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Abstract

Single cell RNA-seq (scRNA-seq) has revolutionised our understanding of transcriptome
variability, with profound implications both fundamental and translational. While scRNA-
seq provides a comprehensive measurement of stochasticity in transcription, the limitations
of the technology have prevented its application to dissect variability in RNA processing
events such as splicing. Here we present BRIE (Bayesian Regression for Isoform Estimation),
a Bayesian hierarchical model which resolves these problems by learning an informative prior
distribution from multiple single cells. BRIE combines the mixture modelling approach
for isoform quantification with a regression approach to learn sequence features which are
predictive of splicing events. We validate BRIE on several scRNA-seq data sets, showing
that BRIE yields reproducible estimates of exon inclusion ratios in single cells and provides
an effective tool for differential isoform quantification between scRNA-seq data sets. BRIE
therefore expands the scope of scRNA-seq experiments to probe the stochasticity of RNA-
processing.

1 Results and Discussion

Next generation sequencing (NGS) technologies have revolutionised our understanding of RNA
biology, illustrating both the diversity of the transcriptome and the richness and complexity
of the regulatory processes controlling transcription and RNA processing. Recent, efficient
RNA amplification techniques have been coupled with NGS to yield transcriptome sequenc-
ing protocols to measure the abundance of transcripts within single cells, known as single-cell
RNA-seq (scRNA-seq)[1]. scRNA-seq has provided unprecedented opportunities to investigate
the stochasticity of transcription and its importance in cellular diversity. Groundbreaking appli-
cations of scRNA-seq include the ability to discover novel cell types[2], to study transcriptome
stochasticity in response to external signals[3], to enhance cancer research by dissecting tu-
mour heterogeneity[4], to mention but a few. However, such advances have been limited to
explore variability between single cells at the gene level, and we know very little about the
global variability of RNA splicing between individual cells. Bulk RNA-seq splicing quantifi-
cation algorithms cannot be easily adapted to the single cell case due to the minute amounts
of starting material, low cDNA conversion efficiency and uneven transcript coverage resulting
in intrinsically low coverage and potentially high technical noise[5]. This considerably limits
the usefulness of scRNA-seq to investigate questions about RNA processing and splicing at the
single cell level.

Splicing analysis has been revolutionised by the advent of (bulk) RNA-seq techniques. Early
studies[6] quantified splicing by considering junction reads that are uniquely assigned to an inclu-
sion/ exclusion isoform, necessitating very high coverage depth to achieve confident predictions.
The situation can be considerably improved by using probabilistic methods based on mixture
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modelling, an idea that is at the core of standard tools such as Cufflinks[7] and MISO[8]. Nev-
ertheless, low coverage represents a challenge even for probabilistic methods. Recent work has
shown that improved predictions at lower coverage can be achieved by incorporating informa-
tive prior distributions within probabilistic splicing quantification algorithms, leveraging either
aspects of the experimental design, such as time series[9], or auxiliary data sets such as measure-
ments of PolII localisation[10]. Such auxiliary data are not normally available for scRNA-seq
data. Nevertheless, recent studies have also demonstrated that splicing (in bulk cells) can be
accurately predicted from sequence-derived features[11]. This suggests that overall patterns of
read distribution may be associated with specific sequence words, so that one may be able to
construct informative prior distributions that may be learned directly from data.

Here we introduce the Bayesian Regression for Isoform Estimation (BRIE) method, a sta-
tistical model that achieves extremely high sensitivity at low coverage by the use of informative
priors learned directly from data. Figure 1a presents a schematic illustration of BRIE (see
Methods for precise definitions and details of the estimation procedure). The bottom part of
the figure represents the standard mixture model approach to isoform estimation introduced
in MISO[8] and Cufflinks[7]. This module takes as input the scRNA-seq data (aligned reads)
and forms the likelihood of our Bayesian model. The standard mixture model likelihood is then
coupled with an informative prior in the form of a regression model (top half of Figure 1a),
where sequence derived features are used to explain a priori some of the variability in inclusion
ratios. Crucially, the regression parameters can be learned across multiple single cells, thus
regularising the task and enabling robust predictions in the face of very low coverage. In the
Methods and Supplementary Material we give details of the features used and show that indeed
they can be used to provide a highly accurate supervised learning predictor of splicing on bulk
RNA-seq data sets (Suppl. Fig S1).
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Figure 1: BRIE improves splicing estimates by using sequence features. (A) A cartoon of the BRIE method for
isoform estimation, which combines a likelihood computed from RNA-seq data (bottom part) and an informative prior
distribution learned from 735 sequence-derived features (top). (B) Scatter plot of exon inclusion ratio estimated by
BRIE between bulk RNA-seq and single-cell RNA-seq data from HCT116 cells. (C) Comparing BRIE with other 4
methods on correlation between bulk and single-cell RNA-seq data. (D) Scatter plot of exon inclusion ratio estimated
by BRIE between two different single cells. (E) Comparing BRIE with other 4 methods on correlation between pairs
of single cells.

To assess the suitability of BRIE as a tool for scRNA-seq splicing quantification, we com-
pared its operational characteristics with four methods for splicing quantification from bulk
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RNA-seq: MISO[8] and Cufflinks[7], two of the first and still very widely used probabilis-
tic methods, DICE-seq[9], a modification of MISO using informative priors (for multiple time
points), and Kallisto[12], which was recently proposed as one of the most efficient and robust
quantification tools. Simulation studies (see Methods and Supplementary Fig S2) show that
BRIE achieves significantly higher accuracy in splicing quantification at extremely low coverage
values. To assess its performace on real scRNA-seq data, we use 20 scRNA-seq libraries from
individual HCT116 human cells from the benchmark scRNA-seq study of Wu et al[13] (see
Methods for details). Importantly, a bulk RNA-seq data set in the same conditions was also
obtained from one million cells. Figure 1b-e show the results: BRIE clearly outperforms all
other methods by a large margin, both in terms of correlation between estimates from different
single cells (Fig 1e), and in terms of correlations between estimates from individual single-cells
and bulk (Fig 1c). Example scatterplots for both comparisons are given in Fig 1d and 1b,
clearly showing very consistent predictions. The high correlation between bulk and scRNA-seq
predictions is particularly remarkable, as the analysis of the two data sets is not done with a
shared prior. Similarly high correlations were found between splicing estimates obtained by
BRIE in single cells and estimates from bulk RNA-seq obtained by other methods (see Suppl.
Fig S3). These statistical advantages are reflected in a more effective and confident quantifica-
tion: considering genes with quantified uncertainty smaller than 0.3 (a threshold adopted e.g.
in[14] to select for downstream analysis), Figure S4 shows that BRIE retained 10.9% out of
11,478 genes on average from each single cell (41.1% across all cells), as compared with 3.1%
and 5.6% for MISO and DICE-seq, respectively.

BRIE can also be used for differential splicing detection across different data sets. To do
so, we compute the evidence ratio (Bayes factor, BF) between a model where the two data sets
are treated as replicates (null hypothesis) and an alternative model where the two data sets
are treated as separate. We use the Savage-Dickey density-ratio approach and relax it in order
to obtain more robust estimates (see Methods). To estimate a background level of differential
splicing between identical cells, we considered again the 20 single cell HCT116 libraries from
Wu et al[13], and compared all possible pairs of cells. Figure 2a shows the fraction of genes
called as differentially spliced at different BF thresholds in this control experiment; as we can
see, this number is always very small, and around 1% at the normally recommended threshold
of BF=10. This level of background calling could be partly attributed to intrinsic stochasticity
or to residual physiological variability that was not controlled for in the experiment, such as
cell cycle phase. As an additional comparison, we considered two bulk RNA-seq methods for
differential splicing, MISO and the recently proposed rMATS[15]. Both methods could only call
a negligible number of events, far fewer than the expected number of false positives, confirming
that bulk methods are not suitable for scRNA-seq splicing analysis.

We then considered a mouse early development scRNA-seq data set[16], and compared the
single cell transcriptomic profiles from cells from mouse embryos at 6.5 and 7.75 days. We
compared both the profiles of individual cells at the same and different time points; the results
are summarised in Figure 2b. Comparing individual cells at 6.5 days yielded approximately 1%
of events called as significantly differential (BF≥ 10) at 6.5 days. Comparing this result with
our investigation of HCT116 cells suggests that murine cells at 6.5 days are still similar to a
homogeneous population, from the splicing point of view. The percentage nearly doubled at
7.75 days, suggesting that differential splicing becomes more widespread at this later stage of
differentiation. A similar fraction of exon skipping events were differentially called between cells
at 7.75 days and cells at 6.5 days. To define a group of differentiation-associated skipping events,
we considered events that we called as differential in at least 10% of 7.75 vs 6.5 comparisons.
The resulting 159 events were highly enriched for organelle and intracellular part GO terms
(p < 0.01) (see Supplementary Table S1 and S2). Figure 2c shows the example of DNMT3B,
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Figure 2: Detection of differential splicing between cells. (A) Percentage of differential splicing events between
human HCT116 cells, detected by MISO, rMATS and BRIE with different thresholds. MISO and BRIE use Bayes
factor (bf) and rMATS uses q value, i.e., false discovery rate. (B) Percentage of differential splicing events between
mouse early embryonic cells at 6.5 day or 7.75 day. The threshold is bf > 10 for MISO and BRIE, and q < 0.05 for
rMATS. (C) An example exon-skipping event in DNMT3B in 3 mouse cells at 6.5s days and 3 cells at 7.75days. The
left panel is sashimi plot of the reads density and the number of junction reads. The right panel is the prior distribution
in blue curve and a histogram of the posterior distribution in black, both learned by BRIE. For the histogram, the red
line is the mean and the dash lines are the 95% confidence interval.
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a regulator of DNA methylation maintenance, which is known to undergo functionally relevant
alternative splicing [17]. DNMT3B exhibited differential splicing between 7.75 days and 6.5 days
in 153 out of 400 comparisons between individual single cells, clearly highlighting the strong
differential inclusion effect. Four more example events, all of which have shown differential
splicing in more than 100 pairs of comparisons, are presented in Supplementary Figure S5.

Our results demonstrate that BRIE can provide a reliable and reproducible method to quan-
tify splicing levels within single cells. Alternative splicing is a major mechanism of regulation of
the transcriptome, and splicing analyses within bulk studies have revealed important associa-
tions of splicing with disease. Therefore, the ability to quantify alternative splicing in individual
cells would considerably expand the relevance of scRNA-seq technology to investigate variations
in RNA processing, and its relevance to diseases. We believe the usage of a data-driven infor-
mative prior is essential for this task: directly using bulk RNA-seq methods on scRNA-seq
is not a viable route due to the limitations of the technology, an observation that was made
earlier[18] that our results confirm. Recent work[19] has addressed the issue of detection of
alternative splicing across a population of single cells, but as far as we are aware BRIE is the
first method to be able to quantify splicing in individual single cells, and to detect differential
splicing between individual cells from scRNA-seq data. BRIE provides a flexible framework for
modelling and, while sequence features are particularly appealing due to their ease of usage and
availability, additional side information, such as DNA methylation and chromatin accessibility,
could easily be incorporated. BRIE cannot be deployed on all scRNA-seq protocols, as it as-
sumes that sequenced reads can be distributed along whole transcripts. Naturally, protocols
such as CEL-seq or STRT-seq that bias reads towards the ends of the transcript cannot provide
information about exon skipping events that may be very far from the ends of a transcript. We
believe that the availability of splicing quantification approaches such as BRIE can therefore be
an important consideration in experimental design, particularly at a time when single-cell omic
technologies are about to start being more routinely employed.

2 Methods

2.1 Exon-skipping events annotation

Gene annotations were downloaded from GENCODE human release H22 and mouse release
M6. 24,957 and 9,343 exon-skipping events were extracted from protein coding genes on human
and mouse, respectively. In order to ensure high quality of the splicing events, we applied 6
constraints following two recent studies[20, 11] for filtering:

1) located on chromosome 1-22 (1-19 for mouse) and X
2) not overlapped by any other AS-exon
3) surrounding introns are no shorter than 100bp
4) length of alternative exon regions between 50 and 450bp
5) with a minimum distance of 500bp from TSS or TTS
6) surrounded by AG-GT, i.e., AG-AS.exon-GT

Consequently, 11,478 and 4,549 exon-skipping events from human and mouse respectively were
finally used for this study.

2.2 Feature extraction for Bayesian regression

Following Xiong et al [11], we extract predictive sequence features from the following 7 genomic
regions for each exon-skipping event (see cartoon in Figure 1a): C1 (constitutive exon 1), I1-5ss
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(300nt downstream from the 5’ splice site of intron 1), I1-3ss (300nt upstream from the 3’ splice
site of intron1), A (alternative exon), I2-5ss (300nt downstream from the 5’ splice site of intron
2), I2-3ss (300nt upstream from the 3’ splice site of intron 2), C2 (constitutive exon 2).

From these 7 regions, four types of splicing regulatory features are defined. First, 8 length
related features are included, i.e., log length of C1, A, C2, I1, I2, and the ratio of the log length
of A/I1, A/I2 and I1/I2. Second, the motif strengths of the 4 splice sites, i.e., I1-5’ss, I1-3’ss,
I2-5’ss and I2-3’ss, were calculated from mapping each sequences to its averaged position weight
matrix. Here, we considered -4nt upstream to +6nt downstream around 5’ss (11nt in total),
and from -16nt to 4nt for 3’ss. Third, we also include evolutionary conservation scores for each
of the 7 genomic regions, which were calculated by phastCons[21], and are available at the
UCSC genome browser. We used the phastCons files in bigWig format with version hg38 for
human and mm10 for mouse, where 99 and 59 vertebrate genomes were mapped to the human
and mouse genome, respectively. Then the mean conservation scores for the above 7 regions
were extracted by using bigWigSummary command-line utility. Lastly, 716 short sequences were
extracted from the 7 regions, including 1-2mers for I1-5ss and I2-3ss (20 sequences each), and
1-3mers for C1, I1-3ss, I2-5ss and C2 (84 sequences each), and 1-4mers for A (340 sequences). In
total, 735 splicing regulatory features were used to predict the exon inclusion ratio in Bayesian
regression.

2.3 RNA-seq data and preprocessing

Bulk RNA-seq libraries for K562 cell line were produced by the ENCODE project[22], down-
loaded from Gene Expression Omnibus (accession number GSE26284); these were used to val-
idate the prediction performance of the splicing regulatory features on bulk RNA-seq (Supple-
mentary Figure S1).

Two single cell RNA-seq data sets were used to validate BRIE model. The first data set is
from a benchmark study[13], consisting of 20 single cell RNA-seq libraries from the HCT116 cell
line (GEO: GSE51254). These single-cell RNA-seq libraries were prepared with SMART-seq
protocol, and have paired-end reads with read length of 125bp. By using a barcode, 48 cells
were sequenced per lane, resulting in an average 2.2 million reads per cell. From the same study,
two bulk RNA-seq libraries, each with 31.2M reads generated from 1 million HCT116 cells, were
also used for comparison.

In order to study differential splicing across different cell types, scRNA-seq data from mouse
embryo at embryonic day 6.5 and day 7.75[16] were used. From each of the two groups, 20
individual cells were used, which can be accessed at Array Express (E-MTAB-4079).

All above RNA-seq reads were aligned to the relevant genome reference by HISAT 0.1.6-beta
with known splicing junctions.

2.4 Assessing BRIE via a simulation study

In order to assess the performance of BRIE, synthetic reads were generated for 11,478 human
exon-skipping events by using Spanki [23]. We assume that the exon inclusion ratio follows a
logitNormal distribution with mean µ = 0.5 and σ = 3, which is similar as the distribution
of exon inclusion in ENCODE K562 cell line. Then we set all splicing events at the same
sequencing coverage, by fixing its RPK, i.e., reads per killo-base in each experiment. Finally,
five different coverage levels are used, including RPK = 25 (very low, but comparable to a
highly covered gene in a scRNA-seq experiment), RPK = 50, RPK = 100, RPK = 200 and
RPK = 400.

Based on the ground truth, we add some noise to generate an informative prior, which has a
Pearson’s correlation coefficient of 0.8 with the truth. This correlation is similar as that achieved
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by supervised learning in human and mouse data sets. In addition, random features are also
used to give a Null prior, which is named as BRIE.Null. Besides, BRIE and BRIE.Null, we also
compare DICE-seq, MISO and Kallisto, in estimating the inclusion ratio from the simulated
reads. Supplementary Fig. S2 clearly shows that the use of an informative prior can bring very
substantial performance improvements at low coverage, with BRIE essentially maintaining its
accuracy levels at all coverage values.

2.5 BRIE model for isoform estimate

Here, we define formally the BRIE statistical model. We consider exon inclusion / exclusion as
two different isoforms and adopt the mixture modelling framework for isoform quantification,
introduced in MISO[8]. The likelihood of isoform proportions Ψi for observing Ni reads Ri,1:Ni

in sample (single cell) i, can be defined as follows

P (Ri,1:Ni |Ψi) =

Ni∏
n=1

2∑
Iin=1

P (Rin|Iin)P (Iin|Ψi) (1)

where the latent variable Iin denotes read identity, i.e., the isoform read n in cell i came from.
For bulk RNA-seq methods like MISO[8] or Cufflinks[7], the conditional distribution of the read
identity Iin|Ψi is assumed to be a Multinomial distribution, and the prior distribution over Ψi

is taken to be an uninformative uniform distribution (suitably adjusted to reflect the poten-
tially different isoform lengths). The pre-computed term P (Rin|Iin) encodes the probability of
observing a certain read coming from a specific isoform Iin.

BRIE enhances the mixture model approach by combining it with a Bayesian regression
module to automatically learn an informative prior distribution by considering sequence fea-
tures. First, we use a logit transformation of Ψi, i..e, yi = logit(Ψi). We then model the
transformed exon inclusion ratio yi as a linear function of a set of m covariates X ∈ Rm (here
the covariates are the sequence features described previously): yi = W>X + εi, where W is
a vector of weights shared by all samples and εi follows zero-mean Gaussian distribution. All
exon skipping events are independently modelled with shared W parameters.

Here, we use a conjugate Gaussian prior for the weights, i.e., W ∼ N (0,Λ−1), with a common
choice of Λ = λI, for a positive scalar parameter λ. Thus, the graphical representation of the
full model is shown in Supplementary Figure S6, and the full posterior is as follows (omitting
the cell index for simplicity),

P (W,σ,Ψ|X,R) ∝ P (W |λ)
K∏
k=1

{P (Ψk|Xk,W, σ)

Nk∏
n=1

2∑
Ikn=1

P (Rk
n|Ikn)P (Ikn|Ψk)} (2)

2.6 Inference in the BRIE model

As shown above, BRIE model involves the whole set of exon-skipping events, thus there are
thousands of parameters to infer jointly, which can lead to very high computational costs which
are not easily distributed. Therefore, we introduce an approximate method to alternately learn
Ψ and W . Also, to alleviate computational burdens, there is an option to merge reads from
all cells to learn parameters. For simplicity, we set λ empirically, using the value λ = 0.1
which gave the best predictive performance on tests on ENCODE data. Then, we collapse
W and σ by taking their expected value in Bayesian regression given a set of Ψ, i.e., W =
(X>X + σ2Λ)−1X>Y and σ = std(Y−W>X). At a single exon-skipping event level, we used
an adaptive Metropolis-Hastings sampler to sample Ψ, where a univariate Gaussian distribution

7

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098517doi: bioRxiv preprint 

https://doi.org/10.1101/098517
http://creativecommons.org/licenses/by/4.0/


is used for proposal with adaptive variance, i.e., η = 2.38∗std(y(1:m)). At this step, we could run
short parallel MCMC chains on multiple events to alleviate computational costs, for example
h = 50 steps if the total iteration is n∗h = 1000. Pseudocode to sample from the (approximate)
posterior distribution of Ψ is given in Algorithm 1. Also, this model supports fixed W and σ,
which can be learned from other data sets, e.g. bulk RNA-seq; then the line 3 and 5 will be
turned off in Algorithm 1. The convergence of the sampling is diagnosed by using the Geweke
diagnostic Z score; in our experiments 1000 burn-in steps appeared to be sufficient in all cases.

Algorithm 1: Approximation of Ψ,W, σ

Data: X,R,Λ; optional: W and σ
Result: Ψ,W, σ

1 initialization Y(0) = 0;σ = 1.0; η = 1.0
2 for i← 0 to n do

3 W (i) = (X>X + σ2Λ)−1X>Y(i∗h)

4 Ȳ = W (i)>X

5 σ = std(Y(i∗h) − Ȳ)
6 for k ← 1 to K do
7 if i ∗ h > 10 then

8 η = 2.38 ∗ std(y
(0:i∗h)
k )

9 for j ← i ∗ h to (i+ 1) ∗ h do

10 Sample: µ ∼ U(0, 1); y∗k ∼ Qy(y∗k|y
(j)
k , η)

11 Calculate: P (y∗k|R) = N (y∗k|ȳk, σ)P (R|y∗k)

12 if µ < min
{ P (y∗k|R)×Qy(y

(j)
k |y

∗
k, η)

P (y
(j)
k |R)×Qy(y∗k|y

(j)
k , η)

, 1
}

then

13 y
(j+1)
k ← y∗k; Ψ

(j+1)
k ← logistic(y∗k)

14 else

15 y
(j+1)
k ← y

(j)
k ; Ψ

(j+1)
k ← logistic(y

(j)
k )

16 return W (0:n),Ψ(0:n∗h)

2.7 Detection of differential splicing using Bayes factors

The Bayes factor[24] is a posterior odds in favor of a hypothesis relative to another, and is also
able to detect whether splicing in two cells or conditions are different or not.

To detect differential splicing between two cells (or conditions), A and B, δ = ΨA−ΨB, we
introduce a null hypothesis (H0) as δ ≈ 0, and the alternative hypothesis (H1) as δ 6≈ 0. Here,
D is the data used to sample the posterior of Ψ in two cells. Then, the Bayes factor in favor of
the alternative hypothesis on observing data D is defined as follows,

BF =
P (H1|D)

P (H0|D)
=
P (D|H1)P (H1)

P (D|H0)P (H0)
(3)

As usual, we assume that both hypotheses have the same prior, i.e., P (H1) = P (H0), and
we can clearly see that P (D|H0) = P (D|δ ≈ 0, H1). Therefore, by taking the Savage-Dickey
density ratio [25], we could simplify the calculation of BF as follows,

BF =
P (D|H1)

P (D|δ ≈ 0, H1)
=

P (δ ≈ 0|H1)

P (δ ≈ 0|D,H1)
=

P (−ε < δ < ε|H1)

P (−ε < δ < ε|D,H1)
(4)
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where ε can be set as 0.05.
As BRIE samples ΨA and ΨB following their posteriors, the distribution of P (δ|D,H1) is

readily to approximate by empirically re-sampling ΨA−ΨB. With a set of re-sampled δ1:M , we
take the proportion of |δi| < ε as the posterior probability P (−ε < δ < ε|D,H1). Similarly, we
could sample a set of Ψ̂A and Ψ̂B following their prior distributions, and use the same procedure
to approximate the prior probability P (−ε < δ < ε|H1).

2.8 Software

BRIE model has been implemented as a standard Python package, which is freely available in
the following repository: http://github.com/huangyh09/brie.
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