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Abstract. The studies of nonlinear models in epidemiology have generated
a deep interest in gaining insight into the mechanisms that underlie AIDS-
related cancers, providing us with a better understanding of cancer immunity
and viral oncogenesis. In this article, we analyse an HIV-1 model incorpo-
rating the relations between three dynamical variables: cancer cells, healthy
CD4+ T lymphocytes and infected CD4+ T lymphocytes. Recent theoretical
investigations indicate that these cells interactions lead to different dynamical
outcomes, for instance to periodic or chaotic behavior. Firstly, we analyti-
cally prove the boundedness of the trajectories in the system’s attractor. The
complexity of the coupling between the dynamical variables is quantified using
observability indices. Our calculations reveal that the highest observable vari-
able is the population of cancer cells, thus indicating that these cells could be
monitored in future experiments in order to obtain time series for attractor’s
reconstruction. We identify different dynamical behaviors of the system vary-
ing two biologically meaningful parameters: r1, representing the uncontrolled
proliferation rate of cancer cells, and k1, denoting the immune system’s killing
rate of cancer cells. The maximum Lyapunov exponent is computed to identify
the chaotic regimes. Considering very recent developments in the literature re-
lated to the homotopy analysis method (HAM), we construct the explicit series
solution of the cancer model and focus our analysis on the dynamical variable
with the highest observability index. An optimal homotopy analysis approach
is used to improve the computational efficiency of HAM by means of appropri-
ate values for the convergence control parameter, which greatly accelerate the
convergence of the series solution.

1. Introduction

Nowadays, over 60 million people worldwide have been infected with human im-
munodeficiency virus (HIV), more than 80% of whom live in developing countries.
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For HIV-infected individuals, cancer remains a significant burden. In particular,
the Kaposi’s sarcoma (KS) is the most common neoplasm that occurs in patients
with AIDS (AIDS-KS). KS is a cancer that develops from the cells that line
lymph or blood vessels. It usually appears as tumors on the skin or on mucosal
surfaces such as inside the mouth, but tumors can also develop in other parts
of the body, such as in the lymph nodes, the lungs, or digestive tract [1]. The
epidemic AIDS-KS is the most common type of KS in the United States. This
type of KS develops in people who are infected with HIV, the virus that causes
AIDS, but KS is not caused by HIV but by a herpesvirus. A person infected with
HIV (that is, who is HIV-positive) does not necessarily have AIDS. The virus can
be present in the body for a long time, often many years, before causing major
illness. The disease known as AIDS begins when the virus has seriously damaged
the immune system, which results in certain types of infections or other medical
complications, including KS. When HIV damages the immune system, people
who also are infected with a certain virus (e.g., the Kaposi sarcoma associated
herpesvirus) are more likely to develop KS [2].

Gaining insight into the epidemiology and mechanisms that underlie AIDS-
related cancers can provide us with a better understanding of cancer immunity
and viral oncogenesis. How can the combination of immunosuppression and acti-
vation of inflammation promote cancer development? Our purpose in this paper
is to try to give a glancing analysis using a simple dynamical model.

The use of mathematical models as an aid in understanding features of virus
infection dynamics (such as HIV-1) has been substancial in the past 20 years.
There are two ways for HIV-1 to disseminate in vivo [3, 4, 5]: (i) circulating
free viral particules to T cells directly, or (ii) through HIV-infected T cells to
healthy T cells (see also [6, 7, 8]). Most of these models focus on cell-free virus
spread in the bloodstream [9, 10]. A model concerning the cell-to-cell spread of
HIV-1 is relevant, since understanding the dynamics of the HIV infection within
lymphatic tissues is vital to uncovering information regarding cellular infection
and viral production [11]. In this sense, recent experimental works have provided
new insights into the mechanisms underlying HIV-1 cell-to-cell infection and their
impact on drug therapy [12].

The model studied here appeared in [13] as a dynamical system accounting
for the cell-to-cell spread of HIV-1 together with cancer cells in tissue cultures.
This model is aimed at explaining some quantitative features concerning cancer
occuring during HIV-1 infection that are unusual and, in the absence of a model,
perplexing. The basic starting point of this model has three parts. First, the
cancer cells are caused by the changes of the normal cells in the individual due to
some physical, chemical or biological factor (for instance, a virus such as human
papilloma virus (HPV)) - under normal conditions, the healthy cells in our body
can mutate into cancer cells with probability of 10−6. Second, the cancer cells
have anomalies in growth-related genes (i.e., oncogenes and tumor-suppressor
genes) that allow them to proliferate faster than normal cells. Third, the immune
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system can recognize the difference between cancer cells and normal cells, so it
can survey them and then carry out its killing function. Here we must notice that
cancer cells can also avoid immune system recognition by means of the so-called
immunoediting. However, the model we are investigating is not considering this
process.

As pointed out in [13], the studied HIV-1 model has a number of steady states
whose existence and stability properties are quite consistent with their biolog-
ical meanings. Periodic solutions and chaos appear alternately along with the
changing of the bifurcation parameters. With this HIV-1 model it is possible to
investigate the cancer situation in an individual who is infected by HIV-1.

Given the importance of this type of models in the literature, a great deal of
numerical algorithms for approximating solutions can be used in diverse compu-
tational studies of the nonlinear dynamics. Wthout doubt the numerical algo-
rithms have been extremely important in the study of complex dynamical sys-
tems. However, they allow us to analyse the dynamics at discrete points only,
thereby making it impossible to obtain continuous solutions. As a consequence, it
turns out to be extremely valuable to develop an analytic approximation method-
ology which should have three fundamental characteristics: (i) it is independent
of any small/large physical parameters; (ii) it gives us freedom and flexibility
to choose equation-type and solution expression of high-order approximation se-
ries; and (iii) it provides us a convenient way to guarantee the convergence of
approximation series, using an auxiliary convergence-control parameter.

One such general analytic technique, which has the three advantages mentioned
above, used to get convergent series solutions of strongly nonlinear problems is
the so-called Homotopy Analysis Method (HAM), developed by Liao [14, 15, 16],
with contributions of other researchers in theory and applications.

Frequently, in order to have an effective analytical approach of strongly non-
linear equations for higher values of time t, the simple idea is to apply the HAM
in a sequence of subintervals of time with a certain step, giving rise to the so-
called Step Homotopy Analysis Method (SHAM). In fact, the homotopy analysis
methodology is more general in theory and widely valid in practice for the study
of nonlinear problems than other analytic approximation procedures. Indeed, this
methodology has been successfully applied to solve a wide variety of nonlinear
problems (please see for instance [17] - [20] and references therein), particularly,
there has been a growing interest in applying HAM to biological models (please
see some illustrative examples in [21]).

The paper is organized as follows. We give in Section 2 a brief description
of the HIV-1 model presented in [13]. In Section 3, we analytically show that
the chaotic attractor is positively invariant. In Section 4, we compute the cou-
pling complexity by means of observability indices, which allow us to rank the
dynamical variables from more to less observable. An analytical study, using
the homotopy analysis methodology, is carried out in Section 5. This section
contains the explicit series solution (Subsection 5.1) and an optimal homotopy
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analysis approach of solutions to improve the computational efficiency of HAM
(Subsection 5.2). In particular, we obtain for each dynamical variable an optimal
value of the HAM converfogence-control h using an appropriate ratio and using
the exact squared residual error. Finally, Section 6 is devoted to significative
conclusions.

2. The HIV-1 cancer model

The model that we investigate describes the cell-to-cell dynamics between
healthy immune cells and HIV-1 infected immune cells, adding another layer of
complexity where healthy immune cells attack and kill cancer cells [13]. Cell-to-
cell spread of HIV-1 has been widely studied with theoretical and computational
models [6, 22, 23, 24] in order to understand several features of in vitro experi-
ments done for this type of virus (as well as that of others). The present model
is aimed to describe the dynamics of HIV-1 infection in patients with cancer us-
ing a mean-field approach. The model is given by the following set of ordinary
differential equations:

dC

dt
= C

[
r1

(
1− C + T + I

m

)
− k1 T

]
,(1)

dT

dt
= T

[
r2

(
1− C + T + I

m

)
− pk1C − k2I

]
,(2)

dI

dt
= I (k2T − µI) .(3)

The state variables are the population numbers of cancer cells (C), healthy cells
(T ), and HIV-infected cells (I). The constants r1 and r2 are the uncontrolled
proliferation rate of cancer cells and the intrinsic growth rate of healthy cells,
respectively, with r1 > r2. Notice that the proliferation of cancer cells needs
to be higher than the replication of healthy cells, since a common characteristic
of cancer cells is their increase in proliferation rate due to genetic anomalies in
both oncogenes and tumor suppressor genes [25]. k1 corresponds to the immune
system’s killing rate of cancer cells; k2 is the infection rate coefficient. Moreover,
m is the effective carrying capacity of the system; p is the losing rate of the
immune cells because of the killing of cancer cells. Finally, the constant µI
represents the whole immune system killing’s effect on the infected cells.

Notice that the growth of the populations for the cancer and the immune
system cells is limited by a logistic-like function, given by 1 − (C + T + I)/m.
This function introduces competition between the cancer and both the healthy
and infected T cells. Competition amongst cells is crucial in tumor dynamics since
cancer cells often have a selective advantage in terms of increased proliferation
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(a) (b)

Figure 1. Chaotic attractor corresponding to the HIV-1 system
of Eqs. (1)-(3), for r1 = 0.1842 and k1 = 0.0001. (a) Attractor
obtained using two different but close initial conditions displayed
in black and red. (b) Trajectory converging to the chaotic attractor
represented together with the fixed points E4 (red), E∗ (green), and
E3 (blue). The names of the fixed points follow the notation in Ref.
[13]. Here the fixed point E4 has complex eigenvalues with real part
(−,−,+). The fixed point E∗ also has complex eigenevalues with
real part (−,+,+), and the fixed point E3 has real eigenvalues with
sign (−,−,+).

rates (i.e., r1 > r2 in the model). The logistic term is not found in Eq. (3)
because the population of infected CD4+ T cells arises from the population of
healthy CD4+ T cells (variable T (t)) upon infection.

We will consider throughout our study the same parameter values used in Ref.
[13]. Such values were obtained from the literature of clinical and mathematical
models. Specifically, we will set r2 = 0.03, k2 = 0.0005, m = 1500, p = 0.1,
µI = 0.3 and take the uncontrolled proliferation rate of the cancer cell r1 and the
immune system’s killing rate of cancer cells k1 as control parameters (0.1775 ≤
r1 ≤ 0.18425 and 0.0001 ≤ k1 ≤ 0.000107). According to the literature [5, 26, 27],
the probability that a healthy cell will become a cancer cell is very small, even if
there some factors that urge the transformation. We assume that the cancer is
caused by just one cell because of gene mutation.

3. Positively invariant sets

In the following Sections we will examine the long-term behavior of the three-
dimensional chaotic attractors arising in the HIV-1 system modeled by Eqs. (1)-
(3). The chaotic attractor, displayed in Fig. 1, governs the population dynamics
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of the cancer cells, healthy CD4+ T lymphocytes and infected CD4+ T lym-
phocytes, given by C, T and I, respectively. Figure 1(a) displays the chaotic
attractor using two different but close initial conditions. The same attractor is
plotted in Fig. 1(b) together with the fixed points found in the phase space.
Such points are all unstable (see [13] for a full description of the equilibria and
stability of the system).

A preliminary question to answer, before doing any further analysis, is to find
conditions for which trajectories will not “escape to infinity”, so that they will
remain confined to a compact set. In biological terms, this boundedness means
that no population grows without limit and thus the model captures correctly
the dynamics (see [28] as an example of boundedness concept application).

Let us consider a new function Ψ = C +T + I, i.e., the sum of the populations
involved in the 3D system. The temporal derivative of Ψ is

dΨ

dt
=
dC

dt
+
dT

dt
+
dI

dt
.

Adding εΨ to dΨ
dt

, we consider dΨ
dt

+ εΨ = χ (C, T, I), for some ε > 0. An upper
bound of χ (C, T, I) is given by

χ (C, T, I) ≤ 1

m
|(r1m+ εm− r1C)C + (r2m+ εm− r2T )T+

+(−mµI + εm− r1I)I|

≤ H1 +H2 +H3,

with H1 = (r1m+εm)2

4r1
, H2 = (r2m+εm)2

4r2
and H3 = (−mµI+εm)2

4r1
.

We obtain χ (C, T, I) ≤ H1 +H2 +H3 = H. It follows that dΨ/dt ≤ −εΨ +H.
Using the differential form of the Gronwall’s inequality [29], we find

Ψ(t) ≤ Ψ(0)e−εt +
H

ε

(
1− e−εt

)
≤ max

(
H

ε
,Ψ(0)

)
.

As a consequence, the trajectories starting from any arbitrary initial condition
will remain confined to a compact set.

4. Observability analysis

When a dynamical system is investigated, there are usually some variables that
provide a better representation of the underlying dynamics. More precisely, in
a number of practical situations, the choice of the observable does influence our
ability to extract dynamical information of a given attractor. This fact results, in
a considerable degree, from the complexity of the coupling between the dynamical
variables. With the computation of observability indices, this coupling complexity
can be estimated and the variables can be ranked [30, 31, 32]. In the context
of nonlinear dynamics, the choice of the observable has a direct relation with
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Figure 2. Variation of the three observability indices, δxi (i =
1, 2, 3), with C = x1, T = x2 and I = x3, where δC > δT > δI .
(a) k1 = 0.0001 and 0.1775 ≤ r1 ≤ 0.18425; (b) r1 = 0.1842 and
0.0001 ≤ k1 ≤ 0.000107.

problems such as control, model building and synchronization (please see [31]
and references therein).

It is important to notice that, despite the potential practical importance of this
concept, observability has not been commonly addressed by the research commu-
nity of nonlinear dynamics. The following method thus provides an illustration
of how our understanding of nonlinear problems can be enhanced by the theory
of observability. In the next lines, we perform an observability analysis of the
three-variable HIV-1 model, which involves a mathematical structure provided by
the theory of observability - the definition of the observability matrix [30, 31, 32].

Let us consider a dynamical system

dx(t)

dt
= f(x(t)),

where t is the time, x ∈ Rm is the state vector and f is the nonlinear vector field.
This system is called the original system. The observable variable is obtained
using a measurement function h : Rm → R, such that s(t) = h(x(t)). A system
of three ordinary differential equations (m = 3) of the form

dx1
dt

= fx1 (x1, x2, x3) ,
dx2
dt

= fx2 (x1, x2, x3) ,
dx3
dt

= fx3 (x1, x2, x3) ,

can be reconstructed in a three-dimensional space. More precisely, using the
variable s, the reconstructed portrait is spanned by the derivative coordinates
according to 

X1 = s,
X2 = ds

dt
,

X3 = d2s
dt2
.

The successive temporal derivatives of s constitute a derivative vector. The
dynamics of this space defined by the three derivative coordinates is expected to
be equivalent, in a certain sense, to the dynamics of the system defined by the
original coordinates. In order to analyse the quality of the reconstructed space,
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Figure 3. Variation of the highest observability index, δC consid-
ering 0.1775 ≤ r1 ≤ 0.18425 and 0.0001 ≤ k1 ≤ 0.000107.

we study the properties of a coordinate transformation Φs between the original
dynamical variables and the derivative coordinates,

(x1, x2, x3)
Φs→ (X1, X2, X3) ,

where the subscript s indicates the dynamical variable from which the recon-
struction is undertaken. For the observable variable s, the transformation Φs

reads

Φs =


X1 = s,
X2 = ds

dt
= fs,

X3 = d2s
dt2

= ∂fs
∂x1
fx1 + ∂fs

∂x2
fx2 + ∂fs

∂x3
fx3 ,

where s can either represent x1, x2, or x3, which are the three components of the
vector field f . The coordinate transformation contains information on the nature
of the coupling between the dynamical variables “seen from one observable point
of view”. For our model we are going to consider three coordinate transformations
Φx1 , Φx2 and Φx3 . In the context of the observability theory, it is critical to
investigate in what conditions a dynamical state can be constructed from a single
variable and how the nature of the couplings may effect the observability of a given
system.

Theoretically, in order to reconstruct a dynamical state from s, the striking
case occurs when the transformation Φs defines a diffeomorphism, i. e., Φs is a
continuous invertible function whose inverse is differentiable. In other words, the
coordinate transformation Φs defines a diffeomorphism from the original phase
in the reconstructed one if the determinant of its jacobian matrix, J (Φs), never
vanishes for each point of the phase space.

Thus, the study of the jacobian matrix J (Φs) is critical and gives us relevant
information for the characterization of the coordinate transformation Φs. In
particular, the map Φs is locally invertible at a given point x0 if the Jacobian
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Figure 4. Projections of the dynamics on the (C,
·
C), (T,

·
T ), and

(I,
·
I) planes used to compute observability indices. Here, we use

r1 = 0.1842 and k1 = 0.0001.

matrix has full rank, i.e., if rank
(
∂Φs

∂x

∣∣
x=x0

)
= m. As a consequence, the original

dynamical system is locally observable if the previous sufficient condition for
local invertibility holds. A central result of the observability theory establishes
that the Jacobian matrix J (Φs) can be interpreted as the observability matrix,
Os, defined for nonlinear systems [31]. This definition for Os provides a clear
link between the observability of a dynamical system, from an observable s, and
the existence of singularities in Φs, which seemed to be lacking in the literature.
In the context of nonlinear systems, there are regions in phase space that are
naturally less observable than others.

Following [31], the degree of observability attained from a given variable is
quantified with the respective observability index using a value average along an
orbit

(4) δs =
1

tf

tf∑
t=0

∣∣λmin[OT
s Os,x(t)]

∣∣
|λmax[OT

s Os,x(t)]|
,

where tf is the final time considered (without loss of generality the initial time
was set to be t = 0) and T represents the transposition of matrices. The term
λmin[OT

s Os,x(t)] indicates the minimum eigenvalue of matrix OT
s Os estimated at a

point x(t) (likewise for λmax[OT
s Os,x(t)]). Hence, 0 ≤ δs ≤ 1 and the lower bound

of δs(x) is reached when the system is unobservable at point x(t). It is important
to emphasize that the observability indices are local quantities, interpreted as
relative values. The stablished average is particularly useful in order to portray
an overall picture of the coupling complexity between the dynamical variables.

Each time series arises from a given set of parameters. In this sense, being a
function of a dynamical state x(t), the observability indices are considered local
quantities in terms of the parameter values. Given the orbit x(t), the observability
value results from a time average over that orbit. In this sense, the observability
indices are considered averaged values along an orbit.
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Our present application of the outlined formalism, where the observability
matrix is interpreted as the Jacobian matrix of the coordinate transformation
in study, Os = J (Φs), leads to the computation of the observability indices of
the populations C = x1, T = x2 and I = x3. In particular, for r1 = 0.1842
and k1 = 0.0001, the observability indices averaged over a trajectory are δx1 =
0.000634602..., δx2 = 0.0000124925..., and δx3 = 0.000000107349...

From the previous values, the original variables can be ranked in descending
degree of observability according to

C B T B I,

where B means ‘provides better observability index of the underlying dynamics
than’. As illustrated in Fig. 2, the previous ordering of the observability indices
holds for all the populations analyzed in this article. More details about the
behavior of the highest observability index, δC , in the parameter space are given
in Fig. 3.

The three induced phase portraits from the system using the derivative coor-
dinates are displayed in Fig. 4. The computation of the observability indices
indicates that variable C is the best observable, while I is the poorest. The
important message of this analysis is that the dynamics of the three-variable
HIV-1 model is observed with higher reliability from the population of cancer
cells (variable C), rather than from the populations of healthy and infected cells
(variables T and I, respectively). The population of healthy cells T provides an
observability of the dynamics that is less than the one provided by the population
of cancer cells C, but populations of infected cells I is associated with a clearly
poor observability (δI is smaller than δC by three orders of magnitude).

Our previous result indicates that for systems with HIV-1 infected cells and
cancer cells, the variable with largest observability is the population of cancer
cells. This should be the population monitored in possible experiments tracking
cells populations in vivo in order to have the better observable for further analy-
ses. In this sense, some techniques have been developed to monitor different cell
populations in vivo in mice [33]. The availability of these techniques together
with humanized mouse models for HIV-1 [34] could provide a good framework
for obtaining time series of cancer cells under these interactions. Such time se-
ries could be then used to characterize the underlying dynamics by means of the
so-called attractor reconstruction techniques (see Discussion Section).

A 3D-reconstructed attractor would be the result of the representation of the
points (X1, X2, X3), with coordinates given by the transformation Φs (result not
shown). Only this 3D-representation can be directly compared with the original
3D attractor. The 2D-representations of (X1, X2) are different entities, they are
just phase portraits, and not necessarily similar to the 3D attractor. In the
observability theory, the dynamical states (X1, X2) are used to provide the first
brief glances over the complexity of the orbits.
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Figure 5. Bifurcation diagrams obtained from the successive
Cmax. In (a) we tune parameter r1 within the range 0.1775 ≤
r1 ≤ 0.18425 using k1 = 0.0001. In (b) we set r1 = 0.1842 tuning
k1 in the range 0.0001 ≤ k1 ≤ 0.000107. The maximum Lyapunov
exponent, λ1, is shown (in red) overlapped on the bifurcation dia-
grams. Enlarged views of the boxes B1 and B2 are displayed in the
lower panels.

In the next paragraphs, we devote a special attention to the dynamical variable
C. In order to gain insights about the long time behavior of variable C, we display
in Fig. 5 bifurcation diagrams as a result of the variation of the control parameters
r1 and k1. Overlapped to the bifurcations diagrams, we display the maximum
Lyapunov exponent computed numerically following a standard method [35].

5. The homotopy analysis methodology and the analytic
solutions

For the sake of clarity, we outline in this section a brief description of the
HAM (please see [15, 18, 21] and references therein). The analytical approach
will be used in a sequence of intervals, giving rise to the step homotopy analysis
method. In the context of HAM, each equation of a system of ordinary differential
equations

(5)
.
xi = fi (t, x1, ..., xn) , xi(t0) = xi,0, i = 1, 2, ..., n,

can then be written in the form

Ni = [x1(t), x2(t)..., xn(t)] = 0, i = 1, 2, ..., n,

where N1,N2, ...,Nn are nonlinear operators, x1(t), x2(t)..., xn(t) are unknown
functions and t denotes the independent variable. The analytical procedure starts
with a construction of the so-called zeroth-order deformation equation

(6) (1− q)L [φi (t; q)− xi,0(t)] = qhNi [φ1 (t; q) , ..., φn (t; q)] ,
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where q ∈ [0, 1] is called the homotopy embedding parameter, h is the convergence
control parameter, L is an auxiliary linear operator, xi,0(t) are initial guesses for
the solutions and φi (t; q) are unknown functions. It is clear that when q = 0 and
q = 1, it holds

φi (t; 0) = xi,0(t) and φi (t; 1) = xi(t).

Following (6), when q increases from 0 to 1, the function φi (t; q) varies from the
initial guess xi,0(t) to the solution xi(t). Expanding φi (t; q) in MacLaurin series
with respect to q at q = 0, we get

(7) φi (t; q) = xi,0(t) +
+∞∑
m=1

xi,m(t)qm,

where the series coefficients xi are defined by

(8) xi,m(t) =
1

m!

∂mφi (t; q)

∂qm

∣∣∣∣
q=0

.

Considering the convergence of the homotopy series (7) and using the relation
xi(t) = φi (t; 1) we obtain the so-called homotopy series solutions

xi(t) = xi,0(t) +
+∞∑
m=1

xi,m(t), i = 1, 2, ..., n,

which are precisely the solutions of the original nonlinear equations. Differ-
entiating the zeroth-order deformation Eqs. (6) m times with respect to the
homotopy parameter q, we obtain the mth-order deformation equations

(9) L [xi,m(t)− χmxi,m−1(t)] = hRi,m [x1,m−1(t), ..., xn,m−1 (t)] , i = 1, 2, ..., n,

where

Ri,m [x1,m−1(t), ..., xn,m−1 (t)] =
1

(m− 1)!

∂m−1Ni [φ1 (t; q) , ..., φn (t; q)]

∂qm−1

∣∣∣∣
q=0

and

χm =

{
0, m ≤ 1,
1, m > 1.

A one-parameter family of explicit series solutions is obtained by solving the
linear equations (9). In the presence of some strongly nonlinear problems, it is
usually appropriate to apply the HAM in a sequence of subintervals giving rise
to the so-called Step Homotopy Analysis Method (SHAM).

5.1. Explicit series solution. Following the previous considerations, we are
able now to perform an analytical approach of the HIV-1 model by using SHAM.
Our goal is to obtain the explicit series solution for C, T , I and focus our anal-
ysis on the analytic solution of the dynamical variable C, which represents the
population of cancer cells.
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Let us consider Eqs. (1)-(3) subject to the initial conditions C(0) = IC1, T (0) =
IC2, I(0) = IC3, which are taken in the form C0(t) = IC1, T0(t) = IC2, I0(t) =
IC3, as our initial approximations of C(t), T (t) and I (t), respectively. In all of
our analyses, we will consider IC1 = 678, IC2 = 452, IC3 = 0.25.

As auxiliary linear operators, we choose

L [φi (t; q)] =
∂φi (t; q)

∂t
, i = 1, 2, 3,

with the property L [Ci] = 0, where Ci (i = 1, 2, 3) are integral constants. The
equations of the HIV-1 model lead to the following nonlinear operators N1, N2

and N3

N1 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] =
∂φ1 (t; q)

∂t
− r1φ1 (t; q) +

+
r1

m

(
φ2

1 (t; q) + φ1 (t; q)φ2 (t; q) +

+ φ1 (t; q)φ3 (t; q)) + k1φ1 (t; q)φ2 (t; q) ,

N2 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] =
∂φ2 (t; q)

∂t
− r2φ2 (t; q) +

+
r2

m

(
φ1 (t; q)φ2 (t; q) + φ2

2 (t; q) +

+ φ2 (t; q)φ3 (t; q)) + pk1φ1 (t; q)φ2 (t; q) +

+k2φ2 (t; q)φ3 (t; q)

N3 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] =
∂φ3 (t; q)

∂t
− k2φ3 (t; q)φ2 (t; q) + µIφ3 (t; q) .

Considering q ∈ [0, 1] and h the non-zero auxiliary parameter, the zeroth-order
deformation equations are

(10) (1− q)L [φ1 (t; q)− C0(t)] = qhN1 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] ,

(11) (1− q)L [φ2 (t; q)− T0(t)] = qhN2 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] ,

(12) (1− q)L [φ3 (t; q)− I0(t)] = qhN3 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)]

and subject to the initial conditions

φ1 (0; q) = 678, φ2 (0; q) = 452, φ3 (0; q) = 0.25.

Obviously, for q = 0 and q = 1, the above zeroth-order equations (10)-(12) have
the solutions

(13) φ1 (t; 0) = C0(t), φ2 (t; 0) = T0(t), φ3 (t; 0) = I0(t)

and

(14) φ1 (t; 1) = C(t), φ2 (t; 1) = T (t), φ3 (t; 1) = I(t), respectively.
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When q increases from 0 to 1, the functions φ1 (t; q), φ2 (t; q) and φ3 (t; q) vary
from C0(t), T0(t) and I0(t) to C(t), T (t) and I(t). As a result of expanding
φ1 (t; q), φ2 (t; q) and φ3 (t; q) in MacLaurin series with respect to q, we obtain
the homotopy series

(15) φ1 (t; q) = C0(t) +
+∞∑
m=1

Cm(t)qm,

(16) φ2 (t; q) = T0(t) +
+∞∑
m=1

Tm(t)qm,

(17) φ3 (t; q) = I0(t) +
+∞∑
m=1

Im(t)qm,

in which

(18)

Cm(t) = 1
m!

∂mφ1(t;q)
∂qm

∣∣∣
q=0

,

Tm(t) = 1
m!

∂mφ2(t;q)
∂qm

∣∣∣
q=0

,

Im(t) = 1
m!

∂mφ3(t;q)
∂qm

∣∣∣
q=0

,

and where h is chosen in such a way that these series are convergent at q = 1.
Therefore, considering Eqs. (13)-(18), we end up obtaining the homotopy series
solutions

(19) C(t) = C0(t) +
+∞∑
m=1

Cm(t),

(20) T (t) = T0(t) +
+∞∑
m=1

Tm(t),

(21) I(t) = I0(t) +
+∞∑
m=1

Im(t).

Differentiating the zeroth-order Eqs. (10)-(12) m times and using the properties,
where Dm is the mth-order derivative in order to the homotopy parameter q,

Dm (φi) = xi,m, Dm

(
qkφi

)
= Dm−k (φi) =

{
xi,m−k, 0 ≤ k ≤ m
0, otherwise

,

Dm

(
φ2
i

)
=

m∑
k=0

xi,m−k xi,k,
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and

Dm (φiψi) =
m∑
k=0

Dk (φi)Dm−k (ψi) =
m∑
k=0

xi,k yi,m−k,

we obtain the mth-order deformation equations

(22) L [Cm(t)− χmCm−1(t)] = hR1,m [Cm−1(t), Tm−1(t), Im−1(t)] ,

(23) L [Tm(t)− χmTm−1(t)] = hR2,m [Cm−1(t), Tm−1(t), Im−1(t))] ,

(24) L [Im(t)− χmIm−1(t)] = hR3,m [Cm−1(t), Tm−1(t), Im−1(t)] ,

with the following initial conditions

(25) Cm(0) = 0, Tm(0) = 0, Im(0) = 0.

Defining the vector −→u m−1 = (Cm−1(t), Tm−1(t), Im−1(t)) , we derive

R1,m [−→u m−1] =
dCm−1(t)

dt
− r1Cm−1(t) +

+
r1

m

(
m−1∑
k=0

Cm−1−k(t)Ck(t) +
m−1∑
k=0

Ck(t)Tm−1−k(t)+

+
m−1∑
k=0

Ck(t)Im−1−k(t)

)
+ k1

m−1∑
k=0

Ck(t)Tm−1−k(t)

R2,m [−→u m−1] =
dTm−1(t)

dt
− r2Tm−1(t) +

+
r2

m

(
m−1∑
k=0

Cm−1−k(t)Tk(t) +
m−1∑
k=0

Tk(t)Tm−1−k(t)+

+
m−1∑
k=0

Tk(t)Im−1−k(t)

)
+ pk1

m−1∑
k=0

Cm−1−k(t)Tk(t) +

+k2

m−1∑
k=0

Tk(t)Im−1−k(t)

and

R3,m [−→u m−1] =
dIm−1(t)

dt
− k2

m−1∑
k=0

Tm−1−k(t)Ik(t) + µIIm−1(t).
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According to the notations and definitions provided above, the solution of the
linear mth-order deformation equations (22)-(24) at initial conditions (25), for all
m ≥ 1, becomes

(26) Cm(t) = χm Cm−1(t) + h

t∫
0

R1,m [−→u m−1] dτ ,

(27) Tm(t) = χm Tm−1(t) + h

t∫
0

R2,m [−→u m−1] dτ ,

and

(28) Im(t) = χm Im−1(t) + h

t∫
0

R3,m [−→u m−1] dτ .

As an example, we present some initial terms of the series solutions (correspond-
ing to m = 1 and m = 2)

C1(t) = 678 + h(306456(k1 + r1/1500)− 371.431r1)t,

T1(t) = 452 + h(−9.41516 + 306456(0.00002 + 0.1k1))t,

I1(t) = 0.25 + 0.0185ht,

and

C2(t) = 678 + 2h(306456(k1 + r1/1500)− 371.431r1)t+

+h(306456hk1t− 167.127hr1t− 1113.97hk1t
2 +

+643.558hk1r1t
2 − 17.1723hr2

1t
2),

T2(t) = 452 + 2h(−9.41516 + 306456(0.00002 + 0.1k1))t+

+h(−3.28604ht+ 30645.6hk1t− 0.000734025ht2 +

+1300.91hk1t
2 + 7.96479× 106hk2

1t
2 −

−0.755414hr1t
2 − 3777.07hk1r1t

2),

I2(t) = 0.25 + 0.037ht+ h(0.+ 0.000889877ht2 −
−1.91535hk1t

2),

where h is the convergence control parameter, r1 is the uncontrolled proliferation
rate of the cancer cells and k1 is the immune system’s killing rate of cancer cells.
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At this moment, it is easy to obtain terms for other values of m. In particu-
lar, truncating the homotopy series (19)-(21) we get the M th-order approximate
analytic solution (which corresponds to a series solution with M + 1 terms)

(29) CM(t) = C0(t) +
M∑
m=1

Cm(t),

(30) TM(t) = T0(t) +
M∑
m=1

Tm(t),

(31) IM(t) = I0(t) +
M∑
m=1

Im(t).

The exact solutions are given by the limits

C(t) = lim
M→+∞

CM(t), T (t) = lim
M→+∞

TM(t), I(t) = lim
M→+∞

IM(t).

Within the purpose of having an effective analytical approach of Eqs. (1)-(3)
for higher values of t, we use the step homotopy analysis method, in a sequence
of subintervals of time step ∆t and the 9-term HAM series solutions (8th-order
approximations)

(32) C(t) = C0(t) +
8∑

m=1

Cm(t),

(33) T (t) = T0(t) +
8∑

m=1

Tm(t),

(34) I(t) = I0(t) +
8∑

m=1

Im(t),

at each subinterval. Accordingly to SHAM, the initial values C0, T0 and I0

change at each subinterval, i.e., C(t∗) = IC∗1 = C0, T (t∗) = IC∗2 = T0 and
I(t∗) = IC∗3 = I0 and the initial conditions Cm(t∗) = Tm(t∗) = Im(t∗) = 0 should
be satisfied for all m ≥ 1. Therefore, the terms Cm, Tm and Im, exhibited before
as an example for m = 1, 2, take now the form
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C1(t) = 678 + h(306456(k1 + r1/1500)− 371.431r1)(t− t∗),

T1(t) = 452 + h(−9.41516 + 306456(0.00002 + 0.1k1))(t− t∗),

I1(t) = 0.25 + 0.0185h(t− t∗),
and

C2(t) = 678 + 2h(306456(k1 + r1/1500)− 371.431r1)(t− t∗) +

+h(306456hk1(t− t∗)− 167.127hr1(t− t∗)− 1113.97hk1(t− t∗)2 +

+643.558hk1r1(t− t∗)2 − 17.1723hr2
1(t− t∗)2),

T2(t) = 452 + 2h(−9.41516 + 306456(0.00002 + 0.1k1))(t− t∗) +

+h(−3.28604h(t− t∗) + 30645.6hk1(t− t∗)− 0.000734025h(t− t∗)2 +

+1300.91hk1(t− t∗)2 + 7.96479× 106hk2
1(t− t∗)2 −

−0.755414hr1(t− t∗)2 − 3777.07hk1r1(t− t∗)2),

C2(t) = 0.25 + 0.037h(t− t∗) + h(0.+ 0.000889877h(t− t∗)2 −
−1.91535hk1(t− t∗)2).

In a similar way, identical changes occur for the other terms. As a consequence,
the analytical approximate solution for each dynamical variable is given by

(35) C(t) = C(t∗) +
8∑

m=1

Cm(t− t∗),

(36) T (t) = T (t∗) +
8∑

m=1

Tm(t− t∗),

(37) I(t) = I(t∗) +
8∑

m=1

Im(t− t∗).

In general, we only have information about the values of C(t), T (t) and I(t) at
t = 0, but we can obtain the values of C(t), T (t) and I(t) at t = t∗ by assuming
that the new initial conditions are given by the solutions in the previous interval.
Another illustration of the use of SHAM can be seen in [36].

The homotopy terms depend on both the physical variable t and the conver-
gence control parameter h. The artificial parameter h can be freely chosen to
adjust and control the interval of convergence, and even more, to increse the con-
vergence at a reasonable rate, fortunately at the quickest rate. This concept plays

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/097865doi: bioRxiv preprint 

https://doi.org/10.1101/097865
http://creativecommons.org/licenses/by-nc-nd/4.0/


19

Figure 6. (From left to right) The curves of ratios βC , βT and
βI versus hC , hT and hI , respectively, corresponding to a 8th-order
approximation of solutions C(t), T (t) and I(t) for r1 = 0.1842
and k1 = 0.0001. The optimum value of h, h∗, gives rise to the
minimum value of β.

a key role in the HAM and is generally used to gain sufficiently accurate approx-
imations with the smallest number of homotopy terms in the homotopy series
(29)-(31). In fact, the use of such an auxiliary parameter clearly distinguishes
the HAM from other perturbation-like analytical techniques.

How to find a proper convergence control parameter h to get a convergent series
solution or, even better, to get a faster convergent one? In the following section,
an optimal homotopy analysis approach is decribed to improve the computational
efficiency of the homotopy analysis method for nonlinear problems.

5.2. An optimal homotopy analysis approach of solutions. Using an op-
timal approach, the homotopy analysis method might be applied to solve compli-
cated differential equations with strong nonlinearity. Firstly, with the purpose of
determining an interval of convergence and the optimum value of h, correspond-
ing to each dynamical variable, we state in Subsection 5.2.1 a recent convergence
criterion addressed in [37]. Finally, in Subsection 5.2.2 an exact Squared Resid-
ual Error (SRE) is defined and efficiently used to find optimal convergence values
for the convergence control parameter h.

It is found that all optimal homotopy analysis approaches greatly accelerate
the convergence of series solution.

5.2.1. Interval of convergence and optimal value from an appropriate ratio. Let
us consider k + 1 homotopy terms x0(t), x1(t), x2(t), ..., xk(t) of an homotopy
series

(38) x(t) = x0(t) +
+∞∑
m=1

xm(t).

For a preassigned value of parameter h, the convergence of the homotopy series
is not affected by a finite number of terms. Therefore, it is sufficent to keep track
of magnitudes of the ratio defined by

(39)

∣∣∣∣ xk(t)xk−1(t)

∣∣∣∣
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and whether it remains less than unity for increasing values of k. Taking (39),
and requiring this ratio to be as close to zero as possible, we can determine an
optimal value for the convergence control parameter h. For such a value, the
rate of convergence of the homotopy series (38) will be the fastest (and as a
consequence, the remainder of the series will rapidly decay). For a prescribed h,
if the ratio is less than unity, then the convergence of HAM is guaranteed. In
other words, this is a sufficient condition for the convergence of the homotopy
analysis method. This implies that in the cases where the limit for the ratio in
(39) cannot be reached or tends to unity, the method may still converge or fail
to do so. It is appropriate to search for an optimum value of h, i.e., a value of h
that gives rise to a ratio (39) as small as possible. Taking a time interval Ω, the
ratio

β =

∫
Ω

[xk(t)]
2 dt∫

Ω

[xk−1(t)]2 dt

represents a more convenient way of evaluating the convergence control param-
eter h. In fact, given an order of approximation, the curves of ratio β versus h
indicate not only the effective region for the convergence control parameter h,
but also the optimal value of h that corresponds to the minimum of β. Now,
plotting β versus h, as well as by solving∫

Ω

[xk(t)]
2 dt∫

Ω

[xk−1(t)]2 dt
< 1 and

dβ

dh
= 0,

the interval of convergence and the optimum value for parameter h can be simul-
taneously achieved.

β-Curves Intervals of convergence and optimal values of h

βC
−1.55274 < hC < −1.09974

h∗C = −1.18485

βT
−1.66625 < hT < 0
h∗T = −1.28944

βI
−0.190914 < hI < 0
h∗I = −0.122441

Table 1. Intervals of convergence of h and the respective optimum
values h∗, corresponding to the dynamical regimes presented in Fig.
6 (for r1 = 0.1842 and k1 = 0.0001).

As an illustration at the order of approximation M = 8, the curves of ratio β
versus h, corresponding to C(t), T (t) and I(t) (βC vs hC , βT vs hT and βI vs
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Figure 7. Comparison of the SHAM analytical solutions (35)-(37)
of C, T and I (solid lines) with the respective numerical solutions
(dotted lines) of the HIV-1 cancer model. The value of the control
parameters are r1 = 0.1842 and k1 = 0.0001.

hI , respectively), are displayed in Fig. 6. In Table 1, we exhibit the intervals
of convergence of h and the respective optimum values h∗ corresponding to the
dynamical regime presented in Fig. 6.

Indeed, the use of such ratio, by solving the inequality mentioned above, allows
us to obtain the exact interval of convergence for the artifitial parameter h and,
in addition, it yields an optimal value. This represents a central advantage in
the study of the convergence of HAM. In Fig. 7 we show the comparison of
the SHAM analytical solutions for C, T and I with the numerical results using
precisely the optimum values presented in Table 1.

5.2.2. Squared residual error and different orders of approximation. A procedure
to check the convergence of a homotopy-series solution is to substitute this series
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into the original governing equations and initial conditions, and then to evaluate
the corresponding squared residual errors - the more quickly the residual error
decays to zero, the faster the homotopy-series converges. In this context, an error
analysis is performed in the following lines.

Taking the expressions (29)-(31), let us consider ϕC (t, hC) = CM(t), ϕT (t, hT ) =
TM(t), ϕI (t, hI) = IM(t). With the substitution of these solutions into Eqs. (1)-
(3), we are able to construct Residual Error (RE) functions as follows:

REC (hC , t) =
∂ϕC (t, hC)

∂t
− r1ϕC (t, hC) +(40)

+
r1

m

(
ϕ2
C (t, hC) + ϕC (t, hC)ϕT (t, hT ) +

+ ϕC (t, hC)ϕI (t, hI)) + k1ϕC (t, hC)ϕT (t, hT ) ,

RET (hT , t) =
∂ϕT (t, hT )

∂t
− r2ϕT (t, hT ) +(41)

+
r2

m

(
ϕC (t, hC)ϕT (t, hT ) + ϕ2

T (t, hT ) +

+ ϕT (t, hT )ϕI (t, hI)) + pk1ϕC (t, hC)ϕT (t, hT ) +

+k2ϕT (t, hT )ϕI (t, hI) ,

M , order of approximation of C(t) Optimal value h∗C Minimum value of SREC
6 −1.08697 3.76497× 10−7

8 −1.18485 3.15689× 10−7

10 −1.26551 2.5934× 10−7

M , order of approximation of T (t) Optimal value h∗T Minimum value of SRET
6 −1.17838 4.46271× 10−6

8 −1.28944 3.70809× 10−6

10 −1.37576 3.02756× 10−6

M , order of approximation of I(t) Optimal value h∗I Minimum value of SREI
6 −0.163095 5.14312× 10−8

8 −0.122441 4.78534× 10−8

10 −0.0979792 4.57679× 10−8

Table 2. Orders of approximation, optimal values of hC , hT , hI
and minima of the respective squared residual error functions, cor-
responding to the dynamical regime presented in Fig. 8 (r1 =
0.1842 and k1 = 0.0001).
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Figure 8. Exact Squared Residual Error functions, SREC , SRET
and SREI , versus hC , hT and hI , respectively. These functions cor-
respond to different orders of approximation for the solutions C(t),
T (t) and I(t). Solid red line: 6th-order opproximation; Dashed
green line: 8th-order opproximation; Dotted blue line: 10th-order
opproximation (r1 = 0.1842 and k1 = 0.0001). Each optimum value
h∗ gives rise to the minimum value of the SRE.

(42) REI (hI , t) =
∂ϕI (t, hI)

∂t
− k2ϕI (t, hI)ϕT (t, hT ) + µIϕI (t, hI) .

In 2007, Yabushita et al. [38] suggested an optimization method for convergence
control parameters. Their work is based on the Squared Residual Error. Inspired
by this approach, and following the studies carried out in [39, 40], we consider

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/097865doi: bioRxiv preprint 

https://doi.org/10.1101/097865
http://creativecommons.org/licenses/by-nc-nd/4.0/


24

the exact Squared Residual Error (SRE) for the M th-order approximations to be

(43) SREC (hC) =

1∫
0

[REC (hC , t)]
2 dt,

(44) SRET (hT ) =

1∫
0

[RET (hT , t)]
2 dt,

(45) SREI (hI) =

1∫
0

[REI (hI , t)]
2 dt.

Values of hC , hT and hI for which SREC (hC), SRET (hT ) and SREI (hI) are
minimum can be obtained. For a given M th-order of approximation, the optimal
value of hC , hT and hI are given by the nonlinear algebraic equations

d [SREC (hC)]

dhC
= 0,

d [SRET (hT )]

dhT
= 0 and

d [SREI (hI)]

dhI
= 0.

The optimal values for all of these considered cases are h∗C , h∗T and h∗I . The
curves of SREC , SRET and SREI regarding different orders of approximation,
namely M = 6, M = 8 and M = 10, are show in Fig. 8. Central information
regarding the orders of approximation, optimal values of hC , hT , hI and minima
of the respective squared residual error functions is summarized in Table 2.

This analysis provides an illustration of how our understanding of a model
arising in the context of biology can be directly enhanced by the use of numerical
and analytical techniques, for different combinations of control parameters and
time.

6. Discussion

In this paper we have provided new insights into the study of an HIV-1 model,
which mimics the interactions between populations of cancer cells, healthy CD4+
T lymphocytes and infected CD4+ T lymphocytes. The rich and complex be-
havior of this model allowed us to apply different theoretical approaches. The
presence of chaos in predator-prey cancer models has been reported in several
theoretical articles [41, 42, 32]. The direct detection of chaos in cancer dynamics
is hard to seek, since long time series of population changes of specific cells should
be obtained in vivo or in vitro. Techniques to detect and quantify multiple dis-
tinct populations of cells circulating simultaneously in the blood of living animals
are being currently developed. For instance, an optical system for two-channel,
two-photon flow cytometry in vivo [33]. The possibility of studying HIV-1 infec-
tion in humanized mouse models [34] with tumors using this technique could allow
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an experimental setup to monitor the population of cancer cells in HIV-infected
mice (see below).

Despite the difficulty of experimentally identifying chaos in tumor dynamics,
some mathematical models based on the biological interactions between tumor,
healthy, and immune cells have revealed the possibility of this behavior using pa-
rameters values matching some biological evidences, and could be thus considered
as being qualitatively validated with experimental data. The model analyzed in
this article considers predator-prey-like interactions between cancer and immune
cells, also adding HIV-1 infected immune cells. This model as well, reveals the
presence of chaos using some parameters from clinical and mathematical models
[13].

After analytically proving the boundedness of the trajectories in the system’s
attractor, we have studied the complexity of the coupling between the dynam-
ical variables with the quantification of the observability indices. Our calcula-
tions revealed that the highest observable variable is given by the population of
cancer cells. Hence, cancer cells should be the ones monitored in experiments
in order to have reliable data for possible attractor reconstruction techniques
[32]. For example, the time-delay embedding (i.e., Taken’s embedding theorem)
or differential embedding [45]. The time-delay embedding technique has been
successfully applied for attractor reconstruction in several systems such as the
Belousov-Zhabotinskii reaction [43] and epidemics [44], amog others. Once a
chaotic attractor is reconstructed, several dynamical and topological measures
(like Lyapunov exponents or fractal dimension) could be performed. Such an ap-
proach could be used to characterize the attractor governing coexistence among
cancer cells, CD4+ T cells, and HIV-infected T cells. As mentioned above, scalar
time series of cancer cell populations could be obtained in vivo using the two-
channel, two-photon technique in model organisms.

We have identified different dynamical behaviors of the system varying two bi-
ologically meaningful parameters: r1, representing the uncontrolled proliferation
rate of cancer cells and k1, denoting the immune system’s killing rate of cancer
cells. The changes in parameter r1 reveal regions with periodic and chaotic behav-
ior, which have been identified with the computation of the maximum Lyapunov
exponent.

Nonlinear equations are significantly more difficult to solve than linear ones,
especially in terms of analytical methods. In general, there are two standards for
a satisfactory approach of nonlinear equations: (i) it can always give approxima-
tion expressions efficiently ; (ii) it can guarantee that approximation expressions
are accurate enough in the studied region of biophysical parameters. Using these
two standards as a criterion, we have successfully applied the homotopy analysis
method (HAM) to construct the explicit series solution of the HIV-1 model in-
corporating AIDS-related cancer cells. The HAM solution contains the auxiliary
parameter h, which gives a simple way to adjust and control the convergence
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region of the resulting series solution. In order to increase the computational effi-
ciency, an optimal homotopy analysis approach was developed to obtain optimal
values for the convergence-control parameter h by means of an appropriate ratio
and the definition of an exact Squared Residual Error. This analysis provided
a fast convergence of the homotopy series solution and illustrated that the ho-
motopy analysis method indeed satisfies the two standard aspects, (i) and (ii),
mentioned previously.

The results presented in this article are likely to inspire applications of the HAM
analytical procedure for solving highly nonlinear problems in theoretical biology.
This study provides another illustration of how an integrated approach, involving
numerical evidences and theoretical reasoning within the theory of dynamical
systems, can directly enhance our understanding of biologically motivated models.
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