such that one of the two features was partially informative about the reward value, while the 

other feature did not provide any information by itself, resulting in non-generalizability of the 

environments. More specifically, the average reward values for instances of the non-informative 

feature were identical (Experiment 3) or very close to each other (Experiment 4) but the same 

average values for the informative feature were distinct (compare the average of values in 

individual columns or rows in Supplementary Figure 8a). 

Overall, the subjects were able to learn the task in Experiment 3, and the average performance 

across all subjects monotonically increased over time and plateaued at about 100 trials (Fig. 3a). 

Examination of the estimated reward probabilities for individual objects also showed an 

improvement over time, but more importantly, suggested a transition from a feature-based to an 

object-based approach as the experiment progressed. We utilized general linear regression and 

correlation to identify the model adopted by the subjects over the course of the experiment from 

their reward probability estimates (see Methods). The fit of subjects’ estimates revealed that the 

weight of the object-based approach relative to the sum weights of the object-based and feature-

based approaches was much smaller than 0.5 during the first estimation block but gradually 

increased over time (relative weight = 0.32, 95% CI [0.27 0.36] and 0.62, 95% CI [0.57 0.66] for 
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the first two and last two estimates, respectively; Fig. 3b). In addition, the percentage of variance 

in estimates explained by object-based and feature-based approaches (R2) gradually increased 

over the course of the experiment. Similarly, correlation analysis revealed that during early 

estimation blocks, the estimates of only a small fraction of subjects were more correlated with 

actual reward probabilities than reward probabilities estimated based on features, but this 

fraction increased over time (comparison of fractions in first two estimates vs. last tow estimates: 

χ2 (1) = 17.14, P = 3.5*10-5) (Fig. 3c). The results of these two analyses illustrated that in 

Experiment 3, subjects initially adopted feature-based learning and gradually switched to object-

based learning. 

We increased dimensionality of the environment in Experiment 4 in relation to Experiment 3 to 

further examine the influence of dimensionality reduction on model adoption. The performance 

plateaued at about 100 trials (Fig. 3e). Moreover, the fit of subjects’ estimates revealed that the 

relative weight of the object-based approach only slightly increased over time and plateaued at a 

small value (relative weight = 0.17, 95% CI [0.13 0.21] and 0.24, 95% CI [0.21 0.27] for the first 

two and last two estimates, respectively; Fig. 3f). Correlation analysis revealed a very similar 

pattern when the fraction of subjects using object-based learning did not significantly increase 

over time (comparison of fractions in first two estimates vs. last tow estimates: χ2 (1) = 2.27 P = 

0.13); Fig. 3g). All of these results suggest stronger feature-based learning compared to object-

based learning when dimensionality or generalizability increased, because both these quantities 

increased in Experiment 4 relative to Experiment 3 (for Experiments 3 and 4, D = 9 and 16 and 

generalizability = 0.57 and 0.76, respectively). 

We also fit the data from Experiments 3 and 4 using various RL models in order to identify the 

model adopted by the subjects. In Experiment 3, object-based RL with decay provided the best 

overall fit (Supplementary Table 1). Importantly, this model provided a better fit than its 

corresponding feature-based RL. Examination of the goodness-of-fit over time illustrated that the 

object-based learning model provided a better fit, particularly later in the experiment (Fig. 3d). 

The difference between the quality of the fit of the object-based and feature-based models in 

early (1-100) and late (100-280) trials 

( −𝐿𝐿!"#$%&!!"#$% + 𝐿𝐿!"#$%&"!!"#$% !"#$% − −𝐿𝐿!"#$%&!!"#$% + 𝐿𝐿!"#$%&"!!"#$% !"#$ 

(mean±std) = 0.023±0.050) was significantly different from zero (two-sided sign-rank test; P = 
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0.029, d = 0.46). We note that the boundary for early versus late trails (at 100) was selected 

based on the time course of performance (Fig. 3a) but that the reported difference was 

significantly larger than zero (P < .05) for any boundary values between 60 and 130 as well. 

 

Figure 3. Transition from feature-based to object-based learning in static, non-generalizable 

environments. (a) The time course of performance during Experiment 3. The running average over time is 

computed using a moving box with the length of 20 trials. Shaded areas indicate s.e.m., and the dashed 

line shows chance performance. The red and blue solid lines show the maximum performance using the 

feature-based and object-based approaches, respectively, assuming that the decision maker selects the 

more rewarding option based on a given approach in every trial. Arrows mark the locations of estimation 

blocks throughout a session. For some subjects, there were only five estimation blocks indicated by black 

arrows. (b) The time course of model adoption measured by fitting subjects’ estimates of reward 

probabilities. Plotted is the relative weight of object-based to the sum of the object-based and feature-

based approaches, and explained variance in estimates (R2) over time. Dotted lines show the fit of data 

based on an exponential function. (c) Plotted is the fraction of subjects who showed a stronger correlation 

between their reward estimates and actual reward probabilities than the probabilities estimated using the 

reward values of features. The dotted line shows the fit of data based on an exponential function. (d) 

Transition from feature-based to object-based learning revealed by the average goodness-of-fit over time. 

Plotted are the average negative log likelihood based on the best feature-based model, best object-based 

RL model, and the difference between object-based and feature-based models during Experiment 3. 

Shaded areas indicate s.e.m., and the dashed line shows the measure for chance prediction. (e-h) The 

same as in a-d, but during Experiment 4.  
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This result indicates a transition from feature-based to object-based learning. In Experiment 4, 

however, feature-based RL with decay provided the best overall fit (Supplementary Table 1) and 

the fit of this model was better than the corresponding object-based learning model throughout 

the experiment (Fig. 3h). Overall, the results based on fitting choice behavior were consistent 

with the results based on subjects’ reward estimates. Finally, we performed similar analyses over 

choice behavior and estimation of the excluded subjects but did not find any evidence that those 

subjects adopted a strategy qualitatively different from the one used by the remaining subjects 

(Supplementary Figure 7d-i). 

Together, we found that during both Experiments 3 and 4, subjects first adopted feature-based 

learning. In Experiment 3, they subsequently transitioned to object-based learning. Such 

transition was not evident in Experiment 4 due to higher dimensionality and larger 

generalizability in Experiment 4, both of which would encourage feature-based learning.  

Testing the behavioral predictions of feature-based learning. Feature-based learning assumes 

that reward feedback on a given object is attributed to all features of that object and thus, predicts 

that the reward value of all objects that share a feature with the object for which reward feedback 

was received should be updated. To test this prediction, we computed the feature-based 

‘differential response’ that measures the change in the value of features of the object selected on 

the previous trial (see Methods). We predicted that this measure would be positive for subjects 

who adopted feature-based learning. For comparison, we also calculated the object-based 

differential response equal to the difference between the probability of selecting an object that 

was selected and rewarded on the previous trial and the same probability when the previous trial 

was not rewarded. This measure is equivalent to the difference between win-stay and lose-switch 

strategy and should be positive for all subjects independently of their adopted model. We used 

goodness-of-fit to determine whether a subject adopted feature-based or object-based learning in 

a given experiment. 

The feature-based differential response was overall positive for subjects who adopted feature-

based learning in all four experiments, but this effect was more difficult to observe in 

Experiments 2 and 3 due to the small sample size, since most subjects adopted object-based 

learning in these experiments (one-sided sign-rank test; Experiment 1: P = 1.3*10-7, d = 1.48; 
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Experiment 2: P = 0.031, d = 0.97; Experiment 3: P = 0.012, d = 1.07; Experiment 4: P = 

0.0065, d = 1.004; Fig. 4a-d). In contrast, feature-based differential response was overall 

negative or undistinguishable from 0 for subjects who adopted object-based learning (one-sided 

sign-rank test, Experiment 1: P = 0.16, d = 0.70; Experiment 2: P = 0.01, d = 0.62; Experiment 

3: P = 0.015, d = 0.49; Experiment 4: P = 0.078, d = 0.97; Fig. 4e-h). As expected, all subjects 

were more likely to choose an object when it was rewarded compared to when it was not 

rewarded on the previous trial (red bars in Fig. 4). 

 

Figure 4. Subjects who adopted feature-based learning updated their preference even for objects that 

contained a feature of the object selected on the previous trial based on the reward outcome. (a-d) Plotted 

are the feature-based (blue) and object-based (red) differential responses for subjects who adopted 

feature-based learning in a given experiment. The dashed lines show the median values across subjects a 

star indicates significant difference from zero (one-sided sign-rank test, P < 0.05). The solid lines show 

the average simulated differential response using the estimated parameters based on the fit of each 

subject’s data. (e-h) The same as in a-d but for subjects who adopted object-based learning in each 

experiment.  

 

Finally, to further validate the models used for fitting, we simulated choice data using the 

estimated model parameters for individual subjects and computed the feature-based and object-

based differential responses for the simulated data. The similarity between the average 

differential responses based on simulated and actual choice (dashed and solid lines in Fig. 4) 

indicated the success of our models in capturing behavior. Together, these results confirm the 
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prediction of feature-based learning that reward values of all objects that share a feature with the 

selected object are updated based on the reward feedback. 

Influence of attention on feature-based learning. Although the main goal of our study was to 

identify factors influencing how humans adopt feature-based versus object-based learning, our 

design also allowed us to examine how attention may influence learning. In all our experiments, 

the two features of options provided different amounts of information. In principle, subjects 

could differentially attend to various features, resulting in unequal learning or in assigning 

different weights to the two features when constructing reward values during decision making 

(Leong, et al., 2017). Therefore, we examined possible attentional effects by fitting choice 

behavior with a feature-based model with decay that has two separate learning rates for the less 

and more informative features (for subjects who adopted feature-based learning). By design, this 

model can also assign different weights to the two features. We expected that attention would 

result in a larger learning rate and/or weight for the more informative relative to the less 

informative feature. However, because the estimated learning rates and assigned weights for 

individual subjects were correlated and only their product captured the amount of change in 

choice behavior due to reward feedback, we used this product to measure difference between the 

two features. Moreover, we also computed feature-based differential response for the two 

features in order to compare how changes in the value of features of the object selected on the 

previous trial depend on how informative those features were. 

First, we found a larger product of the learning rate and the assigned weight for the more 

informative than the less informative feature (one-sided sign-rank test; Experiment 1: P = 0.044, 

d = 0.23; Experiment 2: P = 0.031, d = 1.07; Experiment 3: P = 0.0028, d = 0.90; Experiment 4: 

P = 0.00075, d = 0.76; Fig. 5a-d). This indicates that subjects who adopted feature-based 

learning incorporated reward feedback (in terms of a combination of the learning rate and 

weights) from the more informative feature more strongly. Consistently, we found a larger 

feature-based differential response for the more informative feature in all experiments but this 

effect was not significant in Experiments 2 and 3 due to the small sample size (one-sided sign-

rank test; Experiment 1: P = 1.1*10-4, d = 0.72; Experiment 2: P = 0.094, d = 0.89; Experiment 

3: P = 0.19, d = 0.20; Experiment 4: P = 4.2*10-5, d = 1.2; Fig. 5e-h). This result illustrates that 

subjects updated their behavior to a greater extent for the more informative feature. The 
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qualitative match between the analysis based on the product of estimated learning rates and 

feature weights and the analysis based on the differential response demonstrates the usefulness of 

model fitting in revealing important aspects of learning in our experiments. Overall, these results 

indicate that in dynamic or high-dimensional environments, subjects’ choice behavior and 

learning were more strongly influenced by the information in the more informative feature, 

which could be due to deployment of attention on this feature.  

 

Figure 5. Feature-based learning was stronger for the more informative feature. (a-d) Plotted is the log 

product of the estimated learning rate (α) and assigned weight (w) for the less informative feature (non-

informative in the case of Experiments 2-4) versus of the same product for the more informative feature 

for each individual, across four experiments. The insets show the histogram of difference in (α*w) 

between the more and less informative features. The dashed lines show the medians and the solid gray 

lines indicate zero. The star shows that the median of the difference in (α*w) were significantly different 

from 0 (one-sided sign-rank test, P < .05). These products were larger for the more informative feature in 

all experiments. (e-h). Plotted is the feature-based differential response for the less informative feature 

versus the more informative feature. Conventions are the same as in panels a-d. The feature-based 

differential response was larger for the more informative feature in all experiments (though it did not 

achieve significance in Experiments 2 and 3), indicating that subjects updated their behavior more 

strongly for the more informative feature.  

 

To summarize our experimental results, we found that human subjects adopted feature-based 

learning in dynamic environments even when this approach did not reduce dimensionality. 
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Subjects switched to object-based learning when the combination of features’ values could not 

accurately predict all objects’ values due to the lack of generalizable rules. Finally, in low-

dimensional, static environments without generalizable rules, subjects still adopted feature-based 

learning first before gradually adopting object-based learning. Overall, these results demonstrate 

that feature-based learning might be adopted mainly to improve adaptability without reducing 

precision.  

Plausible mechanisms for learning and model adoption.  To understand neural mechanisms 

underlying model adoption in a multi-dimensional decision-making task, we examined two 

alternative network models that could perform such tasks (Fig. 6a-b). Because of their 

architectures, we refer to these models as the parallel decision-making and learning (PDML) 

model and the hierarchical decision-making and learning (HDML) model. Both models have two 

sets of value-encoding neurons that learn the reward values of individual objects (object-value-

encoding neurons, OVE) or features (feature-value-encoding neurons, FVE). Learning occurs in 

the synapses onto the value-encoding neurons that undergo reward-dependent plasticity, enabling 

these neurons to represent and update the values of presented objects or their features (see 

Methods for more details). Despite this common rule of synaptic plasticity, there are many ways 

to combine signals from the OVE and FVE neurons and adjust the influence of these neurons on 

the final choice (arbitration mechanism). The PDML model makes two additional decisions 

using the output of an individual set of value-encoding neurons (OVE or FVE) which are then 

compared with the choice of the final decision-making (DM) circuit (Fig. 6a). If the final choice 

is rewarded (not rewarded), the model increases (decreases) the strength of connections between 

the set (or sets) of value-encoding neurons that produced the same choice as the final choice and 

the final decision-making circuit. This increases or decreases the influence of the set of value-

encoding neurons that was more likely responsible for making the final correct or incorrect 

choice, respectively. By contrast, the HDML model utilizes a signal-selection circuit to 

determine which set of the value-encoding neurons contains a stronger signal, and updates 

connections from the OVE and FVE neurons to their corresponding signal-selection accordingly. 

In this model, signal strength is defined as the difference between the reward values of the two 

options based on the output of OVE or FVE neurons. The model uses only the output of the set 

with a stronger signal to make the final decision on a given trial (Fig. 6b). Subsequently, only the 

strength of connections between the set of value-encoding neurons producing the ‘selected’ 
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signal and the corresponding neurons in the signal-selection circuit is increased or decreased 

depending on whether the final choice was rewarded or not rewarded, respectively (see Methods 

for more details). 

 

 

Figure 6. Architectures and performances of two alternative network models for multi-dimensional, 

decision-making tasks. (a-b). Architectures of the PDML (a) and the HDML (b) models. In both models, 

there are two sets of value-encoding neurons that estimate reward values of individual objects (object-

value-encoding neurons, OVE) and features (feature-value-encoding neurons, FVE). The two models are 

different in how they combine signals from the OVE and FVE neurons and how the influence of these 

signals on the final decision is adjusted through reward dependent plasticity (c) The time course of the 

overall strengths of plastic synapses between OVE and FVE neurons and the final DM circuit (CO and CF) 

in the PDML model, or between OVE and FVE neurons and the signal-selection circuit (CO and CF) in the 

HDML model. These simulations were done for the generalizable environment (Experiment 1) where the 

block length was 48. (d) The difference between the CF and CO over time in the two models. (e) The 

difference in the overall weights of the two sets of value-encoding neurons on the final decision (WF – 

WO) for the same set of simulations shown in panels c and d.  
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To show how these two different arbitration and learning mechanisms work, we first examined 

the simulated behavior of the two models during Experiment 1. The strength of connections from 

the OVE and FVE neurons to the final DM circuit in the PDML model or to the signal selection 

circuit in the HDML model increased initially but at a much faster rate for FVE neurons (Fig. 

6c). This occurred because on each trial both features of a selected object were updated and thus, 

synapses onto FVE neurons were updated twice as frequently as those onto OVE neurons. These 

faster updates enabled the FVE neurons to signal a correct response more often than the OVE 

neurons following each change in reward probabilities (Fig. 6d). We also computed the overall 

weight of the feature-based and object-based approaches on the final choice, WF and WO, 

respectively (see Methods). The difference between these two weights, (WF - WO), was positive 

in both models even though it decreased after each reversal, indicating that both models assigned 

a larger weight to feature-based than to object-based reward values. However, this effect was 

greater in the HDML compared to the PDML model (Fig. 6e).  

Next, we examined how well the PDML and HDML models can account for the observed choice 

behaviors in our experiments by simulating the behaviors in all four experiments using these 

models and analyzing the simulated and experimental data similarly. For Experiment 1, the 

simulated data using the PDML model were equally fit by the feature-based and object-based 

models (Fig. 7a) indicating that PDML could not adopt feature-based learning in a volatile, 

generalizable environment. In contrast, choice behavior of the PDML model during Experiment 

2 was better fit by the object-based model similarly to the experimental data (Fig. 7a). Choice 

behavior of the HDML model was consistent with our results in both Experiments 1 and 2 (Fig. 

7f). For Experiment 3, both models adopted feature-based learning first and slowly transitioned 

to object-based learning (Fig. 7b, g) and moreover, their choice behavior was better fit by object-

based learning later in the experiment (Fig. 7c, h). Both models also adopted feature-based 

learning first during Experiment 4 but showed only a small transition toward object-based 

learning (Fig. 7d, i) such that their choice behavior was still better fit by feature-based learning 

even toward the end of the experiment (Fig. 7e, j). These patterns were consistent with those of 

experimental data during Experiments 3 and 4. Overall, choice behavior of the HDML model 

qualitatively matched the pattern of data in all experiments whereas the PDML model failed to 

capture choice behavior during Experiment 1. 
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Figure 7. Replicating the pattern of experimental data using the PDML and HDML models. (a) 

Comparison of the goodness-of-fit in for the data generated by the PDML model in Experiments 1 

(generalizable) and 2 (non-generalizable) using the object-based and feature-based RL models with 

decays. The insets show histograms of the difference in the negative log likelihood based on the fits of the 

two models. In contrast to the experimental data, choice behavior of the PDML model in Experiment 1 

was equally fit by the object-based and feature-based models. (b) The time course of model adoption in 

the PDML model. Plotted is the relative weight of object-based to the sum of the object-based and 

feature-based weights, and explained variance in estimates (R2) over time in Experiment 3. Dotted lines 

show the fit of data based on an exponential function. (c) Transition from feature-based to object-based 

learning in the PDML model. Plotted are the average negative log likelihood based on the best feature-

based model, best object-based RL model, and the difference between object-based and feature-based 

models in Experiment 3. Shaded areas indicate s.e.m., and the dashed line shows the measure for chance 

prediction. (d-e) The same as in b-c, but for simulations of Experiment 4. (f-j) The same as in a-e, but for 

the HDML model. Although both models qualitatively replicated the pattern of experimental data in 

Experiments 2 to 4, only the behavior of HDML model was consistent with data in Experiment 1.  

  

We next tested the overall performance and the ability of HDML and PDML in adopting feature-

based vs. object-based approach in a larger set of environments, and examined how interactions 

between generalizability, frequency of changes in reward probabilities (volatility), and 

dimensionality affect the behavior of these models. First, we used the two network models to 

simulate various environments with different levels of generalizability and volatility. These 

environments were constructed by varying the relationship between the reward value of each 

object and the reward values of its features, and changing the block length, i.e. the number of 
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trials where reward probabilities were fixed (see Methods). The maximum and minimum levels 

of generalizability in these simulations correspond to environments used in Experiments 1 and 2, 

respectively (Supplementary Figure 1). Both models were able to perform the task in various 

environments with different levels of volatility and generalizability, but the performance of the 

HDML model was slightly higher in all environments (∆performance = 0.001±0.0042 

(mean±std); two-sided sign-rank test, P = 0.0023, d = 0.23; Fig. 8a, d, g). More importantly, the 

difference in the strength of connection from FVE and OVE neurons to the next stage of 

processing (CF – CO) was more strongly modulated by generalizability and volatility in the 

HDML compared to the PDML model. This indicated that HDML was better able to adjust the 

strength of connections from value-encoding neurons (Fig. 8b, e, h). As generalizability or 

volatility increased, connections between FVE neurons and the signal-selection circuit became 

stronger than connections between OVE neurons and the signal-selection circuit. Therefore, only 

the HDML model assigned larger weights to feature-based rather than object-based reward 

values (larger WF – WO) as the environment became more generalizable or volatile (Fig. 8c, f, i). 

Overall, these results demonstrated that, although both models were able to perform the task, the 

HDML model exhibited higher performance and stronger adjustment of connections from the 

value-encoding neurons to the next level of computation. Therefore, HDML was overall more 

successful in assigning more graded weights to different types of learning according to reward 

statistics in the environment. 
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Figure 8. The effects of generalizability and volatility (i.e. frequency of changes in reward probabilities) 

on the models’ behavior. (a) Performance of the PDML model in various environments with different 

levels of volatility and generalizability. The color map shows the performance (average harvested reward) 

for a given value of block length (L) and the generalizability index. (b) The difference between the 

strengths of plastic synapses from FVE and OVE neurons onto the final DM circuit (CF -CO) in the 

PDML model. (c) The difference between the overall weights of FVE and OVE neurons on the final DM 

circuit (WF – WO) in the PDML model. (d-f) The same as in a-c but for the HDML model. (g-i) The 

difference between the performance, (CF -CO), and (WF – WO) in the HDML and PDML models.  

 

Finally, we examined the interaction between dimensionality reduction and generalizability in 

adopting a model of the environment by simulating various environments in Experiments 3 and 4 

using the two models. Because dimensionality is a discrete number, we considered two different 

environments with different number of feature instances (three or four) resulting in 

dimensionality D = 32 and D = 42. We also changed the level of generalizability across different 

environments (see Methods). Consistent with simulation results for Experiments 1 and 2 
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presented in Figure 8, an increase in generalizability caused both models to assign higher 

weights to feature-based rather than object-based reward values, but this effect was much 

stronger for the HDML model (larger positive slopes in Figure 9e-f compared with Figure 9b-c). 

An increase in dimensionality further biased both models to assign more weight to feature-based 

compared to object-based reward values.  

 

Figure 9. The effects of dimensionality and generalizability on the models’ behavior. Simulations of the 

PDML and HDML models are shown in a-c and d-f, respectively. (a, d) Performance of the models as a 

function of the generalizability index for two environments with 9 (gray) and 16 (black) objects, 

respectively. The dotted red and blue curves show the maximal performance for object-based (O) and 

feature-based (F) models, respectively, for D = 32, as in Experiment 3. The dashed curves show the results 

for D = 42, as in Experiment 4. The gray and black arrows indicate the values of the generalizability index 

used in Experiments 3 and 4, respectively. (b, e) The difference between the strengths of plastic synapses 

from FVE and OVE neurons onto the final DM circuit (CF –CO) in the PDML model (b) and from FVE 

and OVE neurons onto the signal-selection circuit in the HDML model (E). (c, f) The difference between 

the overall weights of FVE and OVE neurons on the final DM circuit (WF –WO) in the PDML model (c), 

and from FVE and OVE neurons on the signal-selection circuit in the HDML model (f). 
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Overall, the simulation results for the two alternative network models illustrated that the HDML 

model exhibited higher performance and stronger adjustment to task parameters and reward 

statistics in the environment. These results indicate that hierarchical decision-making and 

learning might be more advantageous for adopting the model for learning in dynamic, multi-

dimensional environments.   

Discussion  

The framework proposed in this study for learning reward values in dynamic, multi-dimensional 

environments provides specific predictions about different factors that influence how humans 

adopt feature-based versus object-based learning to tackle the curse of dimensionality. Our 

experimental results confirmed these predictions and demonstrated that dynamic environments 

tend to favor feature-based learning because this learning not only reduces dimensionality but 

also improves adaptability without compromising precision. When precision is compromised due 

to non-generalizability of the rules assumed for feature-based learning, object-based learning is 

adopted more frequently. Importantly, feature-based learning is initially adopted, even in the 

presence of non-generalizable rules that only slightly reduce dimensionality and when reward 

contingencies do not change over time. These results suggest that the main driver for adopting 

heuristic feature-based learning is increasing adaptability without compromising precision; that 

is, to overcome the adaptability-precision tradeoff (APT).  

The APT sets an important constraint on learning reward values in a dynamic environment where 

they change over time. One solution to mitigate the APT is to adjust learning over time via 

metaplasticity (Farashahi et al., 2017; Khorsand & Soltani, 2017). Nevertheless, even with 

adjustable learning, the APT still persists and becomes more critical in multi-dimensional 

environments, since the learner may never receive reward feedback on many unchosen options 

and feedback on chosen options is quite limited. Importantly, adopting heuristic feature-based 

learning enables more updates after each reward feedback, which can greatly enhance the speed 

of learning without adding noise, as with other heuristic learning mechanisms (Jocham et al., 

2016). Moreover, such learning allows estimation of reward values for options which have never 

been encountered before (Kahnt, Park, Burke, & Tobler, 2012; Kahnt & Tobler, 2016).  
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Our results could explain why learning in young children, which is limited by the small number 

of samples, is dominated by attending to individual features (e.g. choosing a favorite color) to 

such an extent that it prevents them from performing well in simple tasks such as the dimension-

switching task (Zelazo, Frye, & Rapus, 1996). Interestingly, this inability has been attributed to 

failing to inhibit attention to the previously relevant or rewarding feature (Kirkham, Cruess, & 

Diamond, 2003). Here, we propose an alternative possibility that by focusing on a single feature 

such as color, children could evaluate reward outcomes of chosen options based on color and 

thus increase their learning speed. Moreover, by choosing a favorite color, they can further 

reduce dimensionality by decreasing the number of feature instances/categories to just two: 

favorite and non-favorite color. Thus, our results explain that choosing a favorite color not only 

reduces dimensionality but also increases adaptability without compromising precision. 

Although rules used for the heuristic feature-based approach are only partially generalizable in 

the real world, this lack of generalizability may not prevent humans from adopting feature-based 

learning for a few reasons. First, simply due to chance, the level of generalizability is larger for a 

higher dimensionality if there is at least one informative feature in the environment. Second, 

reward values of features can be learned separately for different domains (e.g. color of fruits and 

color of cars). Thus, the actual values of dimensionality and generalizability in the real world 

depend on how an individual separates learning for different domains. Finally, it might be 

practically difficult to detect non-generalizability due to a very large number of features and 

options (or domains of learning) in real world. Accordingly, feature-based learning could provide 

a “fast and frugal way” for learning in the real world (Gigerenzer & Goldstein, 1996).  

Heuristic feature-based learning is computationally less expensive and more feasible than object-

based learning, since it can be achieved using a small number of value-encoding neurons with 

pure feature selectivity, namely neurons that represent the reward value in a single dimension, 

such as color or shape. By comparison, object-based learning requires myriad mixed selectivity 

neurons tuned to specific combinations of various features. Thus, in contrast to recent theoretical 

work that has highlighted the advantage and importance of non-linear, mixed-selectivity 

representation for cognitive functions (Fusi, Miller, & Rigotti, 2016; Rigotti et al., 2013), our 

work points to the importance of pure feature selectivity for reward representation. The 

advantage of mixed-selectivity representation could be specific to tasks with low dimensionality 
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(in terms of reward structure) or when information does not change over time such as in object 

categorization tasks (Brincat & Connor, 2004; Gross, Rocha-Miranda, & Bender, 1972; Güçlü & 

van Gerven, 2015; Logothetis, Pauls, & Poggio, 1995).  

Our computational and experimental results also provide a few novel neural predictions. First, 

they predict that learning about reward in dynamic environments could depend more strongly on 

value-encoding neurons with pure feature selectivity, since activity or representation of such 

neurons can be adjusted more frequently over time due to more updates per feedback. Second, 

considering that neurons with pure feature selectivity are also crucial for saliency computations 

(Soltani & Koch, 2010), modulations of these neurons by reward could provide an effective 

mechanism for the modulation of attentional selection by reward (Khorsand, Moore, & Soltani, 

2015; Soltani, et al., 2016). Third, they predict larger learning rates for neurons with highly 

mixed selectivity; otherwise, the information in these neurons would lag the information in pure 

feature-selective neurons and become obsolete. Fourth, the complexity of reward value 

representation should be directly related to the stability of reward information in the 

environment. As the environment becomes more stable, learning the reward value of 

conjunctions of features and objects becomes more feasible and thus, more complex 

representation of reward values will emerge. Finally, updates of reward values for different 

objects and features necessitate separate reward prediction error (RPE) signals. This predicts 

different roles for multiple RPE signals observed in areas other than striatum and midbrain 

dopaminergic system (substantia nigra and ventral tegmental area), such as the anterior cingulate 

and medial prefrontal cortices (see Rushworth & Behrens, 2008 for a review). These novel 

predictions could be tested in future experiments.  

Our framework for understanding model adoption has a few limitations as well. First, it does not 

address the influence of what has been learned on learning strategy and future model adoption 

(Soltani et al., 2016). Second, it does not determine the intermediate steps for transition from 

feature-based to object-based learning, for example, what “conjunctions” of features are 

constructed and learned over time. Third, it does not address how model adoption depends on the 

ability of decision maker to discriminate between feature values (e.g. colors of objects). Future 

model development and experiments are required to explore these questions. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/097741doi: bioRxiv preprint 

https://doi.org/10.1101/097741


 29 

As our computational modeling suggests that learning based on feature-based and object-based 

approaches occurs simultaneously in two separate circuits, arbitration between the two forms of 

learning might be required (Lee, Seo, & Jung, 2012; Lee, Shimojo, & O’Doherty, 2014; Seo, 

Donahue, Cai, & Lee, 2014). Our modeling results show that such arbitration could happen via 

competition between two circuits based on the strength of signals in each circuit. Although we 

could not directly fit experimental data using these two models due to the over-fitting problem 

and large between-subject variability, our experimental results are qualitatively more compatible 

with a hierarchical decision-making and learning (HDML) model, since the parallel decision-

making and learning model does not show the sensitivity to experimental factors observed in our 

human subjects. In the HDML model, the best sources of information were identified to make 

decisions, and weights associated with the selected sources were successively updated according 

to reward feedback. The hierarchical structure allows the HDML model to reduce noise in 

decision making by ignoring the less informative value-coding network on each trial. Our results 

imply that reward feedback alone can correctly adjust behavior toward a more object-based or a 

more feature-based approach, without any explicit optimization or knowledge of the 

environment. This does not contradict the need for arbitration but instead provides a simple 

mechanism for arbitration based on the same reward feedback used to learn reward values of 

objects and features. Interestingly, competition through stages of hierarchy has also been 

suggested as an underlying mechanism behind multi-attribute decision making (Hunt, Dolan, & 

Behrens, 2014; Jocham, Hunt, Near, & Behrens, 2012). The HDML model proposed in this study 

shares some components with the model of Hunt et al. (2014), namely the competition between 

different attribute values before they are combined, though our model includes learning as well. 

Similar to Wunderlich et al (2011), we also suggest that the brain should learn values and 

weights for all possible informative dimensions and update these weights on every trial. 

Despite the fact that naturalistic learning from reward feedback entails options with overlapping 

features, only recently have some studies used multi-dimensional experimental paradigms to 

study learning from reward feedback and explored possible solutions for the curse of 

dimensionality (Eldar, Cohen, & Niv, 2013; Hunt et al., 2014; Leong, et al., 2017; Niv et al., 

2015; Vaidya, 2015; Wilson & Niv, 2012; Wunderlich et al., 2011). A few of these studies have 

found that learning in a multi-dimensional environment relies on constructing a simplified 

representation of the stimuli via attending to one feature and ignoring others (Eldar et al., 2013; 
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Niv et al., 2015). Similarly, we found evidence for attentional bias on one of the two features, 

whereas no feature was completely ignored. Interestingly, a recent study has shown that 

attention, guided by ongoing learning, can bias both value computation and update, and thus 

results in more efficient learning in multi-dimensional environments (Leong, et al., 2017). 

Finally, attending to only a subset of “relevant” features is both inevitable and crucial for 

learning and decision making in high-dimensional environments (Payne, Bettman, & Johnson, 

1993; Tversky, 1972). However, in order to identify the relevant features in dynamic 

environments, values of multiple features should be updated in parallel over time.  

In conclusion, we show that a tradeoff between adaptability and precision could explain why 

humans adopt feature-based learning, especially in dynamic environments. Moreover, our results 

suggest that neurons with pure selectivity could be crucial for learning in dynamic environments 

and could provide a missing framework for understanding how heterogeneity in reward 

representation emerges (Wallis & Kennerley, 2010; Donahue & Lee, 2015).    
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Methods  

Framework for adoption of feature-based versus object-based learning. We first developed a 

general framework for understanding model adoption during learning in dynamic, multi-

dimensional environments. The decision maker’s task is to learn the reward values of a set of 

options via reward feedback after selecting one of two alternative options on each trial. We 

simulated the behavior of two contrasting learners in this task: the object-based and feature-

based learner. The object-based learner directly estimates the value of individual objects via 

reward feedback. By contrast, the feature-based learner estimates the reward values of all feature 

instances (e.g. red, blue, square, or triangle) by updating the reward values associated with all the 

features of the object for which reward feedback is given. This learner then combines the reward 

values of feature instances to estimate the overall reward value of individual objects. 

Assuming that options/objects have m features, each of which can have n different instances, 

there are nm possible objects in the environment. For example, if an object has two features (m = 

2), color and shape, and there are three colors and three shapes (n = 3), there would be nine (32) 

possible objects in the environment. We first constructed an environment by assigning a 

probability of reward to each object based on the feature instances of that object. More 

specifically, n feature instances were assigned with a set of equally-spaced (in log scale) odds 

ratios (OR) in all m dimensions. The minimum and maximum values of ORs were set to 1/x and 

to x (x > 1), respectively. For example, for n = 3,OR(Fij) = {1/2, 1, 2} where Fij is the feature 

instance j (j = 1,…,n) of feature i (i = 1,…,m).  The OR for a given object a, OR(Oa), was 

determined by multiplying the ORs of all features of that object: 

𝑂𝑅(𝑂!) = 𝑂𝑅(𝐹!")!
!!!,!"# !!" !"#$#%& !" !! . Finally, the probability of reward on each object 

was then computed by transforming the object’s LR to the probability of reward: 𝑝!(𝑂!) =

𝑂𝑅 (𝑂!)/(1+ 𝑂𝑅 (𝑂!)). These reward probabilities are referred to as the fully-generalizable 

reward matrix. 

Although each object is assigned a reward value, the feature-based learner could instead use the 

reward value for each feature instance (e.g. red, green, triangles, squares) to estimate reward 

values of objects in two steps. First, the reward value for a given feature instance (e.g. red) can 

be computed by averaging the reward values of all objects that contain that feature instance (e.g. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/097741doi: bioRxiv preprint 

https://doi.org/10.1101/097741


 35 

all red objects): 𝑝!(𝐹!") = (1/𝑛!!!) 𝑝!(𝑂!)!! !"#$%&#' !!" . Second, an estimated reward value, 

𝑝! 𝑂! , can be generated by combining the reward values of features using the Bayes theorem:  

𝑝! 𝑂! = (𝑝! 𝐹!!  × 𝑝! 𝐹!!  ×… )/(𝑝! 𝐹!!  × 𝑝! 𝐹!!  ×…+  (1−  𝑝! 𝐹!! ) × (1−

𝑝! 𝐹!! ) ×… )      for Oa containing of F1j, F2k, etc.   (Eq. 1) 

These estimated reward probabilities constitute the estimated reward matrix based on features. 

The rank order of probabilities in the estimated reward matrix, which determines preference 

between objects, is similar to that of the fully-generalizable reward matrix, whereas the exact 

values may differ slightly (diamonds in Supplementary Figure 1).  

By randomly shuffling the elements of the fully-generalizable reward matrix in all feature 

dimensions except one, which we call the informative feature, we generated environments with 

different levels of generalizability. We used the correlation between the ‘shuffled’ reward matrix 

and estimated reward matrix (i.e. correlation between the actual reward value of options and the 

estimated reward value of options based on their features) to define a generalizability index. 

Based on this definition, the generalizability index can take on any value between -1 and 1. 

Without any shuffling, we get a fully generalizable environment (generalizability index equal to 

1) where the rank order of the estimated reward values of options based on their features is 

identical to the rank order of actual objects’ values. With less generalizability, the rank order is 

not the same (reflected in a smaller generalizability index) and the difference between the 

estimated reward values based on features and actual objects’ values increases (Supplementary 

Figure 1). 

The task for the decision maker is to learn the reward value of options/objects via reward 

feedback in order to choose between two alternative options in each trial. To illustrate how 

learning strategy influences performance in this task, we considered two alternative learners: 

object-based and feature-based. We assumed that the object-based learner directly estimates the 

reward value of all objects using reward feedback in each trial based on the following equations: 

𝑉𝑂𝑎 𝑡 + 1 = 𝑉𝑂𝑎 𝑡 + 𝛼 1 − 𝑉𝑂𝑎 𝑡  ,    𝑖𝑓 𝑟 𝑡 = 1 

𝑉𝑂𝑎 𝑡 + 1 = 𝑉𝑂𝑎 𝑡 − 𝛼 𝑉𝑂𝑎 𝑡 ,    𝑖𝑓 𝑟 𝑡 = 0      (Eq. 2) 
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where t represents the trial number, 𝑉!!(𝑡) is the reward value of the chosen object a, 𝑟(𝑡) is the 

trial outcome (1 for rewarded, 0 for unrewarded), and 𝛼 is the learning rate. The value of the 

unchosen object is not updated. By contrast, the feature-based learner estimates the reward value 

of individual feature instances (e.g. red, green, triangles, squares), 𝑉!!"(𝑡), using the same update 

rule as in Equation 2, but applying to all features of the chosen object. This learner then 

combines the reward values of feature instances to compute reward values of each option (Eq. 1). 

Therefore, the object-based learner only updates one value function after each feedback whereas 

the feature-based learner updates the reward value of all feature instances of the selected object. 

To measure how well a learner that uses the object-based approach can differentiate between 

different options at a given point in time, we defined the differential signal, SO(t), in the object-

based learning model as follows: 

𝑆! 𝑡 = !
!!×(!!!!)

𝑉𝑂𝑎 𝑡 − 𝑉𝑂𝑏 𝑡 𝑠𝑖𝑔𝑛(𝑝𝑟(𝑂𝑎) − 𝑝𝑟(𝑂𝑏))
!!
!!!

!!
!!!      (Eq. 3) 

where 𝑝!(𝑂!) is the probability of reward on object a. The differential signal for the feature-

based learning model, SF(t), was computed by replacing 𝑉!!(𝑡) in the above equation with the 

estimated reward value 𝑉!! 𝑡 ,  which was computed by replacing 𝑝! 𝐹!"  in Equation 1 with 

𝑉!!"(𝑡). Therefore, the differential signal measures how reward values estimated by a given 

model correctly differentiate between actual reward values of objects.  

By comparing the time courses of the differential signal for the object-based and feature-based 

learners (using the same learning rate and similar initial conditions), we computed the time at 

which the object-based learner carries a stronger differential signal than the feature-based learner 

(the ‘cross-over point’). A larger cross-over point indicates the superiority (better performance) 

of the feature-based relative to the object-based learning for a longer amount of time, whereas a 

zero cross-over point indicates that the object-based learning is always superior. 

Subjects. Subjects were recruited from the Dartmouth College student population (ages 18-22). 

In total, 59 subjects were recruited (34 females) to perform the choice task in Experiment 1 

and/or 2 (18 in Experiment 1 only, 8 in Experiment 2 only, and 33 in both experiments). This 

produced behavioral data from 51 and 41 subjects for Experiments 1 and 2, respectively. A 
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general linear model for predicting performance did not reveal any effects of previous 

participation or the order of experiments for those who performed in both Experiments 1 and 2. 

To exclude subjects whose performance was not significantly different from chance (0.5), we 

used a performance threshold of 0.5406 (equal to 0.5 plus 2 times s.e.m., based on the average of 

608 trials after excluding the first 10 trials of each block in Experiment 1 or 2). This resulted in 

the exclusion of data from 8 of 51 subjects in Experiment 1, and 19 of 41 subjects in Experiment 

2. An additional subject was excluded from Experiment 2 for submitting the same response 

throughout the entire experiment. The remaining 64 datasets (N = 43 and 21 for Experiments 1 

and 2, respectively) were used for the main analyses but the excluded datasets were analyzed as 

well. For Experiment 3, 36 additional subjects were recruited (20 females) and a performance 

threshold of 0.5447 (equal to 0.5 plus 2 times s.e.m., based on the average of 500 trials after 

excluding the first 30 trials of each session) was used to exclude subjects whose performance 

was indistinguishable from chance (N = 9). In total, only two subjects participated in all three 

experiments, and this occurred over four months. For Experiment 4, 36 new subjects were 

recruited (22 females) and a performance threshold of 0.5404 (equal to 0.5 plus 2 times s.e.m., 

based on the average of 612 trials after excluding the first 30 trials of each session) was used to 

exclude subjects whose performance was indistinguishable from chance (N = 11). No subject had 

a history of neurological or psychiatric illness. Subjects were compensated with a combination of 

money and “t-points,” which are extra-credit points for classes within the Department of 

Psychological and Brain Sciences at Dartmouth College. The base rate for compensation was 

$10/hour or 1 t-point/hour. Subjects were then additionally rewarded based on their performance 

by up to $10/hour. All experimental procedures were approved by the Dartmouth College 

Institutional Review Board, and informed consent was obtained from all subjects before 

participating in the experiment. Finally, all experiments were written in MATLAB, using the 

Psychophysics Toolbox Version 3 extensions (Brainard, 1997) and presented using an OLED 

monitor. 

Experiments 1 and 2. In each of these experiments, subjects completed two sessions (each 

session composed of 384 trials and lasting about half an hour) of a choice task during which they 

selected between a pair of objects on each trial (Supplementary Figure 2a). Objects were one of 

four colored shapes: blue triangle, red triangle, blue square, and red square. Subjects were asked 

to choose the object that was more likely to provide a reward in order to maximize the total 
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number of reward points, which would be converted to monetary reward and/or t-points at the 

end of the experiment.  

In each trial, the selection of an object was rewarded only according to its reward probability and 

independently of the reward probability of the other object. This reward schedule was fixed for a 

block of trials (block length, L = 48), after which it changed to another reward schedule without 

any signal to the subject. Sixteen different reward schedules consisting of some permutations of 

four reward probabilities [0.1, 0.3, 0.7. 0.9], were used. In eight of these schedules, a 

generalizable rule could be used to predict reward probabilities for all objects based on the 

combinations of their feature values (Supplementary Figure 2b). In the other eight schedules, no 

generalizable rule could be used to predict reward probabilities for all objects based on the 

combinations of their feature values (Supplementary Figure 2c). For example, the schedule 

notated as ‘Rs’ indicates that red objects are much more rewarding than blue objects, square 

objects are more rewarding than triangle objects, and color (uppercase ‘R’) is more informative 

than shape (lower case ‘s’). In this generalizable schedule, red square was the most rewarding 

object whereas blue triangle was the least rewarding object. For non-generalizable schedules, 

only one of the two features was on average informative of reward values. For example, the ‘r1’ 

schedule indicated that, overall, red objects were slightly more rewarding than blue objects, but 

there was no generalizable relationship between the reward values of individual objects and their 

features (e.g. red square was the most rewarding object, but red triangle was less rewarding than 

blue triangle). In other words, the non-generalizable reward schedules were designed so that a 

rule based on feature combination could not predict reward probability on all objects. For 

example, learning something about a red triangle did not necessarily tell the subject anything 

about other red objects or other triangle objects.  

The main difference between Experiments 1 and 2 was that their environments were composed 

of reward schedules with generalizable and non-generalizable rules, respectively (Supplementary 

Figure 2d, f). In both experiments, as the subjects moved between blocks of trials, reward 

probabilities for the informative features were reversed without any changes in the average 

reward probabilities for the less informative and non-informative feature in Experiments 1 and 2, 

respectively. For example, going from Rs to Bs changes the more informative feature instance 

from red to blue. Reward probabilities changed without any cue to the subject and created 
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dynamic environments. In addition, the average reward probabilities for the less informative or 

non-informative feature changed (e.g., from Bs and Rs to Bt and Rt) every four blocks (super-

blocks; Supplementary Figure 2e, g). Each subject performed the experiment in each 

environment once, where either color or shape was consistently more informative. The more 

informative feature was randomly assigned and counter-balanced across subjects to minimize the 

effects of intrinsic color or shape biases. The order of experiments was randomized for subjects 

who performed both Experiments 1 and 2.   

Experiment 3. In this experiment, subjects completed two sessions, each of which included 280 

choice trials interleaved with five or eight short blocks of estimation trials (each block with eight 

trials). On each trial of the choice task, the subject was presented with a pair of objects and was 

asked to choose the object that they believed would provide the most reward. These objects were 

drawn from a set of eight objects, which were constructed using combinations of three distinct 

patterns and three distinct shapes (Supplementary Figure 8a; one of nine possible objects with a 

reward probability of 0.5 was excluded to shorten the duration of the experiment). The three 

patterns and shapes were selected randomly for each subject from a total of 8 patterns and 8 

shapes. The two objects presented on each trial always differed in both pattern and shape. Other 

aspects of the choice task were similar to those in Experiments 1 and 2, except that reward 

feedback was given for both objects rather than just the chosen object, in order to accelerate 

learning. During estimation blocks, subjects provided their estimates of the probability of reward 

for individual objects. Possible values for these estimates were from 5% to 95%, in 10% 

increments (Supplementary Figure 8c). All subjects completed five blocks of estimation trials 

throughout the task (after trials 42, 84, 140, 210, and 280 of the choice task), and some subjects 

had three additional blocks of estimation trials (after trials 21, 63, and 252) to better assess the 

estimations over time. Each session of the experiment was about 45 minutes in length, with a 

break before the beginning of the second session. The second session was similar to the first, but 

with different sets of shapes and patterns. 

Selection of a given object was rewarded (independently of the other presented object) based on 

a reward schedule with a moderate level of generalizability such that reward probability of some 

individual objects could not be determined by combining the reward values of their features. 

Because of the larger number of objects, the reward schedule was more complex than that used 
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in Experiment 1, but did not change over the course of the experiment. Non-generalizable reward 

matrices can be constructed in many ways. In Experiment 3, one feature (shape or pattern) was 

informative about reward probability while the other was not. Although the informative feature 

(e.g. pattern and shape in left and right panels of Supplementary Figure 8a, respectively) was on 

average predictive of reward, this prediction was not generalizable. That is, some objects that 

contained the most rewarding feature instances were still less rewarding than objects that did not 

contain these feature instances. For example, S1P3 in the left panel of Supplementary Figure 8a 

was less rewarding than S1P2. Finally, the average reward probability of the objects with the 

same non-informative feature instances (e.g. S1P1, S1P2, S1P3 in Supplementary Figure 8a left 

panel) was always 0.5. This reward schedule ensured that subjects would not be able to predict 

reward probability accurately for all objects based on the combination of their feature values. 

Similar to Experiments 1 and 2, the informative feature was randomly assigned and counter-

balanced across subjects to minimize the effects of intrinsic pattern or shape biases. 

Experiment 4. This experiment was similar to Experiment 3, except that we used four feature 

instances for each feature (shape and pattern) resulting in an environment with a higher 

dimensionality. Each subject completed two sessions, each of which included 336 choice trials 

interleaved with five or eight short blocks of estimation trials (each block with eight trials). The 

objects in this experiment were drawn from a set of twelve objects, which were combinations of 

four distinct patterns and four distinct shapes (Supplementary Figure 8b; four of sixteen possible 

objects with reward probability 0.5 were removed to shorten the duration of the experiment). The 

four patterns and shapes were selected randomly for each subject. The probabilities of reward on 

different objects (reward matrix) were set such that there was one informative feature, and the 

minimum and maximum average reward values for features were similar for Experiments 3 and 

4. 

Data analysis. We utilized the information subjects provided during estimation trials of 

Experiments 3 and 4 in order to examine how they determined the reward values of objects, 

using two alternative methods. First, we used linear regression to fit the estimates of reward 

probabilities as a function of the following variables: actual reward probabilities assigned to each 

object (object-based term); the reward probabilities estimated based on the combination of the 

reward values of features (feature-based term) using the Bayes theorem (Eq. 1); and a constant. 
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The constant (bias) in this regression model quantifies subjects’ overall bias in reporting 

probabilities. Second, to determine whether subjects’ estimates were closer to estimates based on 

the feature-based or object-based approach, we computed the correlation between subjects’ 

estimates and the actual reward probabilities assigned to each object, or subjects’ estimates and 

the reward probabilities estimated using the reward values of features (Eq. 1). Unless otherwise 

mentioned, the statistical comparisons were performed using Wilcoxon signed rank test in order 

to test the hypothesis of zero median for one sample or the difference between paired samples. 

The reported effect sizes are Cohen’s d values. All behavioral analyses, model fitting, and 

simulations were done using MATLAB 2015a (MathWorks, Inc., Natick, MA). 

Testing the behavioral predictions of feature-based learning. To measure the direct effect of 

feature-based learning on choice behavior, we defined the feature-based ‘differential response’ 

equal to the probability of selecting an object that contains only one of the two features of the 

object selected and rewarded on the previous trial (i.e. rewarded object) when this object was 

paired with an object that did not share any feature with the previously rewarded object. For 

example, denoting the probability of choosing X when it is presented together with Y in trial t 

given that choosing Z was rewarded and unrewarded in the previous trial as p(X≻Y(t)| Z(t-1)+) 

and p(X≻Y(t)| Z(t-1)−), p(□≻△(t)| ■(t-1)+) − p(□≻△(t)| ■(t-1)-) measures the change in 

the value of features of the object selected on the previous trial. For comparison, we also 

calculated the object-based differential response equal to the difference between the probability 

of selecting the object that was selected and rewarded on the previous trial and the same 

probability when the previous trial was not rewarded (e.g. p(choose ■ in trial t| ■(t-1)+) - 

p(choose ■ in trial t| ■(t-1)-) ). The object-based differential response measures the change in 

preference for an object due to reward feedback and is equivalent to the difference between win-

stay and lose-switch strategy for a particular object. 

Model fitting procedure. To capture subjects’ learning and choice behavior, we used seven 

different reinforcement learning (RL) models based on object-based or feature-based approaches. 

These models were fit to experimental data by minimizing the negative log likelihood of the 

predicted choice probability given different model parameters using the ‘fminsearch’ function in 

MATLAB (MathWorks, Inc., Natick, MA). To avoid finding local minima for the fit of 
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experimental data or simulated choice behavior, we repeated fitting of each dataset with at least 

10 different initial conditions and picked the best fit among all those fits. Based on the 

examination of the outcome fits, we found that 10 initialization to be enough to avoid local 

minima. We computed three measures of goodness-of-fit in order to determine the best model to 

account for the behavior in each experiment: average negative log likelihood, Akaike 

information criterion (AIC), and Bayesian information criterion (BIC). The smaller value for 

each measure indicates a better fit of choice behavior.  

Object-based RL models. In this group of models, the reward value of each object is directly 

estimated from reward feedback on each trial using a standard RL model (Sutton & Barto, 1998). 

For example, in the uncoupled object-based RL, only the reward value of the chosen object is 

updated on each trial. This update is done via separate learning rates for rewarded or unrewarded 

trials using the following equations, respectively (Donahue & Lee, 2015): 

𝑉!!!" 𝑡 + 1 = 𝑉!!!" 𝑡 + 𝛼!"# 1 − 𝑉!!!" 𝑡  ,    𝑖𝑓 𝑟 𝑡 = 1 

𝑉!!!" 𝑡 + 1 = 𝑉!!!" 𝑡 − 𝛼!"# 𝑉!!!" 𝑡 ,    𝑖𝑓 𝑟 𝑡 = 0            (Eq. 4) 

where t represents the trial number, 𝑉!!!" is the estimated reward value of the chosen object, 

𝑟(𝑡) is the trial outcome (1 for rewarded, 0 for unrewarded), and 𝛼!"# and  𝛼!"# are the learning 

rates for rewarded and unrewarded trials. The value of the unchosen object is not updated in this 

model. 

In the coupled object-based RL, the reward values of both objects presented on a given trial are 

updated, but in opposite directions (assuming that reward assignments on the two objects are 

anti-correlated). That is, while the value of chosen object is updated based on Equation 4, the 

value of unchosen object is updated based on the following equation: 

𝑉!"#$ 𝑡 + 1 = 𝑉!"#$ 𝑡 − 𝛼!"! 𝑉!"#$ 𝑡 ,    𝑖𝑓 𝑟 𝑡 = 1 

𝑉!"#$ 𝑡 + 1 = 𝑉!"#$ 𝑡 + 𝛼!"# 1 − 𝑉!"#$ 𝑡 ,   𝑖𝑓 𝑟 𝑡 = 0        (Eq. 5) 

where t represents the trial number and 𝑉!"#$  is the estimated reward value of the unchosen 

object.  
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The estimated value functions are then used to compute the probability of selecting between the 

two objects on a given trial (O1 and O2) based on a logistic function 

logit 𝑃!!(𝑡) = 𝑉!! 𝑡 − 𝑉!! 𝑡 /𝜎 + 𝑏𝑖𝑎𝑠         (Eq. 6) 

where PO1 is the probability of choosing object 1, VO1 and VO2  are the reward values of the 

objects presented to the left and right, respectively, bias measures a response bias toward the left 

option to capture the subject’s location bias, and σ is a parameter measuring the level of 

stochasticity in the decision process. 

Feature-based RL models. In this group of models, the reward value (probability) of each 

object is computed by combining the reward values of the features of that object, which are 

estimated from reward feedback using a standard RL model. The update rules for the feature-

based RL models are identical to the object-based ones, except that the reward value of the 

chosen (unchosen) object is replaced by the reward values of the features of the chosen 

(unchosen) object. In Experiments 3 and 4, the two alternative objects were always different in 

both features. In Experiments 1 and 2, however, the two alternative objects could have a 

common feature instance (e.g. both are blue) and updating the reward value of this common 

feature could be problematic. Indeed, we found that the fit of choice behavior based on a feature-

based model which always updates the reward values of both features of the selected object on 

each trial was worse than that of all other tested models (data not shown). Therefore, in the 

feature-based models presented here, only the reward value of the unique feature is updated 

when the two alternative options have a common feature on a given trial.  

As with the object-based RL models, the probability of choosing an object is determined based 

on the logistic function of the difference between the estimated values for the objects presented  

logit 𝑃!!(𝑡) = 𝑤!!!"# 𝑉!!!"#$!(𝑡)− 𝑉!!!"#$!(𝑡) + 𝑤!"#"$ 𝑉!"#"$%!(𝑡)− 𝑉!"#"$%!(𝑡) + 𝑏𝑖𝑎𝑠          

(Eq. 7)  

where 𝑉!!!"#$!(𝑉!"#"$%!)  and 𝑉!!!"#$!(𝑉!"#"$%!) are the reward values associated with the shape 

(color) of left and right objects, respectively, bias measures a response bias toward the left option 

to capture the subject’s location bias, and  𝑤!!!"# and 𝑤!"#"$ determine the influence of the two 
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features on the final choice. Note that these weights can be assumed to be learned over time 

through reward feedback (as in our models; see below) or could reflect differential processing of 

the two features due to attention.  

RL models with decay. Additionally, we investigated the effect of ‘forgetting’ the reward 

values of unchosen objects or feature(s) by introducing decay of value functions (in the 

uncoupled models) which has been shown to capture some aspects of learning (Barraclough et 

al., 2004; Ito & Doya, 2009), especially in multi-dimensional tasks (Niv et al., 2015). More 

specifically, the reward values of unchosen objects or feature(s) decay to 0.5 with a rate of 𝑑, as 

follows: 

𝑉 𝑡 + 1 = 𝑉 𝑡 − 𝑑 ∗ 𝑉 𝑡 − 0.5       (Eq. 8) 

where t represents the trial number and 𝑉 is the estimated reward probability of an object or a 

feature. 

Feature-based RL models. To investigate whether our fitting procedure can be used to 

distinguish between alternative models and to accurately estimate model parameters, we 

simulated the aforementioned six models over a range of parameters in the four experiments. The 

simulated data were generated using the learning rate (𝑞) ranging from 0.05 to 0.4, the decay 

rate (𝑑) ranging from 0.005 to 0.04, and the stochasticity in choice (𝜎) ranging from 0.05 to 0.4. 

Parameters outside these ranges did not result in an appropriate model behavior in our 

experiments. We then fit the simulated data with all the models to compute the goodness-of-fit 

and to estimate model parameters. The goodness-of-fit and the error in the estimated model 

parameters (the absolute difference between the actual and estimates) were computed by 

averaging over all fits based on all sets of parameters. 

Estimating attentional effects. Attention could influence how reward values of two features 

determine choice and how they are updated over time. Therefore, in order to distinguish these 

two roles of attention, we estimated learning rates as well as the ‘attentional’ weights separately 

for the less and more informative features. By design, the feature-based models assign two 

different weights to the two features before combining them to make a choice (Eq. 7). We also 

extended the feature-based model with decay to include separate learning rates for the less and 
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more informative features. For fitting of choice behavior in Experiments 3 and 4, we adopted 

two sets of weights for the first and second session of the experiments since two different sets of 

stimuli were used in these two sessions. 

Computational models. To gain insight into the neural mechanisms underlying multi-

dimensional decision-making, we examined two possible network models that could perform 

such a task (Fig. 6a-b). Both models have two sets of value-encoding neurons that learned the 

reward values of individual objects (object-value-encoding neurons, OVE) or features (feature-

value-encoding neurons, FVE). More specifically, plastic synapses onto value-encoding neurons 

undergo reward-dependent plasticity (via reward feedback), which enables these neurons to 

represent and update the values of presented objects or their features. Namely, reward values 

associated with individual objects and features are updated by potentiating or depressing plastic 

synapses onto neurons encoding the value of a chosen object or its features depending on 

whether the choice was rewarded or not rewarded, respectively.  

The two network models differ in how they combine signals from the OVE and FVE neurons 

and how the influence of signals from these neurons on the final choice is adjusted based on 

reward feedback. More specifically, the parallel decision-making and learning (PDML) model 

makes two additional decisions using the output of an individual set of value-encoding neurons 

(OVE or FVE) and compares them with the choice of the final decision-making (DM) circuit 

(Fig. 6a). If the final choice is rewarded (not rewarded), the model increases (decreases) the 

strength of connections between the set or sets of value-encoding neurons that produced the same 

choice as the final choice. This increases or decreases the influence of the set of value-encoding 

neurons that was more likely responsible for making the final correct or incorrect choice, 

respectively. By contrast, the hierarchical decision-making and learning (HDML) model updates 

connections from the OVE and FVE neurons to the corresponding neurons in the signal-selection 

circuit by determining which set of the value-encoding neurons contains a stronger signal (the 

difference between the values of the two options) first, and uses only the outputs of that set to 

make the final decision on a given trial (Fig. 6b). Subsequently, only the strengths of connections 

between the set of value-encoding neurons responsible for the ‘selected’ signal and the 

corresponding neurons in the signal-selection circuit are increased or decreased depending on 

whether the final choice was rewarded or not rewarded, respectively. 
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Learning rule. We assumed that plastic synapses undergo a stochastic, reward-dependent 

plasticity rule (see Soltani and Wang, 2006 and Soltani, Lee, & Wang, 2006 for details). Briefly, 

we assumed that plastic synapses are binary and could be in potentiated (strong) or depressed 

(weak) states. On every trial, plastic synapses undergo stochastic modifications (potentiation or 

depression) depending on the model’s choice and reward outcome (see below). During 

potentiation events, a fraction of weak synapses transition to the strong state with probability q+. 

During depression events, a fraction of strong synapses transition to the weak state with 

probability q-. These modifications allowed a given set of plastic synapses to estimate reward 

values associated with an object or feature (Soltani, Lee, & Wang, 2006; Soltani & Wang, 2006, 

2008, 2010). 

For binary synapses, the fraction of plastic synapses that are in the strong state (which we call 

‘synaptic strength’) determines the firing rate of afferent neurons. We denote the synaptic 

strength of plastic synapses onto a given population of value-encoding neurons ‘v’ by 𝐹!(𝑡), 

where v = {R, B, s, t, Rs, Bs, Rt, Bt} represents a pool of neurons encoding the value of a given 

feature or a combination of features (in Experiments 1 and 2), and t represents the trial number. 

In Experiments 3 and 4, the number of feature instances was three and four, respectively, instead 

of two, resulting in six and eight sets of FVE neurons and nine and sixteen sets of OVE neurons, 

respectively. Similarly, we denote the synaptic strength of plastic synapses from value-encoding 

neurons to the final DM circuit in the PDML model, or to the signal-selection circuit in the 

HDML model, by 𝐶!(𝑡) where m = {O, F} represents general connections from OVE and FVE 

neurons, respectively.  

The changes in the synaptic strengths for synapses onto value-encoding neurons depend on the 

model’s choice and reward outcome on each trial. More specifically, we assumed that synapses 

selective to the chosen object or features of the chosen object undergo potentiation or depression 

depending on whether the choice was rewarded or not, respectively:  

𝐹! !! 𝑡 + 1 = 𝐹! !! 𝑡 + 𝑞! 1− 𝐹! !! 𝑡 , 𝑖𝑓 𝑟 𝑡 = 1 

𝐹! !! 𝑡 + 1 = 𝐹! !! 𝑡 − 𝑞!𝐹! !! 𝑡 , 𝑖𝑓 𝑟 𝑡 = 0      (Eq. 9) 
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where t represents the trial number, 𝐹! !! (𝑡) is the synaptic strength for synapses selective to the 

chosen object or features of the chosen object, r(t) is the reward outcome, and 𝑞! and 𝑞! are 

potentiation and depression rates, respectively. The rest of plastic synapses transition to the weak 

state, according the following equation 

𝐹! !"#! 𝑡 + 1 = 𝐹! !"#! 𝑡 − 𝑞! ∗ 𝐹! !"#! 𝑡 − 0.5     (Eq. 10) 

where 𝐹! !"#! (𝑡)  is the synaptic strength for synapses selective to the unchosen object or 

features of the unchosen object, and qd is the depression rate for the rest of plastic synapses. Note 

that similarly to the models used for fitting, only the reward value of the unique feature of the 

selected object was updated when the two alternative objects had a common feature. 

We used similar learning rules for plastic synapses from value-encoding neurons to the final DM 

circuit in the PDML model as we did from value-encoding neurons to the signal-selection circuit 

in the HDML model. In the PDML model, plastic synapses from value-encoding neurons to the 

final DM circuit are updated depending on additional decisions based on the signal in an 

individual set of value-encoding neurons (OVE or FVE), the final choice, and the reward 

outcome as follows:  

𝐶! 𝑡 + 1 = 𝐶! 𝑡 + 𝑞! 1− 𝐶! 𝑡 ,   𝑖𝑓 𝑟 𝑡 = 1,𝑎𝑛𝑑 𝑝𝑜𝑜𝑙 𝑚 𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑓𝑖𝑛𝑎𝑙 𝑐ℎ𝑜𝑖𝑐𝑒  

𝐶! 𝑡 + 1 = 𝐶! 𝑡 − 𝑞!𝐶! 𝑡 ,    𝑖𝑓 𝑟 𝑡 = 0,𝑎𝑛𝑑 𝑝𝑜𝑜𝑙 𝑚 𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑓𝑖𝑛𝑎𝑙 𝑐ℎ𝑜𝑖𝑐𝑒  

𝐶! 𝑡 + 1 = 𝐶! 𝑡 − 𝑞! ∗ (𝐶! 𝑡 − 0.5),    𝑖𝑓  𝑝𝑜𝑜𝑙 𝑚 𝑐ℎ𝑜𝑖𝑐𝑒 ≠ 𝑓𝑖𝑛𝑎𝑙 𝑐ℎ𝑜𝑖𝑐𝑒     (Eq. 11) 

where t represents the trial number, 𝐶!(𝑡) is the synaptic strength of connections from object-

value-encoding (m = O) or feature-value-encoding neurons (m = F), qd is the depression rate for 

the pool with a choice different than the final choice, and 𝑞! and 𝑞! are potentiation and 

depression rates, respectively. 

As we have shown before, the decision only depends on the overall difference in the output of 

the two value-encoding pools (Soltani et al., 2006; Soltani & Wang, 2006, 2008, 2010). This 

difference is proportional to the difference in the overall fraction of strong synapses in the two 

pools, since we assumed binary values for synaptic efficacy. Therefore, the probability of the 
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final choice in the PDML model depends on the difference between the sum of the output of the 

value-encoding neurons selective for the presented objects or their features (shape and color):  

logit 𝑃 𝑂! =  𝐶!(𝐹!! − 𝐹!!)+𝐶!((𝐹!!!"#$! − 𝐹!!!"#$!) + (𝐹!"#"$%! − 𝐹!"#"$%!))/2𝜎  (Eq. 12) 

where 𝐹!!!"#$%(𝑡)  and 𝐹!"#"$%& 𝑡   are the synaptic strengths for synapses onto FVE neurons 

selective to shape and color, respectively. The probabilities of additional decisions (in DM 

circuits 1 and 2) based on the signal in an individual set of value-encoding neurons (OVE or 

FVE) are computed by setting CO or CF in the above equation to zero. 

In the HDML model, a signal-selection circuit determines which set of the value-encoding 

neurons (OVE or FVE) contains a stronger signal first, and uses only the output of that set to 

drive the final DM circuit on a given trial. The probability of selecting the signal from OVE 

neurons, 𝑃(𝑂𝑉𝐸), is computed using the following equation: 

logit 𝑃 𝑂𝑉𝐸 = 𝐶!(𝐹!! − 𝐹!!)−𝐶!((𝐹!!!"#$! − 𝐹!!!"#$!) + (𝐹!"#"$%! − 𝐹!"#"$%!))/2𝜎     (Eq. 13) 

Therefore, the final decision in the HDML model depends on the difference between the outputs 

of subpopulations in the set of value-encoding neurons which is selected as the set with stronger 

signal:  

logit 𝑃 𝑂! = (𝐹!! − 𝐹!!)/𝜎 , 𝑖𝑓 𝑂𝑉𝐸 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  

logit 𝑃 𝑂! = (𝐹!!!"#$! −  𝐹!!!"#$! +  𝐹!"#"$%! −  𝐹!"#"$%!)/2𝜎 , 𝑖𝑓 𝐹𝑉𝐸 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑    (Eq. 14) 

Finally, only plastic synapses from the value-encoding neurons with the stronger (hence chosen) 

signal to the signal-selection circuit are updated depending on the final choice and the reward 

outcome while the strength of the other set of plastic synapses decays to 0.5: 

𝐶! 𝑡 + 1 = 𝐶! 𝑡 + 𝑞! 1− 𝐶! 𝑡 ,     𝑖𝑓 𝑅 𝑡 = 1 

𝐶! 𝑡 + 1 = 𝐶! 𝑡  − 𝑞!𝐶! 𝑡 ,    𝑖𝑓 𝑅 𝑡 = 0    

𝐶! 𝑡 + 1 = 𝐶! 𝑡 − 𝑞! ∗ (𝐶! 𝑡 − 0.5)   (Eq. 15) 
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where m and n denote the pools with the selected and unselected signals, respectively. It is worth 

noting that although the synaptic plasticity rule in our models relies on a single binary reward 

feedback to update reward values for different objects and features, the equivalent RL models 

based on reward prediction error (RPE) require separate RPE signals for updating different 

features. 

Models simulations. In order to study the response of the PDML and HDML models to 

generalizability and frequency of changes in reward probabilities (volatility), we simulated each 

model over various environments (similar to those used in Experiments 1 and 2) with different 

levels of generalizability and volatility (Fig. 8). More specifically, we linearly morphed a 

generalizable environment to a non-generalizable environment while modulating the level of 

volatility by changing the block length, L. To examine the interaction between dimensionality 

reduction and generalizability in adopting a model of the environment, we simulated various 

environments similar to those used in Experiments 3 and 4 (Fig. 9). We changed the levels of 

generalizability by randomly shuffling some of the elements of the fully-generalizable reward 

matrices with two values of dimensionality (32 and 42). The reward probabilities were fixed over 

the course of these simulations, as in the real Experiments 3 and 4.  

Models parameters. We used the following parameter values for all simulations of the PDML 

and HDML models presented in the paper, except otherwise mentioned (both models have six 

parameters): potentiation and depression rates for plastic synapses onto value-encoding neurons 

(𝑞!= 𝑞! = 0.15), potentiation and depression rates for plastic synapses onto the final DM circuit 

in the PDML model or signal-selection circuit in the HDML model (𝑞! = 𝑞! = 0.075), the 

depression rate for the rest of plastic synapses (qd = 0.015), and the level of stochasticity in 

choice (σ  = 0.1). Only for the simulations of the Experiment 4 presented in Figure 7, the 

depression rate was set to a larger value (qd = 0.03) in order to mimic greater forgetting of 

reward values in the experiment with a larger number of objects. Although we chose these 

specific parameter values for model simulations, the overall behavior of the models did not 

qualitatively depend on these parameters. 

Assessment of models’ response to different environments. We assessed how the two models 

responded to properties of the environment, in terms of generalizability, volatility, and 
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dimensionality, in three different ways. First, we measured performance, defined as the average 

harvested reward in a given environment. Second, we measured the difference in connection 

strengths from value-encoding neurons to the final DM circuit in the PDML model or to signal-

selection circuit in the HDML model. The connection strengths from the OVE/FVE neurons to 

the final DM circuit in the PDML model or signal-selection circuit in the HDML model were 

equated with the synaptic strength (𝐶! 𝑡  and 𝐶! 𝑡 ) in the respective models. Finally, we 

measured the difference in the overall weights that object-based and feature-based reward values 

exert on the final choice in each model. 

In the PDML model, the strength of connections between each of the value-encoding neurons 

and the final DM circuit represents how strongly those neurons drive the final DM circuit. 

Similarly, the strength of connections between each of the value-encoding neurons and the 

signal-selection circuit represents how strongly those neurons drive the final DM circuit in the 

HDML model. In both models, however, the overall influence of the object-based or feature-

based values on choice also depends on how signals encoded in plastic synapses onto the OVE 

and FVE neurons can differentiate between objects reward values. We computed such a 

‘differential signal’ (S) for the object-based reward values by replacing 𝑉!!(𝑡) in Equation 3 with 

𝐹!"(𝑡), which is the synaptic strength for synapses onto a pool i of OVE neurons. Similarly, the 

differential signal for the feature-based reward values was computed by using the estimated 

reward values for objects based on the synaptic strengths for synapses onto FVE neurons 

selective to shape and color (𝐹!!!"#,!(𝑡) and 𝐹!"#"$,! 𝑡 ) and Equation 1.  

Finally, the overall weight of the object-based and feature-based values on the final choice was 

computed by the product of the differential signal represented in a given set of value-encoding 

neurons and the strength of connections between those neurons and the final DM circuit in the 

PDML model or the signal-selection circuit in the HDML model. More specifically, the overall 

weight that the model assigned to the object-based reward value, WO(t), was set equal to 

𝐶!(𝑡)× 𝑆!(𝑡) and the overall weight assigned to the feature-based reward value, WF(t), was set 

equal to 𝐶!(𝑡)× 𝑆!(𝑡). 

Data availability. The data that support the findings of this study are available from the 

corresponding author upon request. 
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Supplementary Figures  
 
 
 

 
 

Supplementary Figure 1. Error in the estimation of reward probabilities using the reward values of 

features. Plotted is the mean of absolute difference between the estimated reward probabilities based on 

features (Eq. 1) and the actual reward probabilities, as a function of the generalizability index separately 

for environments with different values of dimensionality. The error increases with smaller generalizability 

and with larger dimensionality. Error values for fully generalizable environments are plotted with filled 

diamonds. The black circles indicate error values for Experiments 1 to 4. The generalizability and error 

for reward matrices used in Experiments 3 and 4 are different from environments with similar 

dimensionality because of the removal of a few non-informative objects in these experiments. The shown 

relationship between the estimation error and generalizability predicts that adopting feature-based models 

is advantageous in more generalizable environments. 
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Supplementary Figure 2. Timelines and reward schedules of Experiments 1 and 2. (a) In each trial, the 
subject chose between two objects (colored shapes) and was provided with reward feedback (reward or no 
reward) on the chosen object. The inset shows the set of all objects used during Experiments 1 and 2. (b) 
Alternative schedules for assigning reward probability to individual objects based on a generalizable rule 
(Experiment 1). Each column represents a different schedule, and each row next to a given symbol 
indicates the reward probabilities associated with that symbol in different schedules. Reward schedules 
are coded to show which feature (color or shape) is more informative and which feature instances are 
more rewarding. For example, ‘Rs’ indicates that red objects are more rewarding than blue objects, 
squares are more rewarding than triangles, and color (‘R’) is more informative than shape (‘s’). (c) 
Alternative schedules for assigning reward probability to individual objects based on a non-generalizable 
rule (Experiment 2). For these schedules, only one of the two features was on average informative about 
reward values (e.g. red for ’r1’ schedule). (d-e) Examples of generalizable environments constructed by 
switching between blocks of generalizable reward schedules every 48 trials. (f-g) Examples of non-
generalizable environments constructed by switching between blocks of or non-generalizable reward 
schedules every 48 trials. 

objects
schedules and corresponding reward probability

0.9

0.3

0.1

0.7

r1
0.3

0.9

0.7

0.1

r2
0.7

0.1

0.3

0.9

b1
0.1

0.7

0.9

0.3

b2
0.9

0.1

0.3

0.7

s1
0.3

0.7

0.9

0.1

s2
0.7

0.3

0.1

0.9

t1
0.1

0.9

0.7

0.3

t2

only color only shape

a

b c

fixation

reward feedback

target presentation choice

features:
C = { }
S = { }

objects: { }

Experiment 1: generalizable environment Experiment 2: non-generalizable environment

L=192

Bt Rt Bt Rt

L=48
L=192

Bs Rs Bs Rs

L=48
L=192

Rt Bt Rt Bt

L=48

Rs

block (L=48)
super-block (L=192)

Bs Rs Bs

r2 b2 r2 b2

L=48

b1 r1 b1 r1

L=48

b2 r2 b2 r2

L=48

r1

block (L=48)

b1 r1 b1

d

f

C1 C2

0.3

0.1

0.9

0.7

C1 C2

0.7

0.1

0.3

0.9

C1 C2

S1

S2

0.9

0.7

0.3

0.1

C1 C2

S1

S2

0.9

0.3

0.1

0.7

ge
ne

ra
liz

ab
le

no
n-

ge
ne

ra
liz

ab
le

e

g
super-block (L=192) L=192 L=192 L=192

objects
schedules and corresponding reward probability

0.9

0.7

0.3

0.1

Rs
0.7

0.9

0.1

0.3

Rt
0.3

0.1

0.9

0.7

Bs
0.1

0.3

0.7

0.9

Bt
0.9

0.3

0.7

0.1

rS
0.7

0.1

0.9

0.3

bS
0.3

0.9

0.1

0.7

rT
0.1

0.7

0.3

0.9

bT

color > shape shape > color

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/097741doi: bioRxiv preprint 

https://doi.org/10.1101/097741


 53 

 

Supplementary Figure 3. Time course of learning during Experiments 1 and 2. (a-d). Plotted is the 

average harvested reward on a given trial during the four super-blocks of Experiments 1 and 2 across all 

subjects. The shaded areas indicate s.e.m. and the dashed line shows chance performance. The solid blue 

and red lines show the maximum performance based on the feature-based approach in the generalizable 

and non-generalizable environments, respectively, assuming that the decision maker selects the more 

rewarding option based on this approach on every trial. The maximum performance for the object-based 

approach was similar in the two environments, and equal to that of the feature-based approach in the 

generalizable environment. (e-h). Plotted is the average probability of choosing the more rewarding 

option on each trial during the four super-blocks of Experiments 1 and 2. Overall, performance increased 

and learning improved over the course of each block and dropped after reversal in both experiments. 

There was no evidence for different performance in early and late parts of experiments. 
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Supplementary Figure 4. Comparison of the goodness-of-fit for the simulated data using various models 

in Experiments 1 to 4. Each column shows results generated with a given model (numbered 1 to 6) and 

row a to d correspond to Experiments 1 to 4, respectively. Plotted is the average negative log likelihood (-

LL) over all sets of parameters (mean ± s.e.m.) for data generated with one of the six models in 

Experiments 1 to 4 and fit with each of the six models. The results for the model used to generate data in 

a given experiment and its object-based or feature-based counterpart are highlighted in cyan and orange, 

respectively. For most models and experiments, the model used to generate the data provided the best fit 

with a few exemptions: coupled feature-based or object-based models in Experiment 3 and 4. Even for 

those models, fits based on the models with similar learning type (object-based or feature-based) were 

better than the corresponding object-based or feature-based models, indicating that the object-based or 

feature-based nature of learning was identifiable in all cases. 
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Supplementary Figure 5. Error in estimated model parameters for the simulated data using various 

models in Experiments 1 to 4. Each column shows results generated with a given model (numbered 1 to 

6) and row a to d correspond to Experiments 1 to 4, respectively. Plotted is average absolute error in 

estimating the ratio of the learning rate to the stochasticity in choice over all sets of parameters (mean ± 

s.e.m.) for data generated with one of the six models in Experiments 1 to 4 and fit with each of the six 

models. We used the ratio of the learning rate to the stochasticity in choice as the measure because these 

two parameters influence choice similarly (i.e. a scaled version of the two parameters results in very 

similar choice behavior). The results for the model used to generate data in a given experiment and its 

object-based or feature-based counterpart are highlighted in cyan and orange, respectively. The minimum 

value of estimation error was found for the same model used for generating the data with a few 

exemptions similar to what was found for fitting (see Supplementary Figure 4).  
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Supplementary Figure 6. (a-d) Comparison of the goodness-of-fit based on the best object-based and 

feature-based model for each individual during each super-block of Experiments 1 and 2. Panels a to d 

show the results for super-blocks 1 to 4, respectively. Plotted are the BIC based on the best feature-based 

and object-based models for each individual and separately for each environment. The insets show 

histograms of the difference in the BIC from the two best models for the generalizable (blue) and non-

generalizable (red) environments. The dashed lines show the medians, and the star shows that the median 

is significantly different from zero (one-sided sign-rank test, P < 0.05). In Experiment 1, the feature-based 

models provided better fit than object-based models (one-sided sign-rank test; first super-block: P = 

0.018, d = 0.39; second super-block: P = 0.0036, d = 0.45; third super-block: P = 0.005, d = 0.50; fourth 

super-block: P = 0.040, d = 0.46). In Experiment 2, the object-based models provided better fit than 

feature-based models in all super-blocks except the third one (first super-block: P = 0.029, d = 0.50; 

second super-block: P = 0.038, d = 0.27; third super-block: P = 0.25, d = 0.15; fourth super-block: P = 

0.036, d = 0.37). Overall, we did not find any evidence for changes in learning strategy during the course 

of the experiments. These results show that subjects were more likely to adopt the feature-based approach 

in the generalizable environment and the object-based approach in the non-generalizable environment, 

and that our results were not driven by two types of behavior during early and late parts of the 

experiments. (e-h) The same as in a-d but for the excluded subjects. Overall, there was no evidence that 

excluded subjects changed their strategy during the experiments. 
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Supplementary Figure 7. Analyses of choice behavior and estimation of the excluded subjects. (a-b) 

Time course of learning during each block of trials in Experiments 1 and 2. Plotted is the average 

harvested reward (a) or the probability of selecting the better option on a given trial within a block across 

all excluded subjects. The dashed line shows chance performance. The solid blue and red lines in panel a 

show the maximum performance based on the feature-based approach in the generalizable and non-

generalizable environments, respectively. The maximum performance for the object-based approach was 

similar in the two environments, and equal to that of the feature-based approach in the generalizable 

environment. Overall, these subjects failed to learn reward probabilities associated with four options 

during most of each block. (c) Plotted is the Bayesian information criterion (BIC) based on the best 

feature-based or object-based models for a given subject, separately for each environment. The insets 

show histograms of the difference in BIC from the feature-based and object-based models, and the dashed 

lines show the medians, which is on top of the zero line. There was no evidence that the excluded subjects 
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adopted a strategy qualitatively different from the one used by other subjects. (d) The time course of 

performance during Experiment 3. Shaded areas indicate s.e.m., and the dashed line shows chance 

performance. The red and blue solid lines show the maximum performance using the feature-based and 

object-based approaches, respectively, assuming that the decision maker selects the more rewarding 

option based on a given approach in every trial. Arrows mark the locations of estimation blocks 

throughout a session. (e) The time course of model adoption measured by fitting subjects’ estimates of 

reward probabilities. Plotted is the relative weight of object-based to the sum of the object-based and 

feature-based approaches, and explained variance in estimates (R2) over time. Dotted lines show the fit of 

data based on an exponential function. (f) Transition from feature-based to object-based learning revealed 

by the average goodness-of-fit over time. Plotted are the average negative log likelihood based on the best 

feature-based model, best object-based RL model, and the difference between the best object-based and 

feature-based models during Experiment 3. Shaded areas indicate s.e.m., and the dashed line shows the 

measure for chance prediction. Overall, excluded subjects moved toward object-based learning over time 

similarly to what was found for the subjects included in the study. (g-i) The same as in d-f, but during 

Experiment 4. Throughout this experiment, feature-based learning provided a better fit for choice 

behavior of excluded subjects similarly to what was found for the subjects included in the study. 
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Supplementary Figure 8. Reward probabilities and objects used in Experiments 3 and 4. (a) During 

Experiment 3, reward probabilities were assigned to nine possible objects defined by combinations of two 

features (S, shape; P, pattern), each of which could take any of three values. Reward probabilities were 

assigned such that the reward probabilities assigned to all objects could not be determined by combining 

the reward values of their features (non-generalizable). Numbers in parentheses show the actual 

probability values used in the experiment due to limited resolution for reward assignment. For the set on 

the left, the pattern was on average informative about reward (average probability of reward = {0.36, 0.5, 

0.63}), whereas shape alone was not informative (average probability of reward = {0.5, 0.5, 0.5}). The 

opposite was true about the right set. Each subject performed the experiment twice: once when pattern 

was informative and once when shape was informative, using different sets of shapes and patterns. To 

shorten the experiment, we excluded object ‘S3P3’ from the choice set. (b). During Experiment 4, reward 

probabilities were assigned to sixteen possible objects defined by combinations of two features (S, shape; 

P, pattern), each of which could take any of four values. To shorten the experiment, we excluded objects 

with reward probability of 0.5 from the choice set. Conventions are the same as in A. (c) A sample 

estimation trial during Experiments 3 and 4. On each estimation trial, the subject estimated the probability 

of reward on an individual object by pressing one of ten keys on the keyboard. (d) The set of possible 

shapes used in Experiments 3 and 4. For each session of the experiment, only three or four (for 

Experiments 3 or 4, respectively) of these shapes were used for a given subject (randomly chosen). (e) 

The set of possible patterns used in Experiments 3 and 4. For each session of the experiment, only three 

or four (for Experiments 3 or 4, respectively) of these patterns were used. 
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Model 
 

Coupled 
feature-based 

Uncoupled 
feature-based 

Feature-based 
with decay 

Coupled 
object-based 

Uncoupled 
object-based 

Object-based 
with decay  

# pars. 5 5 6 4 4 5 

-LL 435.3±11.6*** 458.6±8.9*** 434.5±11*** 451.8±9 474.1±7.4 450.7±8.7 Exp. 1 

AIC 880.5±23.1*** 927.1±17.8*** 880.9±21.9*** 911.5±17.9 956.1±14.8 911.4±17.4 

BIC 903.7±23.1* 950.3±17.8*** 908.8±21.9** 930.1±17.9 974.7±14.8 934.6±17.4 

-LL 478.2±7.7 493.2±5.3 477.2±7.6 466.4±7.8 494.8±5.5 462.4±7.8* Exp. 2 

AIC 966.5±15.4 996.5±10.6 966.4±15.2 940.8±15.7+ 997.6±10.9 934.7±15.6* 

BIC 989.7±15.4 1019.7±10.6 994.3±15.2 959.3±15.7+ 1016.1±10.9 957.9±15.6* 

-LL 328.1±4.8 337.0±5.4 323.3±5.6 330.0±6.9 331.6±5.6 290.8±7.9** Exp. 3 

AIC 666.2±9.6 683.9±10.9 658.7±11.2 668.0±13.9 671.2±11.3 591.7±15.7** 

BIC 687.9±9.6 705.6±10.9 684.6±11.2 685.3±13.9 688.5±11.3 613.3±15.7*** 

-LL 377.6±6.5*** 378.5±6.8*** 336.6±9.1** 409.3±4.1 409.6±3.9 350.9±6.8 Exp. 4 

AIC 765.2±13.1*** 767.1±13.7*** 685.2±18.1** 826.6±8.3 827.2±7.8 711.9±13.7 

BIC 787.8±13.1*** 789.6±13.7** 712.3±18.1* 844.6±8.3 845.3±7.8 734.4±13.7 

 

Supplementary Table 1. Comparison of the goodness-of-fit measures in all experiments. Reported are 

the goodness-of-fit measures, negative log likelihood (-LL), Akaike information criterion (AIC), and 

Bayesian information criterion (BIC), averaged over all subjects (mean ± s.e.m.) for three feature-based 

RLs and their object-based counterparts for Experiments 1 to 4. The model providing the best fit in a 

given experiment and its object-based or feature-based counterpart are highlighted in cyan and orange, 

respectively. Each feature-based RL was compared with its object-based counterpart using a two-sided, 

sign-rank test. The significance level of the test is coded as: 0.01 < P < 0.05 (*), 0.001 < P < 0.01 (**), 

and P < 0.001 (***). 
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