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ABSTRACT 

Hmox1 protein holds great promise as a biomarker of organismal health as it is highly expressed in 

stressed or damaged cells. However, documenting Hmox1 expression patterns has thus far only been 

feasible in simple model organisms with limited relevance to humans. We now report a new Hmox1 

reporter line that makes it possible to access this information in mice, the premiere model system for 

studying human disease and toxicology. Using a state-of-the-art strategy, we express multiple 

complementary reporter molecules from the murine Hmox1 locus, including firefly luciferase to allow 

long-term, non-invasive imaging of Hmox1 expression, and -galactosidase for high-resolution 

mapping of expression patterns post-mortem. We validate the model by confirming the absence of 

haplo-insufficiency effects, the fidelity of reporter expression, and its responsiveness to oxidative and 

inflammatory stimuli. In addition to providing blueprints for Hmox1 expression in mice that provide 

novel biological insights for follow-up, this work paves the way for the broad application of this model 

to regulatory toxicology studies and, also, pre-clinical investigations into human degenerative 

diseases. 
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INTRODUCTION 

Across all kingdoms of life, organisms adapt to environmental stress by inducing key evolutionarily 

conserved genes involved in damage prevention, mitigation, and repair (1,2). Classic examples of 

these cytoprotective genes are those encoding heat-shock- and DNA repair proteins, and detoxication 

and anti-oxidant enzymes (3). Typically, these stress responses are transiently induced in organisms 

exposed to toxic substances. Additionally, it is likely that they are chronically activated in the setting 

of degenerative disease (4), in a futile effort to minimise the ongoing macromolecular damage, 

although this has only been formally confirmed for progeroid syndromes (5). Thus, cytoprotective 

proteins are key biomarkers of organismal health, and the ability to monitor their fluctuating 

expression patterns promises to transform the study of drug-induced toxicity, disease pathogenesis, 

as well as for testing therapeutic interventions (6).  

Yet, although genome-wide libraries of reporter strains have made access to gene expression patterns, 

including those encoding cytoprotective proteins, a routine task in model organisms, such as E. coli, S. 

cerevisiae, C. elegans, and D. melanogaster (7–10), these evolutionarily distant species are of limited 

relevance to human biology. They are particularly unsuited to addressing toxicological issues as they 

do not adsorb, distribute, metabolise, and excrete (ADME) compounds in the same way as humans 

and these and other species differences make it difficult to extrapolate results obtained with them to 

humans (11). Mice, are considered a much more appropriate surrogate for humans in disease and 

toxicology studies; not only are they more closely related, they have been genetically engineered to 

display ‘human-like’ ADME characteristics (12). Yet, reporter strategies have been less widely adopted 

by the mouse community than their counterparts working on simpler model organisms.  

The marked reluctance of mouse biologists to adopt reporter mice seems to stem from concerns 

surrounding the fidelity of expression of reporter and target proteins. First-generation reporters, 

which involve random integration of reporters under the control of a promoter element, were 

undermined by loss of context – adjacent genetic and epigenetic elements that influence 
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transcriptional output (13). Second-generation reporters addressed this concern by inserting the 

reporter element into the native gene locus in place of the target open-reading frame, and this 

strategy has been used to generate large collections of mouse reporter strains (14), most recently by 

the International Mouse Phenotyping Consortium (15). Yet this strategy still has some substantial 

drawbacks that limit its utility. First, protein expression is not determined solely by transcription; it is 

also influenced post-transcriptionally by sequences present in the target mRNA that regulate 

transcript stability and translatability (16–18). As the reporter cassette typically replaces some or all 

of these sequences, the second-generation reporter strategy remains unlikely to accurately 

recapitulate target protein expression patterns. Second, this strategy causes the loss of one allele and 

raises concerns regarding haplo-insufficiency effects. A final objection is that this strategy does not 

lend itself to the use of multiplexed reporters in spite of the fact that individual enzymatic, fluorescent 

and other reporter molecules exhibit limitations and performance could be improved by combining 

them (19).  We recently reported (20) that the use of viral 2A technology (21) could circumvent some 

of these objections, and alleviate others, by allowing the expression of multiple reporters from a target 

gene locus while maintaining the sequences encoding the target gene.  

Heme oxygenase 1 (Hmox1), a major cytoprotective enzyme found from bacteria to man, catalyses 

the rate-limiting step in the metabolic degradation of free heme to bile-pigments (biliverdin and 

bilirubin), carbon monoxide, and iron (22). It is believed that it is normally expressed at high levels 

only in splenic macrophages and in other tissues that degrade senescent red blood cells, including 

specialized reticuloendothelial cells resident in liver and bone-marrow (23). However, under 

conditions of hemolysis, it is dramatically induced in the parenchyma of liver and kidney to deal with 

the increased burden of circulating heme (24). This ensures that levels of heme, a lipophilic, freely-

diffusible form of redox-active iron, are minimized, and also releases iron into the blood-stream for 

subsequent re-use in erythropoiesis.  Mice that lack Hmox1 suffer many defects that can be explained 

by a failure to correctly maintain heme and iron homeostasis, including low serum iron levels and 

anemia associated with an accumulation of renal and hepatic iron (25); exaggerated oxidative stress; 
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splenomegaly; and chronic inflammation. Similar symptoms were described in the only reported case 

to date of a patient lacking Hmox1 activity (26). 

Surprisingly, Hmox1 is not induced solely in response to its natural substrate heme. Instead, it 

accumulates rapidly in multiple cell types, both in vitro and in vivo, in response to a bewildering array 

of environmental stresses and disease states (27–29). Almost without exception, Hmox1 induction is 

beneficial under such circumstances. Hmox1’s uniquely broad responsiveness to multiple forms of 

tissue damage stems from the presence within its proximal promoter and distal enhancers of 

conserved binding sites for multiple families of stress-activated transcription factors. The most 

important of these factors is NFE2-related factor-2 (Nrf2) and its paralogues. However, members of 

the Heat Shock Family (Hsf) and NF-B families of proteins also direct transcription of this gene (24). 

Its cytoprotective function is generally ascribed to its ability to convert heme to carbon monoxide and 

bilirubin, the first product being anti-inflammatory, and the latter an anti-oxidant (30). 

Perhaps no other single cytoprotective enzyme is as important for organismal homeostasis as is 

Hmox1 and it is one of the most sensitive marker of organismal health available to us (24). The only 

Hmox1 reporter mice described to date were first-generation reporters created by random integration 

of either a luciferase (31) or -galactosidase (32) reporter genes under the control of approximately 

15 kb of Hmox1 promoter. In this paper, we describe how use of viral 2A technology has led to the 

development of a new and improved Hmox1 reporter mouse line. We validate the model by 

confirming the absence of haplo-insufficiency effects, and the fidelity of reporter expression. We 

provide a high-resolution blueprint for Hmox1 expression in healthy mice that suggest novel biological 

insights for follow-up. Finally, we exemplify how it can be used to study toxicological processes. Future 

work will demonstrate how the model can be applied broadly to pre-clinical research into 

degenerative disease. 
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MATERIALS AND METHODS 

Hmox1 reporter mice.  

Construction. For the generation of Hmox1 reporter mice, a T2A-LacZ-T2A-hCG-T2A-Fluc 

cassette was inserted between the penultimate and STOP codons in exon 5 of Hmox1. The 

positive selection marker (puromycin resistance (PuroR)) was flanked by FRT sites to allow for 

removal after the successful generation of transgenic mice. The targeting vector was 

generated using BAC clones from the C57BL/6J RPCIB-731 BAC library and electroporated into 

TaconicArtemis C57BL/6NTac ES cell line Art B6/3.6. Positive clones were verified by PCR and 

Southern blot before being injected into blastocysts from superovulated BALB/c mice. 

Blastocysts were injected into pseudopregnant NMRI females, and the chimerism of offspring 

was evaluated by coat color. Highly chimeric mice were bred with C57BL/6 females mutant 

for the gene encoding Flp recombinase (C57BL/6-Tg(CAG-Flpe)2 Arte). Germline transmission 

was identified by the presence of black C57BL/6 offspring (G1). The gene encoding Flp was 

removed by further breeding to Flp− partners after successful verification of PuroR removal. 

All animal work was carried out in accordance with the Animal Scientific Procedures Act 

(1986) and after local ethical review. All mice were kept under standard animal house 

conditions, with free access to food and water, and 12h light/12h dark cycle.  Data in this 

paper was obtained using mice of both genders and between 14 and 41 weeks of age, as 

specified in individual figure legends. In any given experiment, mice were age-matched to 

within one month of each other, unless otherwise stated. 

Genotyping. Ear biopsies of mice 4–8 weeks old were incubated at 50 °C for 4–5 h in lysis 

buffer containing 75 mM NaCl, 25 mM EDTA, 1% (w/v) SDS and 100 μg/ml (39 U/mg) 

proteinase K (Sigma). The concentration of NaCl in the reaction was raised to 0.6 M and a 
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chloroform extraction was performed. Two volumes of isopropyl alcohol were added to the 

extracted supernatant to precipitate genomic DNA (gDNA). 40 μl TE buffer (10 mM Tris, 1 mM 

EDTA, pH 8.0) was added to the pellet, and subsequently gDNA was dissolved overnight at 37 

°C. The typical PCR sample consisted of a 25-μl volume containing 10 pmol of the primers 

(6395_29 5′-GCTGTATTACCTTTGGAGCAGG-3′; 6395_30 5′-

CCAAAGAGGTAGCTAATTCTATCAGG-3′). Each reaction also contained 1.25 U Taq DNA 

polymerase (Thermo-Scientific) with 10 mM dNTPs, buffer and 25 mM MgCl2. The following 

PCR conditions were applied: 5 min, 95 °C initial denaturation; 30 s, 95 °C cyclic denaturation; 

30 s, 60 °C cyclic annealing; 1 min, 72 °C cyclic elongation for a total of 35 cycles, followed by 

a 10-min 72 °C elongation step. All PCR protocols were developed by TaconicArtemis. PCR 

amplification products were analyzed by agarose gel electrophoresis. 

P21 reporter mice. These mice and accompanying genotyping protocols have previously been 

reported (20). 

Chemicals and -irradiation: All chemicals were from Sigma. Hemin was dissolved in 0.1 M 

NaOH, prior to adjusting pH to 7.4 with 1 M HCl. Cadmium chloride, LPS from E.coli strain 

O55:B5 and paraquat were all prepared in 0.9% (w/v) NaCl. Solvent was used as vehicle 

control in all mouse experiments. Mice were -irradiated in an Oris IBL 637 Cesium-137 

irradiator (3 min/Gy). 

In vivo luciferase imaging: Imaging was performed at baseline and after chemical-dosing 

and/or irradiation. Reporter mice were injected ip with 5 µl/g body weight RediJect d-

Luciferin (30 mg/ml, Caliper) and anaesthetized by isofluorane before being transferred into 

the IVIS Lumina II imaging chamber (Caliper) for bioluminescent imaging. Luminescent images 

(5 sec, f/stop 1.2, binning 4) and gray-scale images (2 sec, f/stop 16, binning 2) were acquired. 
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Photon fluxes in Regions Of Interest (ROI) were quantified using the LivingImage (R) Software, 

version 4.3.1 (Caliper). ROI were defined as an oval from just below the forepaws to just above 

the genitals of each mice. Photon fluxes are expressed as photons/sec/cm2/sr. Luminescent 

images were rendered using the fire LUT in ImageJ, and superimposed on gray-scale 

photographs.   

Tissue harvesting and processing for cryo-sectioning: Mice were euthanized by exposure to 

rising concentrations of CO2. The median lobe of the liver was fixed in 10% Neutral Buffered 

Formalin. The proximal 2-4 cm of duodena were fixed in 4% (w/v) paraformaldehyde. All other 

organs, including sagittally-cut kidney, the stomach, the proximal 2 cm of the large intestine, 

the thymus, the spleen, the left lung lobe, the heart and the brain were fixed in Mirsky’s 

fixative (National Diagnostics). Tissues were stored at 4oC, formalin-fixed ones for 4 hours, 

Mirsky-fixed ones overnight, before being transferred into 30% (w/v) sucrose for 24 hours. 

Embedding was carried out in Shandon M-1 Embedding Matrix (Thermo Scientific) in a dry 

ice-isopentane bath. Sectioning was performed on an OFT5000 cryostat (Bright Instrument 

Co). With the exception of lung and brain sections, all sections were cut at 10 μm thickness 

with a chamber temperature of -200C. Lung sections were cut at 12 μm thickness with a 

chamber temperature of -230C. Brain sections were cut at 20 m thickness with a chamber 

temperature of -230C.  

In situ -gal staining: Sections were thawed at room temperature and rehydrated in PBS 

supplemented with 2 mM MgCl2 for 5 minutes before being incubated overnight at 37oC in X-

gal staining solution (PBS (pH 7.4) containing 2 mM MgCl2, 0.01% (w/v) sodium deoxycholate, 

0.02% (v/v) Igepal CA630, 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide and 1 

mg/ml 5-bromo-4-chloro-3-indolyl β-D-galactopyranosidise). On the following day, slides 
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were washed in PBS, counterstained in Nuclear Fast Red (Vector Laboratories) for 5 minutes, 

washed twice in distilled water and dehydrated through 70% and 95% ethanol before being 

incubated in Histoclear (VWR) for 3 minutes, air-dried and mounted in DPX mountant (Sigma). 

Images were captured using a Zeiss 12 megapixel digital camera attached to a Zeiss Axio 

Scope.A1 microscope, and controlled by means of the AxioVision v4.5 software (Carl Zeiss). 

Images were rendered in ImageJ. 

Tissue harvesting and processing for Perls Prussian Blue staining. Mice were euthanized by 

exposure to rising concentrations of CO2. Organs were fixed in Gurr buffer overnight before 

transfer into 70% (v/v) ethanol. The following day, organs were dehydrated and embedded in 

paraffin and subsequently sectioned at 5 m thickness using a Shandon Finesse 325 

microtome. 

Perls Prussian Blue staining. Sections were deparaffinised in xylene and rehydrated through 

a graded series of 100 – 50% (v/v) ethanol solutions, followed by immersion in distilled water. 

Sections were incubated for 20 min at room temperature in a freshly prepared aqueous 

solution containing 10% (v/v) HCl and 5% (w/v) potassium ferrocyanide. Sections were 

washed in distilled water, counterstained in Nuclear Fast Red for 5 min, washed in distilled 

water, dehydrated through 95% (v/v) ethanol and two changes of 100% (v/v) ethanol, cleared 

with two changes of xylene, air-dried, and mounted in DPX medium (Sigma). 

Immunoblots: Whole-cell lysates were prepared from flash-frozen organs as follows. Briefly, 

the organ was pulverised under liquid nitrogen with a mortar and pestle. The powder was 

added to Laemmli sample buffer (13 mM Tris (pH 6.8), 11% (v/v) glycerol, 0.44% (w/v) SDS, 

0.02% (w/v) bromophenol blue, 1.1% (v/v) 2-mercaptoethanol) supplemented with Complete 

EDTA-free protease inhibitors (Millipore) and HALT phosphatase inhibitors (Thermo Scientific) 
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and vortexed vigorously. After 30 min on ice, the resulting lysate was sonicated to reduce 

viscosity and protein concentrations were determined using the ‘Microplate BCA Protein 

Assay Kit – Reducing Agent Compatible’ from Thermo Scientific, according to the 

manufacturer’s instructions. SDS/polyacrylamide-gel electrophoresis and immunoblotting 

were carried out as previously described (33).  Antibodies used included mouse monoclonal 

antibodies raised against GAPDH (clone GAPDH_71.1 (Sigma)), and -gal (Promega), rabbit 

polyclonal antibodies for Hmox1 (Abcam)), goat polyclonal antibodies against firefly luciferase 

(Promega).  

Relative quantification of mRNA species: This was carried out by Taqman® chemistry.  Total 

RNA was isolated from cells using the RNeasy Kit (Qiagen), according to the manufacturer’s 

instructions.  Approximately 1.0 g of total RNA was reverse-transcribed to cDNA using the 

Qantitect kit (Qiagen), according to the manufacturer's instructions. The PCR mixes were 

prepared by mixing 1.5 l of cDNA with 1 l of TaqMan probe set, 10 l of Universal PCR 

Master Mix (PerkinElmer Applied Biosystems) and 7.5 l of MilliQ grade water.  For the real-

time PCR analysis, the following pre-designed TaqMan probe sets in solution were used: 

Mn00516006_m1 (Hmox1); Hs03003631 (18s ribosomal RNA) (all from PerkinElmer Applied 

Biosystems). A custom Taqman probe set designed against the -galactosidase sequence used 

in the reporter cassette was used to measure transcript produced specifically from the 

reporter allele (proprietary probe and primer sequences, PerkinElmer Applied Biosystems). 

Data acquisition and analysis utilised the ABI PRISM® 7700 sequence detection system 

(PerkinElmer Applied Biosystems).  The relative gene expression levels in different samples 

were calculated using the Comparative CT Method as outlined in the ABI PRISM® 7700 
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Sequence Detection System User Bulletin 2. The expression of 18s rRNA was used as the 

internal control.   

Clinical chemistry: Terminal bleeds were collected in heparinized blood collection tubes 

(Sarstedt). Clinical chemistry assays were performed blind at the Clinical Pathology 

laboratory, MRC Harwell (http://www.har.mrc.ac.uk/services/pathology/clinical-chemistry). 
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RESULTS 

A new model for monitoring Hmox1 expression at single-cell resolution. We created a 

mouse line in which an open-reading frame encoding T2A--gal-T2A-hCG-T2A-luciferase was 

inserted between the penultimate amino acid-encoding codon and the STOP codon in exon 5 

of the Hmox1 gene (Fig 1A). T2A peptides promote a phenomenon known as ribosome 

skipping that allows multiple proteins to be expressed from a single mRNA (21). We therefore 

expected that four separate polypeptides, Hmox1, -gal, hCG, and luciferase would be 

expressed from this engineered allele. It is important to note that the -gal protein was 

tagged with a nuclear localisation sequence to target it to the nucleus, whereas hCG is 

expected to be secreted as it contains a signal peptide. Finally, Hmox1 expressed from the 

reporter allele contains the T2A amino acid sequence at its C-terminus and is therefore 

distinguishable upon electrophoresis from Hmox1 expressed from the wild type (wt) allele. 

We previously employed a very similar strategy to generate a p21 reporter mouse. One 

conclusion from this earlier work was that insertion of the reporter cassette suppressed 

expression of the target protein from the reporter locus, for reasons that were not further 

explored (20). The possibility that Hmox1 expression might similarly be compromised in the 

current model was a serious concern, given the severe phenotype of Hmox1-/- mice, as it 

would potentially disqualify it from the study of normal physiology. Therefore, to address this 

concern and assess the performance of the reporter allele more generally, we initially treated 

wild-type mice and heterozygous and homozygous reporter mice (bearing one and two 

Hmox1 reporter alleles, respectively) with hemin, a classic inducer of Hmox1. Mice were in 

vivo imaged for luminescence pre- and post-treatment, and organs harvested for protein and 

mRNA analyses (Fig 1B – F).  
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We confirmed that four separate peptides were being correctly processed and expressed 

from the reporter transcript, by blotting liver, lung and large intestine lysates for Hmox1, -

gal, hCG, and luciferase proteins (Fig 1B). Specifically, we observed two bands of the predicted 

molecular weights for the Hmox1 expressed from the wt allele and the T2A-tagged Hmox1 

expressed from the reporter allele (Fig 1B). Both -gal and luciferase were detected as single 

proteins with higher expression levels in animals homozygous for the reporter allele. We 

could not detect hCG in any of these samples, presumably because the protein is secreted. 

Nevertheless, correct processing of the two polypeptides that flank it, -gal and Luc, implies 

that hCG – and therefore all four polypeptides – are correctly processed.  

Heterozygous reporter mice do not display a phenotype despite suppressed expression of 

Hmox1. Although the 2A strategy for the expression of multiple reporters off a single allele 

worked well, the level of Hmox1 expression from the reporter gene was significantly lower 

than off its wt counterpart, as anticipated (Fig 1B). Reduced expression of Hmox1 protein 

from the reporter locus results, at least in part, from reduced expression of the corresponding 

mRNA transcript (Fig 1C). The Hmox1 Taqman assay that we employed to investigate this issue 

cannot distinguish between mRNA from wt and reporter alleles, which complicates the 

interpretation of the data.  Nevertheless, heterozygous reporter mice (one wt gene) 

expressed approximately half the amount of mRNA found in wild-type mice (two wt genes). 

Assuming that the one wt allele in heterozygous mice produces half the amount of mRNA 

found in wild-type mice, then these data imply that the reporter allele contributes only a small 

percentage of the total Hmox1-encoding mRNA found in heterozygous reporter mice. This 

interpretation is also consistent with the finding that the amount of Hmox1 mRNA in 

homozygous reporters was much reduced in comparison with wild-type mice (Fig 1C).  

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

Consistent with compromised expression of Hmox1 protein, our homozygous reporter mice 

share a number of phenotypes in common with the previously described Hmox1-/- mice 

(25,28), including an exaggerated response to hemin. This phenomenon is evident when using 

a custom Taqman assay that only detects the transcript produced from the reporter locus. 

Using this assay, the amount of reporter transcript in hemin-treated homozygous reporter 

mice (which bear two reporter alleles) was considerably more than twice the amount of 

reporter transcript in similarly-treated heterozygous reporter mice (that bear a single 

reporter allele) (Fig 1C). Hyper-sensitivity to hemin is further supported by the observation 

that the in vivo (Fig 1D) and ex vivo (Fig 1E) luminescent signals post-hemin were far higher in 

homozygous than heterozygous mice. Other Hmox1-/- phenotypes observed in our 

homozygous reporters include splenomegaly (Fig S1A) and defects in iron re-utilisation (Fig 

S1B). 

However, not all phenotypes are shared between the two lines with the homozygous reporter 

being less physiologically compromised than the complete knock-out. In particular, 

homozygous reporter mice were born at a reasonable, albeit lower than expected, frequency 

(16% observed vs 25% expected, significant at P < 0.01 by Chi-Square test) whereas the 

complete knockout displays almost complete perinatal lethality (25). Additionally, neither 

serum iron (Fig S1C), which is reduced in the complete knock-out (25), or serum bilirubin (Fig 

S1D) levels appear to be significantly altered in the homozygous reporter. 

Crucially, heterozygous reporter mice did not display a phenotype in so far as we can judge. 

They display the expected response to hemin (Fig 1B). Furthermore, there was no evidence 

for splenomegaly or iron-loading of liver and kidneys in this line, even in older mice (Fig S1).  
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We conclude that heterozygous reporter mice are suitable for studying normal physiological 

processes and were used in all subsequent experiments. 

Faithful expression of -gal in the same organs, tissues, and cell types as Hmox1. An 

essential attribute of any reporter system is that the pattern of expression of the reporter 

proteins faithfully mimics that of the target. We anticipated that this would be the case in our 

model, as all the coding and regulatory elements that might control Hmox1 expression are 

retained in the reporter allele. Unfortunately, the true expression pattern for Hmox1 in 

healthy adult mice has not been systematically characterized, as evidenced by the lack of data 

curated in Mouse Genome Informatics (MGI; http://www.informatics.jax.org). Although the 

absence of such data highlights why reporter models such as ours are necessary, it does 

present problems when attempting to validate them. We therefore initially documented -

galactosidase expression patterns in spleen, liver, and kidney, as detailed expression data is 

available for Hmox1 in these three organs under a variety of conditions.  

For example, Hmox1 activity in healthy animals is believed to reside in splenic and hepatic 

macrophage populations (22–24), and in proximal tubular epithelial cells of the kidney 

(34,35). Consistent with this, we consistently detected populations of -galactosidase-

positive cells in spleen and liver sections (Fig 2A). Based on size and morphology, positive cells 

seemed to belong to the macrophage population. We also found renal expression of Hmox1 

in tubules – but not glomeruli – of the cortex (Fig 2A). 

Exposure of mice to hemin induces Hmox1 in hepatocytes and renal tubules, whilst leaving 

levels unaltered in the spleen (23,35). In excellent agreement with these data, hemin induced 

reporter activity in hepatocytes and cells of the renal tubule; moreover, the staining pattern 

was unchanged in the spleen after treatment (Fig 3B). 
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Finally, CdCl2 is a nephro- and hepatoxin that potently induces Hmox1 activity in both organs 

(36–38). We observed massive induction of reporter activity in renal tubules and liver 

hepatocytes, in agreement with these previous reports (Fig 4B). Strikingly, this experiment 

included mice of both genders and the data hint at sexual dimorphism in expression of Hmox1 

in control and treated mice (Fig 4). 

Taken in total, these data validate our reporter system as a bona fide marker for Hmox1 

protein expression, insofar as the limited pre-existing independent data allow us to make this 

assessment.  

Novel Hmox1 expression patterns identified through high-resolution reporter analysis. To 

extend our currently limited understanding of Hmox1 expression patterns in healthy mice 

beyond spleen, liver and kidney, we performed in situ -galactosidase staining on a 

comprehensive selection of additional mouse organs (Figs S2 – S4). Unexpectedly, we noticed 

that reporter protein was expressed at high levels in those barrier tissues at the interface 

between the internal and external environment that have evolved to provide mechanical and 

chemical protection to the organism.  

In the alimentary tract for example, reporter expression is expressed solely in the stratified, 

cornified, epithelial layer that extends from the tongue, through the oesophagus, and down 

to the juncture between the fore- and glandular stomach (Fig S2). At this juncture, the 

structure and function of the epithelial lining changes from stratified and protective to simple 

columnar specialized for adsorption and reporter positivity ends (Fig S2). Similarly, in the 

respiratory system, the protective lining of the trachea and bronchi are highly and modestly 

positive, respectively (Fig S3). Finally, the stratified, cornified epithelial layer covering the skin, 

a major point of defense against the external world, was highly positive (Fig S3).  
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By way of contrast with spleen, liver, and kidney, other internal organs, such as heart, 

pancreas, and thymus (Fig S4), did not express detectable levels of -galactosidase. 

Given the unexpected nature of these findings, we tested the prediction that Hmox1 would 

be found in multiple barrier tissues by blotting lysates prepared from pertinent organs of wt 

mice (Fig 2B). Although this approach only provides us with a crude, average measure of 

Hmox1 across all cell types present in an organ, there are no authenticated IHC-ready 

antibodies that could be used to provide higher-resolution date. The results were in excellent 

agreement with predictions. For example, we confirmed that the respiratory system and skin 

expressed significant amounts of Hmox1 (Fig 2B). It was particularly gratifying to note that 

the expression pattern of Hmox1 throughout the alimentary tract confirmed in all important 

respects to our predictions; tongue, oesophagus, and forestomach were positive for Hmox1 

whereas small- and large intestines were essentially negative (Fig 2B).  

Collectively, these data highlight the power of our reporter technology to chart target protein 

expression. They also represent the most comprehensive characterization to data of Hmox1 

expression in any adult mammal and suggest novel biological insight into its physiological role 

in vivo (see Discussion). 

Correlation of target Hmox1 protein levels and reporter levels. Because reporter proteins 

and target proteins will generally have different half-lives, and their relative half-lives may 

vary from organ to organ, it was not clear how well-correlated levels of luciferase, -

galactosidase, and Hmox1 proteins would be. In fact, with one notable exception, levels were 

well-correlated across an extensive panel of organs obtained from untreated reporter mice 

(Fig 2C). The major discrepancy was that levels of both reporter proteins were lower in spleen 

extracts than would be predicted based on the overall trend. We also examined the 
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correlation between target and reporters in mice treated with hemin (Fig 3C), which again 

revealed a high degree of correlation. There is some indication, however, that the dynamic 

range of -galactosidase is compressed compared to Hmox1, perhaps reflecting its long half-

life. 

Inflammation and oxidative stress induce reporter expression. The major pathophysiological 

states leading to increased expression of Hmox1 are inflammation and oxidative stress 

(29,30). We modelled inflammation by exposing our reporter mice to LPS (Fig 5). The best-

described effect of inflammation on Hmox1 expression is of a significant but transient 

induction of Hmox1 in hepatocytes  as part of the acute phase response (39), although the 

increase in protein is much more modest (40,41). Consistent with this, we observed at best a 

very modest increase in the in situ -galactosidase signal in liver sections of treated reporter 

mice. The modest fold of induction was confirmed by blotting lysates from these same control 

and LPS-treated mouse livers (Fig S5). 

Although LPS had a modest effect of hepatic expression of Hmox1 and reporter expression, it 

caused a significant elevation in -galactosidase expression in both splenic macrophages and 

tubular epithelial cells of the kidney cortex (Fig 5). A striking finding that has not been 

reported previously is that muscle cells in multiple anatomical locations, including the tongue, 

oesophagus, large intestine, responded to LPS by inducing Hmox1 protein, as inferred from in 

situ -galactosidase staining (Fig S6). Cardiomyocytes responded in a similar manner (Fig S6). 

Muscle cells seem to be a major source of Hmox1 protein as hemin, to our surprise, induced 

-galactosidase activity in the smooth muscle cell layers surrounding the large intestine (Fig 

3B). 
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To model oxidative stress, reporter mice were injected with paraquat, a redox cycling 

compound that produces superoxide and hydrogen peroxide in large amounts (42). It is 

exceeding toxic to the pulmonary system where it is concentrated by the polyamine 

transporter system in epithelial cells lining the lung, although it also causes serious damage 

to the kidney, liver, and heart (42–44). Consistent with these pathological findings, there was 

a massive increase in -galactosidase staining in lungs from treated reporter mice and this 

was restricted to alveolar epithelial cells (Fig 6B). 

These data are important because they reveal that our reporter mice can be used to study 

the numerous disease states associated with inflammation and oxidative stress. 

Monitoring of luminescence from internal organs in living mice. We confirmed that the 

luciferase reporter facilitated the non-invasive luminescent imaging of Hmox1 induction. For 

example, exposure of reporter mice to hemin (Fig 3A), cadmium (Fig 4A), LPS (Fig 5A), and 

paraquat (Fig 6A) resulted in significantly increased bioluminescence over that observed in 

control counterparts. Unlike our p21 reporter model (20), bioluminescence from visceral 

organs is visible in the Hmox1 model as the signal is not over-whelmed by a signal emanating 

from the skin. However, resolution of luminescent signals is still low and although it is possible 

to make an informed estimate as to the possible identities of the organ(s) involved, 

unambiguous identification is still difficult. 

Ionizing radiation does not induce acute oxidative stress or inflammation. Most of the 

agents and states known to induce Hmox1 protein damage lipids and proteins rather than 

DNA. Thus, the Hmox1 reporter line should provide orthologous and complementary data to 

that provided by our p21 DNA damage reporter. To confirm that DNA damage does not 

acutely activate the Hmox1 system in vivo, we exposed Hmox1 reporter mice to 4 Gy of IR. 
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This did not result in elevated in vivo bioluminescence measurements (Fig 7A). More 

convincingly, no increase in in situ -galactosidase signal, above that of control mice, was 

observed post-mortem (Fig 7B & Fig S7). By way of contrast, a massive increase in the -

galactosidase signal was observed in similarly-treated p21 reporter mice (Fig S8). In fact, in 

the IR-sensitive large intestine, the signal was already saturated even at the lowest dose of IR 

tested (1 Gy). 

Acetaminophen (APAP) toxicity predicted by the Hmox1 reporter. Finally, to exemplify how 

this model can be used in a toxicological sense, we examined whether our Hmox1 reporter 

would correctly identify N-acetyl cysteine as an antidote to APAP poisoning. APAP, exposure 

to which induces Hmox1 activity (45), is a potent hepatotoxin ((46,47) and Fig 8A) as a 

consequence of its metabolic conversion to a highly thiol-active electrophile in hepatocytes; 

the thiol-containing prodrug N-acetyl cysteine is an effective antidote ((48,49) and Fig 8A). 

Gratifyingly, APAP not only induced reporter activity in hepatocytes, but it did so specifically 

in the centrilobular zone (Fig 8B), as expected (46). As we have previously reported, the cells 

identified as Hmox1-positive surrounded a core of necrotic cells (45). Importantly, co-

administration of N-acetyl cysteine reduced the reporter signal, and prevented necrosis of 

centrilobular hepatocytes (Fig 8B). These now-surviving cells, however, displayed a mild 

induction of Hmox1, as assessed by -galactosidase activity (Fig 8B), indicating that they may 

still be subject to some degree of damage. 

The accompanying in vivo bioluminescence data did not display a convincing difference in 

signal between treatment groups (Fig S9). This is presumably due to the fact that with APAP-

elicited -galactosidase-positivity is restricted to a small fraction of hepatocytes. 
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hCG measurements are unreliable. We included a hCG reporter in our reporter cassette in 

the hope that it would allow us to infer Hmox1 expression in serial blood samples. However, 

as illustrated by the data in Fig S10, serum levels of hCG measured with a commercial ELISA 

only rarely exceeded the limit of detection of the assay and were unreliable as a result. 

Therefore, this reporter was not pursued any further. 
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DISCUSSION 

In this article, we describe a method for assessing Hmox1 expression across all cell lineages in 

mice. It was developed to allow expression to be monitored non-invasively over extended 

periods of time (bioluminescent imaging), whilst permitting single-cell resolution analyses 

post-mortem (-galactosidase staining). The goal of this first study was to validate and 

rigorously assess the performance of the model, provide a blue-print for Hmox1 expression 

in healthy mice, and exemplify its use in toxicology.  

Model performance – reduced expression of Hmox1 protein from the reporter locus. By using 

viral 2A sequences, we hoped that our reporter strategy would maintain expression of Hmox1 

protein in order to reduce the possibility of undesirable haplo-insufficiency effects resulting 

in disturbed physiology. In the event, expression of Hmox1 protein was suppressed from the 

reporter allele. Suppression of Hmox1 protein occurs at least in part because, for reasons that 

are unclear, steady-state levels of reporter transcript were considerably lower than expected 

based on the level of transcript from the endogenous allele. In spite of this suppression, 

heterozygous reporter mice did not display any overt phenotypes and therefore seem 

suitable for investigating normal physiology. This conclusion is supported by the finding that 

many healthy humans only possess one functional Hmox1 allele (ExAC consortium: 

http://exac.broadinstitute.org/gene/ENSG00000100292).  

Model performance – fidelity and accuracy. Contrary to existing systems, our reporters are 

expressed from the endogenous locus and as part of the wild-type mRNA. As gene expression 

is not only controlled transcriptionally by DNA elements both proximal and distal, such as 

promoters and enhancers (50), but also post-transcriptionally by sequences resident in the 

target transcript (51–55), this is a major advantage of our reporter strategy over the current 
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state-of-the-art. Our system should respond not only to transcriptional regulation but should 

also reflect important post-transcriptional regulatory mechanisms, including control of mRNA 

stability by miRNA and RNA-binding proteins and control of rate of translation (16–18). In fact, 

the only absolute limitation on our strategy is that it cannot report on post-translational 

control of gene expression, as the reporters are not fused to the gene product. 

We validated the fidelity of reporter expression in a number of ways. Firstly, although Hmox1 

expression patterns in vivo are not well-defined, we generated benchmark Hmox1 expression 

data across a panel of organs in control and hemin-treated mice and confirmed that reporter 

and target (Hmox1) protein levels were well correlated in general.  Secondly, these 

population-level analyses were extended in the case of spleen, liver, and kidney by confirming 

at the single-cell level that reporter protein was expressed in the same cell types as the target. 

However, in general, high-resolution Hmox1 expression data is lacking and concerted efforts 

will need to be made to formally validate the new expression patterns described herein (see 

below). In the absence of antibodies validated for immunohistochemistry, this issue might 

best be addressed using newer tools, such as imaging mass spectrometry (56). 

As with any reporter strategy, the stability of the reporters and target proteins can vary; thus 

reporter expression is to some extent a ‘distorted’ measure of target protein abundance. This 

presumably explains the lack of perfect correlation amongst expression levels for reporters 

and Hmox1 across organs and conditions. 

Identification of new expression patterns. Gene expression patterns can provide novel 

biological insights for subsequent follow-up. We made two particularly striking observations 

about the expression of Hmox1 that hint at new biology. First, healthy mice constitutively 

express Hmox1 in barrier tissues lining the alimentary, respiratory, and integumentary 
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systems. Much of the positive barrier tissue is comprised of Stratum corneum (Sc), which is 

traditionally considered to be ‘dead’ and to be incapable of engaging in biochemistry. The 

perception that such tissue is non-viable might cast doubt on the significance (or even 

veracity) of our inference that Hmox1 is expressed in such a location. However, note that 

Nrf2, the major factor governing Hmox1 transcription, is already known to drive expression 

of Sc-restricted genes, such as Slpi and Sprr2d (57,58), and is therefore well placed to express 

Hmox1 in such a spatially-restricted manner. Moreover, biochemistry is possible in the Sc; for 

example citrullination of fillagrin (59).  

What role might Hmox1 play in the Sc? The Sc is comprised of corneocytes embedded in lipids 

that are susceptible to peroxidation arising from exposure to UV irradiation (60). Bilirubin, the 

end-result of Hmox1 enzymatic activity, is a lipid-soluble antioxidant and might be expected 

to exercise a protective role by neutralizing peroxidation. Indeed, it has been reported to be 

produced in the skin specifically in the Sc (61). On this basis, we hypothesize that Hmox1 might 

be responsible for in situ production of this chemical at barrier tissues. This leads to the 

testable prediction that Hmox1 deficiency might contribute to skin and other diseases as a 

consequence of barrier dysfunction. Significant biological effort will be required to follow up 

on this initial observation. 

A second surprising finding was that muscle cells seem to be a major source of Hmox1 in 

stressed animals. Hemin induced Hmox1 protein in smooth muscle cells lining the large 

intestine, for example. Similarly, inflammation induced Hmox1 in muscle tissue of several 

organs. We suggest that this is because myoglobin, the second most abundant hemeprotein 

after haemoglobin, is restricted to muscle cells.  It makes sense to express Hmox1 in cell types 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


25 
 

containing large amounts of heme, especially when the resulting cytoprotective products are 

highly mobile and can diffuse to adjacent tissues. 

Application to study human degenerative diseases. In this work, we used the example of APAP 

poisoning to exemplify the toxicological applications of our model. With this tool, in 

combination with our similar p21 reporter line, it should be possible to identify potential 

toxins amongst drugs, industrial- and other chemicals of interest to human health and 

decipher their mode-of-action.  

However, we anticipate that a major future use of this model and our previously described 

p21 model will be pre-clinical research into degenerative conditions. Many such conditions, 

including Alzheimer’s and Parkinson’s disease are associated with DNA damage or oxidative 

stress (4) and it is reasonable to speculate that this will lead to exacerbated stress responses. 

However, with few exceptions like progeroid syndromes (5), this hypothesis has not been 

rigorously examined due to a lack of appropriate stress-monitoring tools.  Our models provide 

a solution to this problem and will enable researchers to monitor stress responses in vivo as 

the disease progresses. We note that there is an unmet need for prognostic biomarkers of 

degeneration that can improve the ability of pre-clinical research to correctly predict future 

clinical benefit (62). Were reporter signals to be exacerbated to a significant extent in mouse 

models of degenerative disease, then this would be a very attractive approach to this 

problem, especially so if they become elevated at or before the prodromal stage.  

Future development of technology. We believe that our 2A reporter strategy is a significant 

improvement on the current state-of-the-art, represented by the approaches taken by the 

Velocigene project (14) and the more recent International Mouse Phenotyping Consortium 

(15). If it is to reach its full potential, however, there are a number of improvements that need 
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to be made. Firstly, although data from the ExAC consortium predicts that 80% of genes will 

not be found to suffer from haplo-insufficiency (63), it remains desirable to avoid the 

multireporter DNA cassette suppressing expression of the target protein. So far, the initial 

cassette described here, in our p21 model (20), and also used in an IL-6 reporter model 

(unpublished data) has this suppressive effect, which therefore appears to be an intrinsic 

feature. It should prove possible, however, to optimise the type and number of reporter 

genes incorporated into the cassette so as to avoid target protein suppression. Intuitively, 

shorter reporter cassettes should be less disruptive of gene expression than longer ones. 

Preliminary results indicate that the shorter GFP reporter is less disruptive than is the larger 

-galactosidase (Ding, McMahon, Henderson, and Wolf – unpublished data) and perhaps 

should be used in future. A further advantage of this approach is that it would allow one to 

produce mice reporting on multiple genes by using fluorescent reporters with distinct spectral 

characteristics. One caveat to this is that concerns have been expressed over the 

comparatively lower sensitivity of GFP compared to-galactosidase (13). Additionally, the 

hCG reporter could be removed as in our hands it has not proven useful.  

A second improvement relates to the natural stability of-galactosidase that compresses the 

dynamic range of the reporter and reduces its sensitivity; it would be beneficial to destabilize 

it or any other reporter.  

Finally, a third improvement relates to the choice of non-invasive reporter. In vivo 

bioluminescent imaging of luciferase is still plagued by technical difficulties and concerns, 

including, but not limited to, low resolution, as discussed elsewhere (64–66). It may be better 

to use other imaging modalities, such as positron emission tomography or magnetic 
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resonance imaging that are capable of non-invasive imaging of deep tissues at higher 

resolution.  

REFERENCES 

1.  Kultz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev 

Physiol. 2005;67:225–57. 

2.  Gasch AP. Comparative genomics of the environmental stress response in ascomycete 

fungi. Yeast. 2007;24:961–76.  

3.  Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental 

stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–

116.  

4.  Ames BN, Shigenaga MK, Hagen TM. Oxidants, Antioxidants, and the Degenerative 

Diseases of Aging. Proc Natl Acad Sci U S A. 1993;90:7915–22.  

5.  Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: lessons 

from mice and reprogrammed cells. Dis Model Mech. 2016;9:719–35.  

6.  Rand MD. Drosophotoxicology: The growing potential for Drosophila in 

neurotoxicology. Neurotoxicol Teratol. 2010;32:74–83.  

7.  Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, et al. A comprehensive 

library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods. 

2006;3:623–8.  

8.  Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, et al. 

Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


28 
 

noise TL  - 441. Nature. 2006;441 VN-:840–6. 

9.  Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, et al. High-

throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol. 

2007;5:1981–97.  

10.  Morin X, Daneman R, Zavortink M, Chia W. A protein trap strategy to detect GFP-

tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad 

Sci U S A. 2001;98:15050–5.  

11.  Scheer N, Wolf C. Xenobiotic receptor humanized mice and their utility. Drug Metab 

Rev. 2013;45:110–21.  

12.  Scheer N, Wolf CR. Genetically humanized mouse models of drug metabolizing 

enzymes and transporters and their applications. Xenobiotica. 2014;44:96–108.  

13.  Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, et al. A gene 

expression atlas of the central nervous system based on bacterial artificial 

chromosomes. Nature. 2003;425:917–25.  

14.  Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, et 

al. High-throughput engineering of the mouse genome coupled with high-resolution 

expression analysis. Nat Biotechnol. 2003;21:652–9.  

15.  Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. A conditional 

knockout resource for the genome-wide study of mouse gene function. Nature. 

Nature Publishing Group; 2011;474:337–42. 

16.  Matsui M, Yachie N, Okada Y, Saito R, Tomita M. Bioinformatic analysis of post-

transcriptional regulation by uORF in human and mouse. FEBS Lett. 2007;581:4184–8.  

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

17.  Nilsen TW. Mechanisms of microRNA-mediated gene regulation in animal cells. 

Trends Genet. 2007;23:243–9.  

18.  Dreyfuss G, Kim VN, Kataoka N. Messenger-Rna-Binding Proteins and the Messages 

They Carry. Nat Rev Mol Cell Biol. 2002;3:195–205.  

19.  Martin L, Che A, Endy D. Gemini, a bifunctional enzymatic and fluorescent reporter of 

gene expression. PLoS One. 2009;4.  

20.  McMahon M, Frangova TG, Henderson CJ, Wolf CR. Olaparib, Monotherapy or with 

Ionizing Radiation, Exacerbates DNA Damage in Normal Tissues: Insights from a New 

p21 Reporter Mouse. Mol Cancer Res. 2016; Available from: 

http://mcr.aacrjournals.org/content/early/2016/09/07/1541-7786.MCR-16-

0108.abstract 

21.  de Felipe P, Luke G a, Hughes LE, Gani D, Halpin C, Ryan MD. E unum pluribus: 

multiple proteins from a self-processing polyprotein. Trends Biotechnol. 2006; 24:68–

75.  

22.  Maines MD. THE HEME OXYGENASE SYSTEM: A Regulator of Second Messenger 

Gases. Annu Rev Pharmacol Toxicol. 1997;37:517–54.  

23.  Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. 

Pharmacol Rev. 2008;60:79–127.  

24.  Ryter SW, Alam J, Choi AMK. Heme Oxygenase-1 / Carbon Monoxide : From Basic 

Science to Therapeutic Applications. Physiol Rev. 2006;86:583–650.  

25.  Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. 

Proc Natl Acad Sci U S A. 1997;94:10919–24.  

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


30 
 

26.  Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, et al. Oxidative stress causes 

enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 

1999;103:129–35.  

27.  Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in 

human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. 

Proc Natl Acad Sci U S A. 1989;86:99–103.  

28.  Poss KD, Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. 

Proc Natl Acad Sci U S A. 1997;94:10925–30.  

29.  Soares MP, Bach FH. Heme oxygenase-1: from biology to therapeutic potential. 

Trends Mol Med. 2009;15:50–8.  

30.  Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-

1. Annu Rev Pharmacol Toxicol. 2010;50:323–54.  

31.  Malstrom SE, Jekic-Mcmullen D, Sambucetti L, Ang A, Reeves R, Purchio AF, et al. In 

vivo bioluminescent monitoring of chemical toxicity using heme oxygenase-luciferase 

transgenic mice. Toxicol Appl Pharmacol. 2004;200:219–28.  

32.  Young R, Wolf CR, Brown K, Hayes JD, Whitelaw CB a. Spatial monitoring of toxicity in 

HMOX-LacZ transgenic mice. Transgenic Res. 2010;19:897–902.  

33.  McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal 

degradation of transcription factor Nrf2 contributes to the negative regulation of 

antioxidant response element-driven gene expression. J Biol Chem. 2003;278:21592–

600.  

34.  Nath K a, Haggard JJ, Croatt  a J, Grande JP, Poss KD, Alam J. The indispensability of 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo. 

Am J Pathol. American Society for Investigative Pathology; 2000;156:1527–35.  

35.  Nath KA, Vercellotti GM, Grande JP, Miyoshi H, Paya C V., Manivel JC, et al. Heme 

protein-induced chronic renal inflammation: Suppressive effect of induced heme 

oxygenase-1. Kidney Int. 2001;59:106–17.  

36.  Ossola JO, Tomaro ML. Heme oxygenase induction by cadmium chloride: evidence for 

oxidative stress involvement. Toxicology. 1995;104:141–7.  

37.  Iwahara S, Satoh H, Song DX, Webb J, Burlingame  a L, Nagae Y, et al. Purification, 

characterization, and cloning of a heme-binding protein (23 kDa) in rat liver cytosol. 

Biochemistry. 1995;34:13398–406.  

38.  Sikorski EM, Uo T, Morrison RS, Agarwal A. Pescadillo interacts with the cadmium 

response element of the human heme oxygenase-1 promoter in renal epithelial cells. 

J Biol Chem. 2006;281:24423–30.  

39.  Rizzardini M, Terao M, Falciani F, Cantoni L. Cytokine induction of haem oxygenase 

mRNA in mouse liver. Interleukin 1 transcriptionally activates the haem oxygenase 

gene. Biochem J. 1993;290 Pt 2:343–7.  

40.  Bauer I. Expression pattern of heme oxygenase isoenzymes 1 and 2 in normal and 

stress-exposed rat liver. Hepatology. 1998;27:829–38.  

41.  Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS. Heme oxygenase-

1-mediated autophagy protects against hepatocyte cell death and hepatic injury from 

infection/sepsis in mice. Hepatology. 2011;53:2053–62.  

42.  Bus JS, Gibson JE. Paraquat: model for oxidant-initiated toxicity. Environ Health 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


32 
 

Perspect. 1984;55:37–46.  

43.  Corasaniti M, Strongoli M. Paraquat: a useful tool for the in vivo study of mechanisms 

of neuronal cell death. Pharmacol Toxicol. 1998;83:1–7.  

44.  Suntres ZE. Role of antioxidants in paraquat toxicity. Toxicology. 2002;180:65–77.  

45.  McGarry DJ, Chakravarty P, Wolf CR, Henderson CJ. Altered protein S-

glutathionylation identifies a potential mechanism of resistance to acetaminophen-

induced hepatotoxicity. J Pharmacol Exp Ther. 2015;355:137–44.  

46.  Bessems JGM, Vermeulen NPE. Paracetamol (Acetaminophen)-Induced Toxicity: 

Molecular and Biochemical Mechanisms, Analogues and Protective Approaches. Crit 

Rev Toxicol. Taylor & Francis; 2001;31:55–138.  

47.  Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced 

liver cell death. Toxicol Sci. 2006;89:31–41.  

48.  Black M. Acetaminophen Hepatotoxicity. Annu Rev Med. 1984;35:577–93.  

49.  Nelson SD. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. 

Semin Liver Dis. 1990;10:267–78.  

50.  Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P, Joung J, et al. High-resolution 

interrogation of functional elements in the noncoding genome. Science. 

2016;353:1545 LP-1549.  

51.  Ingolia NT. Ribosome Footprint Profiling of Translation throughout the Genome. Cell. 

2016;165:22–33.  

52.  Zlotorynski E. RNA: 3′ UTR alternatives to protein localization. Nat Rev Mol Cell Biol. 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


33 
 

2015;16:327–327.  

53.  Yan X, Hoek TA, Vale RD, Tanenbaum ME. Dynamics of Translation of Single mRNA 

Molecules in Vivo. Cell. 2016;165:976–89.  

54.  Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon Bias as a Means to Fine-Tune 

Gene Expression. Mol Cell. 2015;59:149–61.  

55.  Nojima T, Dienstbier M, Murphy S, Proudfoot NJ, Dye MJ. Definition of RNA 

Polymerase II CoTC Terminator Elements in the Human Genome. Cell Rep. 

2013;3:1080–92.  

56.  Caldwell RL, Caprioli RM. Tissue Profiling by Mass Spectrometry. Mol Cell Proteomics. 

2005;4:394–401.  

57.  Schäfer M, Farwanah H, Willrodt AH, Huebner AJ, Sandhoff K, Roop D, et al. Nrf2 links 

epidermal barrier function with antioxidant defense. EMBO Mol Med. 2012;4:364–79.  

58.  Schäfer M, Willrodt A, Kurinna S, Link AS, Farwanah H, Geusau A, et al. Activation of 

Nrf 2 in keratinocytes causes chloracne ( MADISH ) -like skin disease in mice. EMBO 

Mol Med. 2014;6:442–57.  

59.  Sandilands A, Sutherland C, Irvine AD, McLean WHI. Filaggrin in the frontline: role in 

skin barrier function and disease. J Cell Sci. 2009;122:1285–94.  

60.  Gibbs NK, Norval M. Urocanic acid in the skin: a mixed blessing? J Invest Dermatol. 

2011;131:14–7.  

61.  Numata I, Okuyama R, Memezawa A, Ito Y, Takeda K, Furuyama K, et al. Functional 

expression of heme oxygenase-1 in human differentiated epidermis and its regulation 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


34 
 

by cytokines. J Invest Dermatol. 2009;129:2594–603.  

62.  Winblad B, Cedazo-Minguez A, Graff C, Johansson G, Jönsson L, Kivipelto M, et al. The 

Lancet Neurology Commission Defeating Alzheimer’s disease and other dementias: a 

priority for European science and society. Lancet Neurol. 2016;15:455–532.  

63.  Lek M, Karczewski KJ, Minikel E V., Samocha KE, Banks E, Fennell T, et al. Analysis of 

protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.  

64.  Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene 

expression. Annu Rev Biomed Eng. 2002;4:235–60.  

65.  Curtis A, Calabro K, Galarneau J-R, Bigio IJ, Krucker T. Temporal variations of skin 

pigmentation in C57BL/6 mice affect optical bioluminescence quantitation. Mol 

Imaging Biol. 2011;13:1114–23.  

66.  Hansen AH, Lomholt MA, Hansen PL, Mouritsen OG, Arouri A, Hirata Y, et al. A 

luciferin analogue generating near-infrared bioluminescence achieves highly sensitive 

deep-tissue imaging. J Mol Liq. 2016;11:128–34. 

FIGURE LEGENDS 

Figure 1: Use of T2A sequences to express -galactosidase, luciferase, and human chorionic 

gonadotropin (hCG) from the endogenous Hmox1 promoter. A) Schematic of the 

engineering strategy used to create the Hmox1 multireporter allele. See text for further 

details. B – F) Triplicate wt (+/+), heterozygous reporter (+/r), or homozygous reporter (r/r) 

mice were treated with 30 mg/kg hemin and culled 18 h later. All mice were male and aged 

between 12 and 13 weeks except for one r/r mouse that was 7 weeks old. Note that one of 

the mice at the time of injection was identified as having been mis-injected. Nevertheless, 
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data from this mouse has been included in these analyses for completeness. The data points 

from this particular mouse have been highlighted in the graphs of E) and F) by increased 

transparency.  B) Pooled liver, lung, or large intestines (LI) whole lysates were prepared and 

blotted for Hmox1, -galactosidase, and firefly luciferase. GAPDH was used as a loading 

control. C) Levels of hepatic Hmox1 and LacZ mRNA relative to 18s rRNA. Data are presented 

as arbitrary units and have been transformed so that the median level of Hmox1 mRNA in wt 

mice is set to a value of 1. The median level of LacZ mRNA in heterozygous reporter mice was 

set to 1.  D & E) In vivo bioluminescence images of mice before treatment with hemin and 

immediately prior to sacrifice D); quantification of data E). F) Firefly luciferase activity per mg 

protein was measured in lysates prepared from lung, liver, or LI. Data are presented in 

arbitrary units. In order to highlight the fold-difference in activity between heterozygous and 

homozygous reporter mice, data have been transformed so that the median activities in 

organs from heterozygous reporter mice are set to a value of 1. See Fig S10A for 

accompanying hCG data.  

Figure 2: In situ -galactosidase activity in spleen, liver, and kidney of control reporter mice. 

A) Representative spleen, liver, and kidney sections from male mice aged between 10 and 14 

weeks of age. Scale-bar = 100 m (spleen), 50 m (liver), 250 m (kidney). See Fig S2 for data 

on the gastro-intestinal tract; Figure S3 for trachea, lung and skin data; Figure S4 for thymus, 

pancreas, and heart data. B & C) Pooled organ lysates (n = 4) from untreated mice, wt (B) or 

reporter (C), were probed for Hmox1 and -galactosidase. GAPDH was used as loading 

controls. The -galactosidase blot was negative in wt mice and is not shown. 

Figure 3: Hemin induces Hmox1 reporters in liver and kidney cells. Triplicate reporter mice 

were treated with 30 mg/kg hemin and culled 18 h later. All mice were male and aged 
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between 19 and 20 weeks except for one hemin-treated mouse that was 14 weeks old. A) 

Mice were imaged at baseline and, again, just before necropsy. The accompanying graph 

quantifies the luminescent signal. B) Spleen, liver, kidney, and large intestine (LI) sections 

from control and hemin-treated mice were in situ -galactosidase stained. Representative 

images are shown. Scale-bar = 250 m except LI (100 m). C) Pooled organ lysates (n = 3) 

were probed for the indicated proteins. GAPDH was used as a loading control.  See Figure 

S10B for accompanying hCG data. 

Figure 4. Cadmium chloride causes sexually dimorphic induction of Hmox1 reporter signals 

in liver and kidney. Two male and two female mice were treated with 4 mg/kg cadmium 

chloride (Cd). A) Bioluminescent images were obtained both before and 12 h after exposure 

to Cd. Luminescence is quantified in the accompanying graph. B) Liver and kidney sections 

were stained for -galactosidase activity. Representative images are shown. Scale-bar = 250 

m (liver) and 500 m (kidney). 

Figure 5: LPS induces reporter activity in spleen and kidney, but not liver. Triplicate reporter 

mice were treated with vehicle (PBS) or 1 mg/kg LPS. Two male and one female mice were 

used per treatment group. All mice were aged 18 weeks. A) Mice were imaged for 

bioluminescence at baseline and just before necropsy (24 h post-treatment). B) All livers and 

kidneys were stained for -galactosidase activity. Representative images are shown. Scale-

bar = 250 m. The corresponding sections from tongue, oesophagus, LI, heart, and lung can 

be found in Figure S6. Liver lysates were prepared and blotted for Hmox1, -galactosidase 

and can be found in Figure S5. 

Figure 6: Paraquat induces reporter activity in alveolar epithelial cells. Triplicate male 

reporter mice aged between 12 and 14 weeks of age were treated with vehicle (PBS) or 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098467doi: bioRxiv preprint 

https://doi.org/10.1101/098467
http://creativecommons.org/licenses/by-nd/4.0/


37 
 

paraquat (30 mg/kg). A) Mice were imaged for bioluminescence at baseline and just before 

necropsy (24 h post-treatment). B) All lungs were stained for -galactosidase activity. 

Representative images are shown. Scale-bar = 50 m. 

Figure 7: Ionizing radiation (IR) does not alter bioluminescence in reporter mice. Triplicate 

reporter mice were sham-irradiated (0 Gy) or exposed to 4 Gy of IR. All mice were female and 

aged between 17 and 21 weeks of age. A) Mice were imaged for bioluminescence at baseline 

and just before necropsy (24 h post-irradiation). The accompanying graph quantifies the 

radiance from each mouse. B) Spleen, liver, and kidney sections were stained for -

galactosidase activity. Scale bar = 100 m (spleen and liver) and 250 m (kidney). See Figure 

S7 for accompanying in situ -galactosidase staining of LI, lung, and heart. 

Figure 8: APAP induces reporter activity in the liver that is mitigated by the antidote NAC. 

Triplicate reporter mice were treated with vehicle, 300 mg/kg APAP, 300 mg/kg NAC, or a 

combination of 300 mg/kg APAP + 300 mg/kg NAC, and necropsied 24 h later. Each treatment 

group contained two male and one female mouse and mice were between 9 and 10 weeks of 

age. A) ALT and AST activities in plasma obtained at necropsy. B) All livers were sectioned and 

stained for -galactosidase activity. Representative images are shown. Scale-bar = 250 m. In 

addition, mice were imaged for bioluminescence before treatment and just prior to necropsy 

– data can be found in Figure S9. 
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