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	27	
Abstract	28	
Multiple	genetic	and	environmental	factors	contribute	to	metabolic	disease,	with	effects	that	range	29	
across	molecular,	organ,	and	whole-organism	levels.	Dissecting	this	multi-scale	complexity	requires	30	
systems	genetics	approaches	to	infer	polygenic	networks	that	influence	gene	expression,	serum	31	
biomarkers,	and	physiological	measures.	In	recent	years,	multi-parent	model	organism	crosses,	such	32	
as	the	Diversity	Outbred	(DO)	mice,	have	emerged	as	a	powerful	platform	for	such	systems	33	
approaches.	The	DO	mice	harbor	extensive	phenotypic	and	genetic	diversity,	allowing	for	detection	34	
of	multiple	quantitative	trait	loci	(QTL)	and	their	interactions	at	high	genomic	resolution.	In	this	35	
study,	we	used	474	DO	mice	to	model	genetic	interactions	influencing	hepatic	transcriptome	36	
expression	and	physiological	traits	related	to	metabolic	disease.	Body	composition,	serum	37	
biomarker,	and	liver	transcriptome	data	from	mice	fed	either	a	high-fat	or	standard	chow	diet	were	38	
combined	and	simultaneously	modeled.	Modules	of	co-expressed	transcripts	were	identified	with	39	
weighted	gene	co-expression	network	analysis,	with	summary	module	phenotypes	representing	40	
coordinated	transcriptional	programs	linked	to	specific	biological	functions.	We	then	used	the	41	
Combined	Analysis	of	Pleiotropy	and	Epistasis	(CAPE)	to	simultaneously	detect	directed	epistatic	42	
interactions	between	haplotype-specific	QTL	for	transcript	modules	and	physiological	phenotypes.	43	
By	combining	information	across	multiple	phenotypic	levels,	we	identified	networks	of	QTL	with	44	
numerous	interactions	that	reveal	how	genetic	architecture	affects	metabolic	traits	at	multiple	scales.	45	
Specifically,	these	networks	model	how	gene	regulatory	programs	from	different	inbred	founder	46	
strains	influence	more	complex	physiological	traits.	By	connecting	three	levels	of	the	organismal	47	
hierarchy	–	genetic	variation,	transcript	abundance,	and	physiology	–	we	revealed	a	detailed	picture	48	
of	genetic	interactions	influencing	complex	traits	through	differential	gene	expression.	49	

Introduction	50	

Traits	relevant	to	metabolic	disease,	such	as	obesity,	and	blood	lipid	profiles,	have	complex	genetic	51	
architecture	(Schork	1997).	Many	genetic	factors	contribute	to	these	traits	and	potentially	interact	to	52	
influence	multiple	traits	simultaneously.	Identifying	these	genes	and	their	interactions	will	play	a	53	
critical	role	in	predicting	individual	susceptibility	to	metabolic	disease	and	prioritizing	drug	targets	54	
for	targeted	treatments	(Moore	and	Williams	2009).	However,	despite	availability	of	large-scale	55	
genotype	and	phenotype	data	in	multiple	human	populations,	little	is	known	about	the	genetic	56	
architecture	of	metabolic	disease-related	traits.	57	
	58	
There	are	a	number	of	challenges	associated	with	mapping	the	genetic	architecture	of	complex	traits	59	
in	human	populations.	In	contrast	to	Mendelian	traits,	in	which	a	single	genetic	variant	is	responsible	60	
for	the	vast	majority	of	phenotypic	variation,	complex	traits	are	influenced	by	many	variants	with	61	
small	effects,	which	are	difficult	to	detect.	Large	variation	in	environmental	exposures	between	62	
individuals	can	easily	overwhelm	small	genetic	effects,	compounding	the	problem.	Human	63	
populations,	moreover,	have	intricate	population	structure	(Rosenberg	et	al.	2002)	which	can	cause	64	
spurious	associations	in	genetic	mapping	experiments	(Pritchard	et	al.	2000).	Detecting	genetic	65	
interactions,	or	epistasis,	in	humans	raises	additional	challenges.	Epistatic	interactions	tend	to	be	66	
weaker	than	main	effects	and	can	generate	additive	genetic	variance	(Huang	and	Mackay	2016),	and	67	
variation	in	allele	frequencies	between	populations	makes	replication	of	true	interactions	between	68	
populations	difficult	(Greene	et	al.	2009).	69	
	70	
Highly	diverse	multi-parent	populations,	such	as	the	Diversity	Outbred	(DO)	mice	(Svenson	et	al.	71	
2012)	[@Gatti]	offer	a	powerful	alternative	to	human	populations	for	mapping	the	genetic	72	
architecture	of	complex	traits.	As	an	outbred	population,	the	DO	mice	are	potentially	a	better	model	73	
of	human	populations	than	inbred	mice.	Because	the	DO	founders	included	three	strains	recently	74	
derived	from	wild	mice,	the	population	contains	extensive	allelic	variation	that	is	evenly	distributed	75	
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across	the	genome	(Philip	et	al.	2011;	Svenson	et	al.	2012;	Logan	et	al.	2013).	This	density	of	76	
polymorphisms	allows	much	more	extensive	mapping	than	can	be	done	in	typical	crosses	between	77	
inbred	strains,	which	can	share	large	regions	of	identical	sequence	(Yang	et	al.	2011).	Furthermore,	78	
the	breeding	paradigm	in	the	DO	is	designed	to	maintain	allelic	diversity,	reduce	linkage	79	
disequilibrium,	and	generate	minimal	population	structure	(Svenson	et	al.	2012;	Chesler	et	al.	2016).	80	
Thus	variation	in	allele	frequency	does	not	confound	detection	of	variant	effects	or	epistasis	as	it	81	
does	in	human	populations,	and	effects	can	be	mapped	to	relatively	narrow	genomic	loci,	which	will	82	
enhance	the	discovery	of	genetic	influences	on	phenotype.	83	
	84	
A	large	number	of	traits,	including	many	clinically	relevant	traits,	have	been	measured	in	DO	mice	85	
(Svenson	et	al.	2012;	Bogue	et	al.	2015)	[and	@Gatti].	While	heritable,	few	of	these	traits	have	a	86	
single	QTL	of	exceptional	effect	[@Gatti].	The	DO	mice	thus	provide	an	ideal	platform	for	87	
investigating	the	genetic	architecture	of	complex	traits.	Their	phenotypic	diversity	combined	with	88	
extensive	genetic	variation	that	is	evenly	distributed	and	highly	recombined	facilitates	detection	of	89	
both	genetic	main	effects	and	interactions	influencing	many	clinically	relevant	traits.	90	
	91	
In	this	study	we	use	combined	analysis	of	pleiotropy	and	epistasis	(CAPE)	{tyler2013cape}	to	92	
investigate	the	genetic	architecture	of	multiple	complex	traits	related	to	metabolic	disease	in	474	93	
male	and	female	DO	mice	fed	either	a	high-fat	or	standard	chow	diet.	Specifically,	we	analyzed	94	
epistasis	influencing	fat	mass,	lean	mass,	and	circulating	levels	of	cholesterol,	triglycerides,	and	95	
leptin,	as	well	as	three	gene	expression	phenotypes.	CAPE	is	an	approach	that	combines	information	96	
across	multiple	phenotypes	to	infer	directed	genetic	interactions.	It	infers	a	single	model	for	multiple	97	
quantitative	traits,	and	leverages	statistical	power	from	multiple	phenotypes	to	enhance	the	98	
detection	of	QTL	and	their	interactions.	With	this	approach,	we	recently	analyzed	the	genetic	99	
architecture	of	body	composition	and	bone	density	in	a	well-powered	F2	mouse	intercross	(Tyler	et	100	
al.	2016)	that	revealed	a	large	network	of	weak	interactions	that	generally	reduced	phenotypic	101	
variation	across	the	population.	Here	we	apply	the	principles	of	this	analysis	to	investigate	the	102	
contributions	of	within-strain	and	between-strain	epistatic	interactions	in	the	DO,	augmented	by	103	
interactive	roles	of	sex	and	high-fat	diet	in	the	network.	104	

Results	105	

Transcripts	with	trans	genetic	effects	cluster	into	functionally	enriched	modules 106	
Because	we	were	interested	in	genetic	interactions	that	influence	expression	traits,	which	must	107	
include	at	least	one	trans	effect,	we	first	filtered	the	liver	transcriptome	to	3635	transcripts	that	were	108	
influenced	by		109	
trans	genetic	loci	(Methods).	We	performed	weighted	gene	correlation	network		110	
analysis	(WGCNA)	(Langfelder	and	Horvath	2008)	on	these	transcripts	and	obtained	11	distinct	111	
modules.	Using	the	Database	for	Annotation,	Visualization	and	Integrated	Discovery	(DAVID)	(Huang	112	
et	al.	2009a;	b)	we	found	that	three	of	these	modules	had	significantly	enriched	functional	113	
annotations	(Benjamini-adjusted	p	≤	0.05):	(1)	cellular	metabolic	process	(Metabolism	Module)(p	114	
=6.3	x	10-17),	(2)	oxidation	reduction	process	(Redox	Module)	(p	=	7.7x10-7),	and	(3)	immune	115	
response	(Immune	Module)(p	=	5.2x10-15)	(Table	1).	We	used	the	module	eigengenes	from	these	116	
modules	as	phenotypes	for	CAPE	analysis	(Methods)	(Ghazalpour	et	al.	2006;	Philip	et	al.	2014).	We	117	
refer	to	them	hereafter	by	their	functional	annotations.	118	
	119	
Pleiotropic	QTL	influence	physiological	and	expression	traits 120	
We	combined	the	module	eigengenes	described	above	with	five	physiological	traits:	lean	tissue	mass,	121	
fat	tissue	mass,	as	well	as	cholesterol,	leptin,	and	triglyceride	levels.	Fat	mass	was	log-transformed	to	122	
reproduce	a	more	linear	relationship	with	lean	mass	(Forbes	1987).	These	traits	were	modestly	123	
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correlated	(Figure	1),	implying	that	some	genetic	factors	may	be	shared	among	the	traits,	while	124	
others	may	be	distinct.	To	determine	whether	the	traits	here	were	influenced	both	by	pleiotropic	loci	125	
and	loci	specific	to	individual	traits,	we	performed	linear	regression	to	associate	the	haplotype	at	126	
each	locus	with	each	of	our	eight	phenotypes	(Methods).	Across	all	traits,	only	one	QTL	for	127	
cholesterol	on	distal	Chr	1	reached	genome-wide	significance	(permutation-based	p	<	0.05).	128	
However,	there	were	multiple	loci	where	individual	haplotypes	had	substantial	effects	that	129	
potentially	contribute	to	polygenic	etiology	(Figure	2).	In	some	cases,	a	single	haplotype	had	an	130	
apparent	effect	on	a	single	phenotype.	For	example,	a	positive	effect	of	the	NZO	haplotype	on	131	
cholesterol	can	be	seen	on	distal	Chr	11	(Figure	2).	Likewise,	the	A/J	haplotype	at	a	nearby	locus	had	132	
a	positive	effect	on	leptin	levels	(Figure	2).	Other	loci	were	pleiotropic.	The	CAST	haplotype	at	a	third	133	
locus	on	chromosome	11	had	negative	effects	on	fat	mass,	cholesterol,	leptin,	triglycerides,	and	the	134	
Immune	Module	(Figure	2).	This	effect	was	shared	to	a	lesser	extent	by	the	PWK	haplotype	in	fat	135	
mass,	leptin,	and	triglyceride	levels.	This	complex	pattern	of	effects	suggests	a	complex	underlying	136	
genetic	architecture.	The	haplotype	effects	that	are	common	across	multiple	phenotypes	may	137	
represent	a	common	genetic	factor	influencing	multiple	traits.	We	combined	these	common	signals	to	138	
gain	information	about	individual	loci.	Haplotypes	that	influence	a	single	phenotype,	for	example	the	139	
NZO	haplotype	effect	on	cholesterol,	provide	non-redundant	information	that	can	be	used	to	identify	140	
genetic	factors	with	specific	phenotypic	effects.	141	
	142	
Singular	value	decomposition	concentrates	functional	genetic	effects 143	
We	decomposed	the	trait	matrix	using	singular	value	decomposition	to	obtain	eigentraits	(ETs)	144	
(Figure	3A).	In	our	analysis	we	used	the	first	three	ETs,	which	captured	88.3%	of	the	overall	145	
variance.	ETs	recombine	covarying	elements	of	the	measured	traits,	and	potentially	concentrate	146	
functionally	related	effects.	For	example,	leptin,	cholesterol,	and	fat	mass,	along	with	the	Redox	and	147	
Immune	Modules,	were	averaged	in	ET2.	This	ET	appears	to	capture	the	CAST/PWK	effect	on	Chr	11	148	
noted	early	to	influence	multiple	traits.	(Figure	3B).	149	
	150	
An	epistatic	network	involving	all	haplotypes	influences	physiological	and	expression	traits 151	
Because	there	were	more	markers	genotyped	than	could	be	tested	exhaustively	in	pairs,	we	used	a	152	
subset	of	haplotypes	with	the	greatest	effect-sizes	in	all	three	ETs	(see	Methods).	The	haplotype	with	153	
greatest	standardized	effect	from	each	potential	QTL	peak	was	retained	and	the	peak	was	further	154	
sampled	to	keep	10%	of	markers	within	it.	This	process	yielded	a	total	of	515	markers	representing	155	
all	seven	haplotypes	on	17	chromosomes	(The	C57BL/6J	haplotype	was	excluded	because	we	used	it	156	
as	the	reference	strain).	Because	marker	selection	was	based	on	effect	size,	the	haplotypes	were	157	
unevenly	represented	(Figure	5A).	A/J	was	the	most	highly	represented	haplotype	with	100	markers	158	
on	eight	chromosomes,	and	NOD	was	the	least	represented	with	32.	WSB	alleles	were	the	most	159	
widely	distributed,	being	selected	from	12	different	chromosomes.	We	ran	CAPE	on	these	markers	160	
and	the	first	three	ETs	to	find	an	epistatic	network	between	loci	(Methods).		161	
	162	
The	resulting	network	consisted	of	89	interactions	among	49	loci	and	two	covariates	(Figure	4).	All	163	
haplotypes	participated	in	at	least	one	interaction	(Figure	5A).	WSB	haplotypes	were	involved	in	the	164	
largest	number	of	interactions	(32),	while	NZO	participated	in	the	fewest	(8).	The	number	of	total	165	
interactions	each	haplotype	participated	in	did	not	correlate	with	its	representation	in	the	515	166	
markers	selected	for	the	CAPE	pipeline	(Figure	5A)	(p	=	0.1).	The	final	epistatic	network	was	167	
directed,	meaning	that	interactions	model	a	source	marker	that	acts	on	a	target	marker,	and	we	can	168	
thus	measure	the	number	of	times	each	haplotype	was	the	source	of	an	interaction	or	the	target	of	an	169	
interaction.	The	majority	of	haplotypes	were	roughly	evenly	represented	as	both	sources	and	targets.	170	
However,	the	129	haplotype	was	a	target	of	interactions	about	four	times	more	frequently	than	it	171	
was	a	source,	while	the	NZO	haplotype	was	a	source	about	twice	as	many	times	as	it	was	a	target	172	
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(Figure	5A).	The	covariates,	sex	and	diet	were	both	much	more	frequently	sources	of	interactions	173	
than	they	were	targets	(Figure	5A).		174	
	175	
The	interactions	between	haplotypes	were	most	often	between	strains	rather	than	within-strain	176	
(Figure	5B).	Inter-strain	interactions	were	concentrated	among	the	129,	WSB,	NZO	and	A/J	177	
haplotypes,	which	are	all	in	the	Mus	musculus	domesticus	subspecies.	CAST,	M.	musculus	castaneus,	178	
interacted	with	each	of	the	other	strains	relatively	evenly,	while	PWK,	M.	musculus	musculus,	was	the	179	
most	isolated	strain,	and	did	not	interact	at	all	with	the	NZO	or	NOD	haplotypes.	The	only	haplotype	180	
with	multiple	intra-strain	interactions	was	WSB.	This	may	be	due	to	the	wide	sampling	of	the	181	
selected	WSB	alleles	from	12	different	chromosomes	resulting	in	more	unique	loci	with	potential	for	182	
interacting	with	each	other.		183	
	184	
Sex	interacted	with	all	founder	haplotypes 185	
Sex	significantly	affected	all	physiological	traits	except	leptin	levels.	This	effect	was	positive	for	all	186	
phenotypes	meaning	that	males	had	higher	log	fat	mass	(males	1.9	g,	females:	1.7	g,	p	=	5.7x10-2),	187	
lean	mass	(males:	25.1	g,	females:	18.3	g,	p	<	2	x	10-16),	cholesterol	(males	110.4	mg/dl,	females:	93.8	188	
mg/dl,	p	=	4.3	x	10-10),	and	triglycerides	(males:	156.0	mg/dl,	females:	115.0	mg/dl,	p	=	7.6x10-14).	All	189	
expression	modules	were	significantly	lower	in	males	(all	p	<	2	x	10-16).	Sex	also	participated	in	190	
interactions	with	genetic	loci.	The	majority	of	genetic	interactions	with	sex	(12	of	15)	involved	a	191	
suppression	of	allele	effects	by	sex,	indicating	that	the	alleles	had	larger	effects	in	females	than	in	192	
males.	Alleles	from	all	founder	strains	were	affected.	One	locus,	the	CAST	allele	on	Chr	11,	enhanced	193	
the	effects	of	sex.	The	allele	overall	had	negative	effects	on	leptin,	cholesterol,	and	lean	mass,	but	in	194	
males,	these	measures	were	higher	in	the	presence	of	this	allele	than	expected	from	the	additive	195	
model.	There	was	also	a	single	locus,	the	WSB	allele	on	Chr	17,	that	suppressed	the	effects	of	sex,	196	
indicating	that	males	carrying	this	allele	had	lower	than	expected	lean	mass,	fat	mass,	etc.	For	197	
example,	both	this	allele	and	sex	had	positive	effects	on	cholesterol,	but	cholesterol	levels	in	male	198	
mice	carrying	this	WSB	allele	were	lower	than	expected	from	the	additive	model.	Finally,	phenotypic	199	
effects	of	the	male	sex	were	enhanced	by	the	high-fat	diet,	suggesting	that	males	were	more	200	
susceptible	to	the	effects	of	the	high-fat	diet.	201	
	202	
Diet	interacted	with	a	subset	of	parental	haplotypes 203	
Diet	significantly	increased	log	fat	mass	(chow:	1.6	g,	HF:	2.1	g,	p	<	2x10-16),	cholesterol	(chow:	85.8	204	
mg/dl,	HF:	119.1	mg/dl,	p	<	2x10-16),	and	leptin	(chow:	7.7	mg/dl,	HF:	19.7	mg/dl,	p	<	2x10-16)	and	205	
significantly	decreased	triglyceride	levels	(chow:	146.7	mg/dl,	HF:	124.	3	mg/dl,	p	=	1x10-4).	It	also	206	
significantly	decreased	all	expression	modules	(all	p	<	0.001).	Similar	to	sex,	the	majority	of	genetic	207	
interactions	with	diet	(five	of	seven)	were	those	in	which	high-fat	diet	suppressed	genetic	effects.	208	
That	is,	the	alleles	had	greater	phenotypic	effect	in	chow-fed	mice	than	mice	on	the	high-fat	diet.	209	
There	was	one	locus,	the	CAST	allele	on	Chr	2,	that	enhanced	the	effects	of	diet,	indicating	that	210	
animals	carrying	this	allele	were	more	susceptible	to	the	effects	of	the	high-fat	diet.	The	effects	of	diet	211	
were	also	enhanced	by	sex,	as	mentioned	above,	indicating	that	males	in	this	population	were	more	212	
susceptible	to	the	effects	of	the	high-fat	diet	than	females.		213	
	214	
Network	motifs	had	both	redundant	and	synergistic	effects	on	phenotypes 215	
To	better	understand	the	overall	influence	of	genetic	interactions	on	traits,	we	performed	a	network	216	
motif	analysis	as	described	in	(Tyler	et	al.	2016).	Network	motifs	are	composed	of	one	interaction	217	
between	two	loci,	each	of	which	has	a	main	effect	on	one	phenotype	(Figure	6A).	The	interaction	can	218	
either	be	suppressing	or	enhancing,	and	the	two	main	effects	can	drive	the	phenotype	either	in	the	219	
same	direction	(coherent)	or	in	opposing	directions	(incoherent).	Here	we	investigated	the	effects	of	220	
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network	motifs	on	traits	in	the	DO	and	compare	our	results	to	our	previous	results	from	results	from	221	
an	F2	intercross	between	inbred	strains	in	Tyler	et	al.	(2016)	(Tyler	et	al.	2016).		222	
	223	
Only	enhancing-incoherent	and	suppressing-coherent	motifs	were	present	in	the	DO	epistatic	224	
network	(Figure	6B).	They	involved	all	parental	haplotypes	and	were	predominantly	interactions	225	
between	haplotypes	from	different	parents	(enhancing-incoherent:	72%	different	parental	226	
haplotypes,	suppressing-coherent:	96%	different	parental	haplotypes).	In	contrast	to	the	intercross,	227	
the	enhancing-incoherent	motifs	were	not	predominantly	balancing,	but	tended	to	drive	traits	away	228	
from	the	population	mean.	The	vast	majority	of	these	motifs	(92%)	had	a	destabilizing	effect	on	229	
phenotype,	and	80%	drove	the	phenotype	past	any	additive	prediction	(Figure	7).	A	substantial	230	
fraction	of	the	suppressing-coherent	motifs	(25%)	were	non-redundant,	meaning	they	pushed	231	
phenotypes	farther	from	the	population	mean	than	predicted	by	the	additive	model	(Figure	7).	232	

Discussion		233	

Traits	associated	with	metabolic	disease,	such	as	cholesterol	levels,	body	fat	mass,	and	triglyceride	234	
levels	have	complex	genetic	architecture.	Mapping	genes	influencing	these	traits	will	help	identify	235	
mechanistic	factors	influencing	them	and,	together	with	molecular	biomarkers,	may	ultimately	236	
provide	targets	for	therapies.	Mapping	complex	genetic	effects,	however,	is	challenging,	especially	in	237	
human	populations	in	which	environmental	factors	and	population	structure	can	overwhelm	weak	238	
genetic	effects.	Mice	offer	an	excellent	alternative	as	pre-clinical	model	organisms	in	which	to	dissect	239	
complex	traits	mechanistically.	However,	the	majority	of	inbred	strains	used	in	medical	research	are	240	
closely	related	to	each	other.	The	have	limited	phenotypic	diversity	and	large	genetic	blind	spots	due	241	
to	a	lack	of	genetic	variants	between	them.	The	DO	mice	provide	a	powerful	alternative	platform	for	242	
fine-mapping	complex	traits.	They	harbor	immense	genetic	and	phenotypic	diversity,	and	have	243	
minimal	population	structure,	thereby	allowing	much	more	detailed	assessments	of	complex	genetic	244	
architecture	influencing	complex	traits.	The	genetic	diversity	in	the	DO	does	create	its	own	issues,	245	
however,	in	that	large	genetic	effects	can	be	difficult	to	find.	Using	standard	mapping	methods,	we	246	
and	others	have	shown	that	most	traits	are	influenced	by	many	QTL	with	small	effects	(@gatti),	and	247	
few	QTL	rise	to	genome-wide	significance.	Here	we	used	Combined	Analysis	of	Pleiotropy	and	248	
Epistasis	(CAPE)	to	combine	multi-dimensional	phenotype	information	and	test	for	genetic	249	
interactions	influencing	a	suite	of	related	traits.	We	found	numerous	individual	effects	and	an	250	
epistatic	interaction	network	influencing	both	physiological	and	expression	traits.	The	interaction	251	
effects,	which	tended	to	be	weak,	identified	genetic	elements	that	potentially	influence	the	traits	and	252	
informed	on	the	general	genetic	architecture	of	these	traits.		253	
	254	
The	two	factors	with	the	largest	influence	on	most	phenotypes	were	sex	and	diet.	Sex	influenced	all	255	
traits	except	serum	leptin	levels.	In	our	network,	sex	also	interacted	with	14	genetic	loci.	Although	256	
multiple	sex-specific	QTL	have	been	mapped	in	humans	(Weiss	et	al.	2006;	Ober	et	al.	2008),	the	257	
studies	are	often	of	low	power	and	few	individual	results	have	been	replicated	(Ober	et	al.	2008).	The	258	
DO	mice	offer	a	powerful	platform	to	investigate	the	role	of	sex	in	complex	traits	in	mammalian	259	
systems.	In	our	study,	the	majority	of	the	genetic	interactions	with	sex	were	a	suppression	of	allele	260	
effects	in	males.	These	alleles	may	help	identify	important	risk	and	protective	alleles	for	metabolic	261	
disease	in	females.	For	example,	the	129	allele	at	a	locus	on	Chr	19	had	positive	effects	on	the	262	
Metabolism	Expression	Module	and	triglyceride	levels,	suggesting	that	this	locus	contains	a	gene	that	263	
increases	triglycerides	through	gene	expression	differences	in	metabolic	pathways.	The	effects	of	the	264	
129	allele	were	suppressed	by	sex,	indicating	that	it	had	a	larger	effect	in	females	than	males.	265	
Combining	the	allele	and	interaction	information	from	the	CAPE	network,	we	can	generate	a	266	
hypothesis	about	the	causal	gene	in	this	locus.	There	are	six	genes	known	to	influence	triglycerides	in	267	
the	Chr	19.4	locus	and	one	of	these,	Sorbs1,	has	a	cis	129-specific	effect	increasing	Sorbs1	expression	268	
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(Figure	8A).	Sorbs1	is	furthermore	expressed	more	highly	in	females	(p	=	0.002)	(Figure	8B),	and	is	269	
significantly	correlated	with	triglyceride	levels	in	the	DO	mice	(r2	=	0.17,	p	<	2x10-16).	Previous	work	270	
has	shown	that	mice	with	homozygous	deletions	of	this	gene	have	reduced	triglyceride	levels	271	
(Lesniewski	et	al.	2007).	Increased	expression	due	to	the	gain-of-function	129	allele	is	consistent	272	
with	increased	triglycerides	in	carriers,	and	therefore	the	129	allele	of	this	gene	may	increase	risk	for	273	
elevated	triglyceride	levels	in	female	mice.		274	
	275	
In	addition	to	sex,	diet	is	an	important	factor	in	determining	risk	of	metabolic	disease	and	their	276	
related	phenotypes.	The	high-fat	diet	in	our	study	had	a	substantial	impact	on	all	traits	except	the	277	
Metabolism	Module.	High-fat	diet	enhanced	the	effects	of	sex	indicating	that	males	in	the	DO	278	
population	were	more	susceptible	to	the	effects	of	the	diet	than	females.	It	has	been	shown	that	279	
inbred	male	B6	mice	gain	more	weight	and	have	higher	blood	lipid	profiles	when	given	a	high-fat	diet	280	
(Hwang	et	al.	2010).	And	although	not	represented	in	the	DO,	male	BALB/cA	mice	have	also	been	281	
shown	to	be	more	susceptible	than	females	to	weight	gain	and	hepatic	lipid	accumulation	(Nishikawa	282	
et	al.	2007).	Diet	interacted	with	a	number	of	genetic	loci,	and	like	sex,	mostly	suppressed	the	effects	283	
of	these	loci,	indicating	that	the	alleles	had	a	larger	effect	in	animals	fed	standard	chow.	Multiple	284	
studies	have	shown	interactions	between	genes	and	diet	in	influencing	factors	related	to	traits	285	
associated	with	metabolic	disease	(for	review	see	(Ordovas	2006)).	The	resolution	in	the	DO	genome	286	
combined	with	information	about	genetic	interactions	will	help	speed	identification	of	genes	287	
interacting	with	diet	and	help	elucidate	how	high-fat,	high-sucrose	diets	lead	to	obesity	and	288	
metabolic	disease,	as	well	as	how	healthy	diets	help	prevent	these	conditions.		289	
	290	
In	addition	to	the	interactions	with	sex	and	diet,	genetic	loci	also	interacted	with	each	other	to	291	
influence	phenotypes	in	network	motifs.	In	a	previous	study	of	an	F2	intercross	(Tyler	et	al.	2016),	we	292	
found	that	suppressing-coherent	and	enhancing-incoherent	motifs	were	significantly	enriched	in	the	293	
epistatic	network.	In	this	F2	population,	both	types	of	motifs	tended	to	have	moderating	effects	on	294	
phenotypes.	295	
The	suppressing-coherent	network	motifs	tended	to	reflect	redundancy,	while	the	enhancing-296	
incoherent	interactions	had	a	balancing	phenotypic	effect	driving	phenotypes	toward	inbred	strain	297	
means	(Tyler	et	al.	2016).	Animals	homozygous	for	one	parental	allele	at	both	interacting	loci	had	298	
less	extreme	phenotypes	than	those	with	a	mix	of	parental	alleles	at	the	two	loci	(Tyler	et	al.	2016).	299	
Similar	to	our	previous	findings,	network	motifs	in	the	DO	were	predominantly	enhancing-300	
incoherent	or	suppressing-coherent	(Figure	6B).	However,	in	contrast	to	the	intercross,	the	301	
enhancing-incoherent	motifs	frequently	drove	traits	farther	from	the	population	mean	than	302	
predicted	by	the	additive	model.	The	majority	of	the	suppressing-coherent	motifs	had	redundant	303	
effects,	i.e.	the	two	loci	had	less	than	additive	effects,	but	a	substantial	fraction	(36%)	also	304	
destabilized	phenotypes,	driving	them	away	from	the	population	mean.		305	
	306	
This	phenotypic	destabilization	is	likely	due	to	the	difference	in	allelic	combinations	between	the	307	
multi-parent	DO	mice	and	a	classic	intercross	design.		In	an	intercross	all	interactions	by	definition	308	
are	between	alleles	from	a	single	non-reference	parent,	whereas	interactions	in	the	DO	were	most	309	
frequently	between	alleles	from	different	parental	ancestries.	In	both	designs,	each	of	the	parental	310	
strains	has	developed	its	own	unique	set	of	alleles	to	maintain	quantitative	traits	at	strain	311	
homeostasis.	In	an	intercross,	accumulation	of	alleles	from	a	single	parental	strain	may	312	
combinatorially	achieve	homeostatic	phenotypes	for	that	parent.	By	contrast,	in	the	DO	the	mixing	of	313	
parental	alleles	may	instead	destabilize	phenotypes	by	driving	them	to	extremes	and	creating	the	314	
immense	phenotypic	diversity	seen	in	this	population.	Furthermore,	that	we	see	more	destabilizing	315	
interactions	among	the	enhancing-incoherent	motifs	may	imply	something	about	molecular	pathway	316	
structure.	We	hypothesize	that	suppressing-coherent	motifs	represent	interactions	between	genes	317	
within	a	single	pathway,	while	enhancing-incoherent	motifs	represent	interactions	between	genes	in	318	
different,	but	functionally	related	pathways.	This	is	consistent	with	earlier	work	on	perturbations	of	319	
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fruit	fly	signaling	pathways	(Horn	et	al.	2011;	Carter	2013).	The	patterns	of	stabilizing	and	320	
destabilizing	motifs	in	our	study	suggests	that	recombining	parental	alleles	within	pathways	is	well	321	
tolerated	and	often	redundant,	while	recombination	between	related	pathways	more	frequently	322	
destabilizes	phenotypes.	323	
	324	
Although	the	genetic	diversity	in	the	DO	allows	relatively	fine	mapping,	we	cannot	definitively	325	
identify	which	genes	in	these	loci	are	responsible	for	the	phenotypic	effects.	We	can,	however,	326	
combine	the	information	in	epistatic	interactions	with	estimated	functional	interactions	to	generate	327	
hypotheses	about	causal	genes.	For	example,	we	found	an	interaction	between	the	A/J	haplotype	on	328	
Chr	9	locus	2	(Chr	9.2:	5	Mb	to	36	Mb)	and	the	CAST	haplotype	on	Chr	2	locus	2	(Chr2.2:	123	Mb	to	329	
133	Mb)	that	influenced	the	Immune	Module.	Each	locus	had	a	negative	main	effect	on	the	Immune	330	
Module,	and	their	combined	effect	was	redundant	with	the	effect	of	the	Chr	2.2	locus	(Figure	9A).	331	
This	pattern	of	effects	indicates	a	redundant	interaction	and	the	possibility	that	the	causal	genes	on	332	
the	two	loci	operate	in	the	same	pathway.	To	further	investigate	this	premise,	we	identified	all	the	333	
genes	in	the	two	regions	that	had	strain-specific	polymorphisms	(A/J	on	Chr	9.2	and	CAST	on	Chr	334	
2.2),	and	filtered	these	to	include	genes	that	had	been	previously	annotated	to	the	mammalian	335	
phenotype	(MP)	term	“immune	phenotype”	(see	Methods).	We	then	used	Integrative	Multi-species	336	
Prediction	(IMP)	(Wong	et	al.	2015)	to	identify	the	most	likely	among	these	genes	to	interact	337	
functionally.	This	filtering	process	identified	Casp4	on	Chr	9.2	and	Il1b	on	Chr	2.2	as	the	most	likely	338	
genes	in	these	two	loci	to	interact.	In	the	IMP	network,	the	two	genes	interacted	directly	in	a	network	339	
functionally	enriched	for	cytokine	production	and	secretion	(p	=	4.3x10-12)	(Motenko	et	al.	2015)	340	
(Figure	9B).	In	support	of	the	hypothesis	that	Casp4	and	Il1b	interact,	both	transcripts	are	correlated	341	
with	the	Immune	Module	(Figure	9C,	Casp4:	r2	=	0.48,	p	=	2.6x10-28,	Il1b:	r2	=	0.49,	p	=	1x10-30),	and	342	
with	each	other	(r2	=	0.32,	p	=	7.4x10-13)	(Figure	8C).	Casp4,	also	known	as	Casp-11,	is	a	member	of	343	
the	cysteine-aspartic	acid	protease	family	and	is	essential	for	IL1B	secretion.	Mice	with	homozygous	344	
mutations	of	Casp4	have	decreased	levels	of	circulating	IL1B	(Wang	et	al.	1998).	That	Casp4	is	345	
directly	involved	in	IL1B	secretion	is	consistent	with	the	redundant	genetic	interaction	we	observed	346	
between	Chr	9.2	and	Chr	2.2	in	the	CAPE	network.	Redundant	interactions	are	hypothesized	to	occur	347	
between	variants	encoding	genes	within	a	single	pathway	(Avery	and	Wasserman	1992;	Lehner	348	
2011).	Each	variant	has	a	similar	effect	on	the	pathway,	but	because	the	pathway	can	only	be	349	
disrupted	once,	the	combination	of	the	two	variants	did	not	have	a	further	effect	despite	being	from	350	
different	parental	strains.	Such	combinatorial,	polygenic	candidate	genes	were	revealed	by	our	351	
genetic	interaction	analysis	that	identified	redundant	genetic	effects.	352	
	353	
Elsewhere	in	the	network,	we	hypothesize	that	genes	interacting	in	enhancing-incoherent	network	354	
motifs	function	in	distinct	pathways	that	nevertheless	influence	each	other.	In	addition	to	the	355	
redundant	interaction	above,	we	prioritized	interacting	genes	in	a	second	interaction	between	the	356	
same	A/J	haplotype	on	Chr	9.2	another	QTL	on	Chr	2.	This	second	locus,	Chr	2	locus	4	(Chr2.4:	165	357	
Mb	to	171	Mb)	represented	an	effect	of	the	NOD	haplotype	and	did	not	overlap	the	CAST	QTL	(123	358	
Mb	to	133	Mb)	that	also	interacted	with	the	Chr	9.2	A/J	QTL.	This	QTL	thus	represents	a	distinct	359	
interaction.	The	A/J	Chr	9.2	and	the	NOD	Chr	2.4	loci	influenced	the	Immune	Expression	Module	in	360	
opposite	directions,	and	together,	they	drove	the	trait	to	be	slightly	more	negative	than	predicted	by	361	
the	additive	model	(Figure	10A).	Following	the	same	gene	selection	pipeline	described	above,	we	362	
identified	Casp4	again	for	the	Chr	9.2	A/J	locus,	and	Src	as	a	likely	interacting	partner	in	the	Chr	2.4	363	
NOD	locus	(Figure	10B).	Transcripts	for	both	genes	are	significantly	correlated	with	the	immune	364	
expression	module	(Casp4:	r	=	0.47,	p	=	6.3x10-28;	Src:	r	=	0.47,	p	=	3.7x10-27)	and	with	each	other	(r	=	365	
0.21,	p	=	3.2x10-6)	(Figure	10C).	In	the	IMP	network	Casp4	and	Src	occupy	two	lobes	of	a	connected	366	
graph,	indicating	that	they	are	less	directly	functionally	related	than	Casp4	and	Il1b.	The	Casp4	side	of	367	
the	network	is	enriched	for	genes	involved	in	inflammasome	pathways	(p	=	2.9x10-6)	(Motenko	et	al.	368	
2015),	while	the	Src	side	of	the	network	is	enriched	for	EGFR	signaling	(p	=2	.7x10-4)	(Motenko	et	al.	369	
2015).	The	IL-1	and	EGF	families	of	proteins	are	upregulated	in	human	keratinocytes	during	wound	370	
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healing	and	in	psoriasis,	and	they	have	been	shown	to	interact	synergistically	in	upregulating	371	
transcripts	involved	in	antimicrobial	defenses	(Johnston	et	al.	2011).	Conversely,	inhibiting	EGFR	372	
signaling	in	keratinocytes	reduces	their	IL-1	secretion	in	response	to	Staphylococcus	aureus	infection	373	
(Simanski	et	al.	2016).	In	sum,	these	observations	suggest	that	the	A/J	allele	of	Casp4	and	the	NOD	374	
allele	of	Src	may	interact	to	influence	immune-related	expression	in	mice.		375	
	376	
Our	analysis	of	genetic	interactions	in	DO	mice	has	revealed	a	number	of	interesting	features	of	the	377	
genetic	architecture	of	complex	traits	related	to	metabolic	disease.	First,	we	detected	numerous	378	
significant	genetic	interactions	influencing	both	physiological	and	expression	traits	in	an	outbred	379	
population.	Although	these	effects	were	small	relative	to	the	main	effects	we	identified,	we	were	able	380	
to	detect	them	by	combining	information	across	multiple	phenotypes.	The	interactions	primarily	381	
involved	alleles	from	different	parental	haplotypes.	This	pattern	indicates	that	multi-parent	382	
populations	may	be	more	powerful	platforms	than	standard	intercrosses	for	detecting	epistasis	due	383	
to	the	increased	genetic	diversity.	Interactions	in	an	intercross	are	by	definition	between	alleles	from	384	
the	same	parental	strain,	but	in	the	DO	interactions	within	strain	haplotypes	are	relatively	rare.	With	385	
the	additional	allelic	variation	in	the	DO,	more	genetic	combinations	with	diverse	phenotypic	effects	386	
are	present.	Second,	we	found	that	network	structure	of	genetic	interactions	in	outbred	mice	is	387	
distinct	from	the	network	structure	we	found	previously	in	a	mouse	intercross.	In	the	intercross	388	
interactions	described	by	network	motifs	predominantly	reduce	variation	in	traits,	driving	them	389	
toward	the	parental	strain	mean.	In	contrast,	the	enhancing-incoherent	motifs	in	the	outbred	mice	390	
tended	to	drive	traits	away	from	the	population	mean.	The	extreme	traits	were	most	frequently	391	
caused	by	interactions	between	allele	from	different	parental	haplotypes.	Extreme	phenotypes	upon	392	
recombination	of	alleles	in	the	DO	may	have	the	benefit	of	making	epistasis	in	outbred	populations	393	
easier	to	detect	than	epistasis	in	intercrosses	between	two	inbred	strains.	Finally,	we	showed	that	we	394	
can	use	genetic	interactions	as	information	to	prioritize	candidate	genes	in	genomic	regions.	395	
Interactions	between	two	loci	imply	a	functional	relationship	between	elements	encoded	in	the	two	396	
loci.	By	combining	information	about	haplotype-specific	genetic	interactions	with	genomic	functional	397	
data,	like	the	IMP	network,	we	can	generate	plausible	hypotheses	regarding	causal	genes.	The	398	
hypotheses	generated	by	this	method	in	this	study	were	supported	by	expression	data	not	used	in	399	
the	hypothesis	generation.	Together	these	results	speak	to	the	value	of	multi-parent	outbred	400	
populations	in	the	dissection	of	the	genetic	architecture	of	clinically	relevant	complex	traits.		401	

Methods	402	

Mice 403	
Mice	were	obtained	from	The	Jackson	Laboratory	(Bar	Harbor,	ME)	as	described	in	(Svenson	et	al.	404	
2012)	and	@Gatti.	The	animals	were	non-sibling	DO	mice	ranging	from	generation	4	to	11,	and	males	405	
and	females	were	represented	equally.	All	animal	procedures	were	approved	by	the	Animal	Care	and	406	
Use	Committee	at	The	Jackson	Laboratory	(Animal	Use	Summary	#	06006).	Mice	were	house	in	407	
same-sex	cages	with	five	animals	per	cage	as	described	in	(Svenson	et	al.	2012)	and	@Gatti.	Animals	408	
had	free	access	to	either	standard	rodent	chow	(6%	fat	by	weight,	LabDiet	5K52,	LabDiet,	Scott	409	
Distributing,	Hudson,	NH)	or	a	high-fat,	high-sucrose	diet	(HFD)	(Envigo	Teklad	TD.08811,	Envigo,	410	
Madison,	WI)	for	the	duration	of	the	study	protocol	(26	weeks).	Caloric	content	of	the	HFD	was	45%	411	
fat,	40%	carbohydrates	and	15%	protein.	Diets	were	assigned	randomly.	412	
Phenotype Measurements 413	
Phenotypes	were	measured	as	described	in	(Svenson	et	al.	2012)	and	@Gatti.	Beginning	at	eight	414	
weeks	of	age,	blood	was	collected	retro-orbitally	after	administration	of	local	anesthetic.	Cholesterol	415	
and	triglycerides	were	measured	using	the	Beckman	Synchron	DXC600Pro	Clinical	chemistry	416	
analyzer.	Leptin	was	measured	in	non-fasted	plasma	prepared	as	previously	described	(Svenson	et	417	
al.	2012).	Levels	were	analyzed	using	the	Meso	Scale	Discovery	electrochemiluminescent	system	418	
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according	to	the	manufacturer's	recommended	protocol	(Meso	Scale	Diagnostics,	Rockville,	MD).	419	
Body	composition	(lean	mass	and	total	mass)	were	measured	at	age	12	weeks	using	dual	X-ray	420	
absorptiometry	(DEXA)	using	a	Lunar	PIXImus	densitometer	(GE	Medical	Systems).	Fat	mass	was	421	
calculated	as	log(total	mass	-	lean	mass).	Measurements	were	performed	at	two	time	points.	All	422	
measurements	in	this	study	were	taken	from	the	first	time	point.	423	
Genetic analysis   424	
Genotyping	was	performed	on	tail	biopsies	as	described	in	(Svenson	et	al.	2012)	using	the	Mouse	425	
Universal	Genotyping	Array	(MUGA).	A	subset	of	the	animals	(293)	were	genotyped	on	the	426	
Megamuga	(GeneSeek,	Lincoln,	NE).	The	intensities	from	the	arrays	were	used	to	infer	the	haplotype	427	
blocks	in	each	DO	genome	using	a	hidden	Markov	model	(HMM)	(Gatti	et	al.	2014b).	428	
	429	
Merging Haplotype Reconstructions from Different Methods 430	
Genotypes	 were	measured	with	 the	MUGA	 (7,854	markers),	 Megamuga	 (77,642	markers)	 and	 by	431	
GBRS,	 which	 is	 a	 set	 of	 software	 tools	 that	 uses	 RNA-Seq	 data	 to	 reconstruct	 individual	 sample	432	
genomes	 in	 multiparental	 population	 (MPP)	 (@Gatti,	 and	 http://https://github.com/churchill-433	
lab/gbrs).	To	merge	diplotype	probabilities	from	all	sources,	we	interpolated	markers	on	an	evenly	434	
spaced	64,000	marker	grid	(0.0238	cM	between	markers).		435	
	 	 	436	
Transcriptome	profiling	437	
Transcriptome-wide	expression	levels	were	measured	as	described	in	(Chick	et	al.	2016),	(Munger	et	438	
al.	2014)	and	@Gatti.	Total	liver	RNA	was	isolated	from	each	mouse	and	sequenced	using	single-end	439	
RNA-Seq	(Munger	et	al.	2014).	Transcripts	were	aligned	to	strain-specific	genomes	from	the	DO	440	
founders	(Chick	et	al.	2016).	We	used	an	expectation	maximization	algorithm	(EMASE,	441	
https://github.com/	churchill-lab/emase)	to	estimate	read	counts.	Read	counts	in	each	sample	were	442	
normalized	using	upper-quantile	normalization	and	a	rank	Z	transformation	was	applied	across	443	
samples.	444	

Filtering	transcripts	for	trans	effects	445	

We	were	interested	in	mapping	effects	to	transcripts	that	were	influenced	by	distant	(trans)	genetic	446	
loci.	To	determine	which	transcripts	had	trans	loci,	we	first	used	DOQTL	(Gatti	et	al.	2014a)	to	map	447	
QTL	for	all	transcripts	expressed	in	at	least	50	samples	(26,875	transcripts).	DOQTL	effects	using	448	
founder	allele	haplotype	probabilities	calculated	as	described	in	(Gatti	et	al.	2014b).	In	addition,	we	449	
used	sex,	diet	and	batch	as	additive	covariates	and	used	hierarchical	linear	models	to	correct	for	450	
genetic	relatedness	(Kang	et	al.	2008).		451	
	452	
From	this	mapping	we	identified	cis-eQTLs	for	transcripts,	which	we	defined	as	a	suggestive	eQTL	453	
(LOD	>=7.4)	within	2	Mbp	of	the	encoding	gene’s	transcription	start	site.	For	each	transcript,	we	454	
regressed	out	the	effects	of	the	cis-eQTL	(Pierce	et	al.	2014)	and	re-mapped	QTL	using	DOQTL.	We	455	
identified	3635	trans-eQTLs	defined	as	a	QTL	(LOD	>=	7.4)	on	a	chromosome	other	than	the	456	
transcripts	encoding	gene	or	at	least	10	Mb	away	on	the	same	chromosome.	Additionally,	for	the	457	
following	clustering	analysis,	we	used	the	residual	expression	by	removing	the	effects	of	cis-458	
haplotype	and	batch	effect	via	linear	regression.	The	procedure	is	outlined	in	Supplementary	Figure	459	
1.		460	
	461	
Weighted	Gene	Co-expression	Network	Analysis	462	
Co-expression	gene	modules	were	obtained	by	clustering	trans-acting	transcripts	using	the	WGCNA	463	
package	in	R	(Langfelder	and	Horvath	2008;	undefined	author	2016).	WGCNA	computes	the	absolute	464	
value	of	Pearson	correlation	for	all	gene	pairs	and	generates	an	adjacency	matrix	by	raising	the	465	
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correlation	matrix	to	a	user-defined	power.	We	set	the	power	to	six	to	achieve	a	network	with	scale-466	
free	degree	distribution.	To	construct	the	module	network,	WGCNA	uses	hierarchical	clustering	to	467	
produce	a	dendrogram	of	genes.	Individual	branches	of	the	dendrogram	represent	modules,	which	468	
are	clusters	of	highly	co-expressed	genes.	The	modules	with	similar	expression	profiles	can	be	469	
merged	based	on	their	correlation.	We	set	the	minimum	module	size	to	30	and	the	minimum	height	470	
for	merging	to	0.25	(corresponding	to	a	Pearson	correlation	of	0.75)	to	obtain	relatively	large	and	471	
distinct	modules.	The	first	principal	component	for	each	module	(termed	eigengenes	in	WGCNA)	is	472	
used	to	represent	the	summary	co-expression	pattern	for	each	module.	These	eigengenes	are	473	
hereafter	referred	to	as	module	phenotypes	for	CAPE	analysis.	Each	module	was	assessed	for	474	
functional	enrichment	using	the	DAVID	database(Huang	et	al.	2009a;	b).	The	GO	enrichment	475	
significance	threshold	for	all	gene	ontology	enrichment	analyses	was	p	≤	0.05,	with	Benjamini	476	
correction	for	multiple	comparisons.	477	
	478	
Combined	analysis	of	pleiotropy	and	epistasis	479	
Combined	analysis	of	pleiotropy	and	epistasis	(CAPE)	is	a	method	for	deriving	genetic	interaction	480	
networks	of	genetic	variants	that	influence	multiple	phenotypes	{tyler2013cape}.	The	open-source	R	481	
package	of	cape	was	adapted	(below)	to	use	for	DO	mice	with	extension	to	multiple	alleles	in	our	482	
analysis.		483	
	484	
We	began	our	analysis	by	regressing	outbreeding	generation	out	of	each	trait	and	applying	a	rank	Z	485	
transformation	to	each	physiological	trait.	These	were	combined	with	the	three	module	eigengenes	486	
representing	significantly	enriched	modules	from	WGCNA	(see	above).	We	then	performed	singular	487	
value	decomposition	(SVD)	on	the	trait	matrix	to	obtain	eight	orthogonal	eigentraits	(ET’s).	The	ET’s	488	
combine	common	signals	across	all	traits.	In	this	analysis,	we	used	the	first	three	ETs,	which	captured	489	
88.3%	of	the	variation	in	the	traits.	We	then	performed	linear	regression	to	associate	each	marker	490	
with	each	ET.	491	
	492	
For	each	marker	we	used	a	seven-state	model	to	estimate	the	effect	of	the	founder	haplotypes	on	493	
each	trait.	We	use	the	B6	allele	as	the	reference,	and	thus	B6	alleles	are	not	explicitly	included	in	our	494	
final	results.	We	also	included	two	covariates,	sex	(female:	0,	male:	1)	and	diet	(chow:	0,	high-fat:	1).	495	

	496	
The	index	𝑖	is	from	1	to	number	of	samples	and	𝑗 is	from	1	to	number	of	ET’s.		497	
Pi,a	is	the	probability	of	each	allele	a	at	the	locus,	and	xc,i	is	the	presence	or	absence	of	each	covariate.	498	
We	used	the	results	of	the	single-locus	regression	to	select	markers	for	the	locus-pair	regressions.	499	
	500	
Variant	selection	for	pairwise	regression	501	
Because	there	were	more	markers	genotyped	than	could	be	tested	in	a	pairwise	regression,	we	502	
selected	a	subset	of	variants	based	on	standardized	effect	size.	We	selected	individual	haplotypes	(for	503	
example	the	A/J	haplotype	at	marker	1)	such	that	haplotypes	from	multiple	founder	strains	and	504	
multiple	chromosomes	would	be	represented	in	the	locus-pair	regression.	To	do	this,	we	picked	an	505	
arbitrary	threshold	and	identified	haplotype	peaks	in	effect	size	that	rose	above	this	threshold.	We	506	
picked	the	marker	with	the	largest	effect	size	in	this	peak	and	sampled	10%	of	the	remaining	507	
markers	in	the	peak	uniformly	at	random.	We	progressively	lowered	the	threshold	until	we	had	508	
sampled	approximately	500	individual	variants.	(Supplementary	Table	2)	The	final	number	of	509	
variants	selected	was	515,	representing	all	haplotypes	across	17	chromosomes.	510	
	511	
Pairwise	regression		512	
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We	express	the	full	model	for	two	variants	labeled	1	and	2	as:	513	

	514	
	515	
The	index	𝑖	is	from	1	to	number	of	samples	and	j	is	from	1	to	number	of	ET’s.		516	
Pi,a	is	the	probability	of	each	allele	a	at	the	locus,	and	xc,i	is	the	presence	or	absence	of	each	covariate.	517	
Eij	is	the	ET	for	sample	𝑖.	P1,i	and	P2,i	are	the	probabilities	of	the	allele	at	each	of	two	variants	for	518	
sample	i.	P1,i	P2,i	is	the	interaction	of	two	variants,	𝛽!	and 𝛽!	are	the	effects	of	two	variants	on	the	ET	𝑗,	519	
and	𝛽!"	is	the	interaction	coefficient.		520	
	521	
For	each	marker	pair,	the	regression	coefficients	across	all	ET’s	were	reparametrized	to	obtain	two	522	
new	parameters	(𝛿!	and	𝛿!).	The	𝛿	terms	are	independent	of	phenotype	and	can	be	defined	as	the	523	
degree	to	which	one	variant	influences	the	effect	of	the	other	on	the	phenotypes.	𝛿!	represents	the	524	
inferred	genetic	activity	of	the	first	variant	when	the	second	variant	is	present.	A	negative	𝛿	525	
coefficient	indicates	one	variant	suppressing	another.	For	example,	a	negative	𝛿! indicates	that	526	
variant	1	suppresses	the	effect	of	variant	2	on	that	phenotype.	The	𝛿	terms	are	computed	in	terms	of	527	
coefficients	from	pairwise	regression	as	follows:		528	

	529	

	530	
Next,	the 𝛿 terms	are	translated	into	directed	variables	𝑚!"	and	𝑚!",	which	describe	variant-to-531	
variant	influences	that	fit	all	phenotypes	via	indirect	associations.	The	term	𝑚!"	and	𝑚!"	are	direct	532	
influences	of	one	variant	on	the	other,	with	negative	influences	indicating	suppression	and	positive	533	
influences	indicating	enhancement.	The	terms	𝑚!"	and	𝑚!"	are	defined	in	terms	of	𝛿!	and	𝛿!:		534	
𝑚!" =

!!
!!!!

	,	𝑚!" =
!!

!!!!
		535	

Errors	are	estimated	through	standard	least-squares	regression	and	a	second-order	Taylor	536	
expansion	on	the	regression	parameters	(Carter	et	al.	2012).	We	defined	the	absolute	value	of	the	537	
ratio	of	an	estimated	coefficient	and	its	standard	error	(|β/se|)	as	the	standardized	effect	to	evaluate	538	
the	main	effects	of	the	variants	on	the	phenotypes	and	the	interactive	effects	of	the	variants.	The	539	
significance	threshold	of	the	standardized	effect	is	determined	based	on	genotype	permutation	test	540	
and	adjusted	for	multiple	testing.	To	avoid	false	positives	due	to	linkage	disequilibrium	(LD),	we	541	
excluded	variant	pairs	with	Pearson’s	correlation	coefficient	above	0.5	in	the	pairwise	regression.		542	
	543	
Permutation	testing 544	
Permutation	testing	was	conducted	to	generate	null	distributions	of	m	parameters.	For	each	545	
permutation,	we	shuffled	the	ETs	relative	to	genotypes.	We	then	performed	a	single	locus	scan	and	546	
selected	the	top	~500	markers	for	a	pairwise	marker	scan	as	described	above.	We	repeated	this	547	
process	until	500,000	marker	pairs	were	tested.	We	combined	permutations	across	marker	pairs	to	548	
generate	a	single	null	distribution	(Tyler	et	al.	2014).	Empirical	p	values	for	each	model	parameter	549	
were	calculated	and	corrected	using	false	discovery	rate	(FDR)	{benjamini1995controlling}.	550	
	551	
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Grouping linked markers 552	
Final	results	are	reported	for	linkage	blocks	rather	than	individual	markers.	The	blocks	were	553	
determined	as	described	in	(Tyler	et	al.	2016).	Briefly,	for	each	haplotype,	we	used	the	correlation	554	
matrix	between	variants	as	an	adjacency	matrix	to	construct	a	weighted	network,	and	used	the	fast	555	
greedy	community	detection	algorithm	in	R/igraph	to	estimate	boundaries	between	blocks	of	similar	556	
markers	(Csardi	and	Nepusz	2006).	557	
	558	
Phenotypic Effects of Motifs 559	
For	each	motif	in	the	epistatic	network,	we	examined	the	phenotypic	effects	of	each	of	the	individual	560	
loci	as	well	as	the	interaction	effect.	For	each	individual	locus,	we	divided	the	animals	into	two	bins:	561	
those	carrying	the	alternate	allele	(e.g.	at	least	heterozygous	for	the	A/J	allele	at	locus	1),	and	all	562	
others.	We	calculated	the	mean	trait	value	across	all	traits	for	both	groups,	and	defined	the	main	563	
effect	of	the	allele	as	the		difference	between	the	groups.	The	predicted	additive	effect	was	the	sum	of	564	
the	two	main	effects.	To	calculate	the	actual	effect	of	the	interaction,	we	binned	the	animals	into	two	565	
groups:	those	carrying	the	alternate	allele	at	both	loci	(e.g.	at	least	heterozygous	for	the	A/J	allele	at	566	
locus	1	and	at	least	heterozygous	for	the	NOD	allele	at	locus	2),	and	all	others.		567	
Prioritization of genes in interacting loci 568	
We	used	a	function-oriented	method	to	generate	hypotheses	about	which	genes	in	interacting	569	
regions	might	be	contributing	to	the	epistatic	effects	inferred	by	CAPE.	We	focused	on	two	570	
interactions	that	influenced	the	Immune	Module,	the	module	eigengene	from	the	gene	module	571	
enriched	for	immune	function.	Both	interactions	involved	the	A/J	haplotype	from	a	region	on	Chr	9.	572	
This	region	interacted	with	the	NOD	haplotype	on	Chr	2	and	the	CAST	haplotype	on	Chr	2	to	573	
influence	the	Immune	Module.	We	first	used	biomaRt	found	all	protein	coding	genes	in	the	region	by	574	
finding	all	genes	in	the	effect	size	peak	created	by	the	haplotype	(Durinck	et	al.	2005;	2009).	We	used	575	
the	R	package	SNPTools	(Gatti)	to	query	the	Sanger	SNP	database	(Keane	et	al.	2011;	Yalcin	et	al.	576	
2011)	to	find	genes	harboring	variants	private	to	the	strain	of	interest.	Thus,	we	found	all	private	A/J	577	
variants	in	the	region	defined	by	the	A/J	effect	on	Chr	9,	and	all	variants	private	to	NOD	and	CAST	on	578	
the	Chr	2	regions	defined	by	these	haplotype	effects	respectively.	579	
	580	
Because	the	main	effects	of	these	regions	were	related	to	the	immune	module,	we	further	filtered	the	581	
genes	in	each	region	to	genes	annotated	to	the	Mouse	Phenotype	(MP)	Ontology(Smith	et	al.	2005)	582	
term	“immune	phenotype.”	We	then	looked	for	the	most	probable	functional	interactions	between	583	
the	groups	of	genes	from	each	chromosomal	region	using	Integrative	Multi-species	Prediction	(IMP)	584	
(Wong	et	al.	2015).	IMP	is	a	Bayesian	network	built	through	integration	of	gene	expression	data,	585	
protein-protein	interaction	data,	gene	ontology	annotations	and	other	data.	It	predicts	the	likelihood	586	
that	pairs	of	genes	interact	functionally	in	multiple	model	organisms	and	humans.	We	used	IMP	to	587	
find	the	highest	likelihood	connected	component	that	contained	at	least	one	gene	from	each	588	
chromosomal	region	participating	in	the	epistatic	interaction.	We	selected	the	gene	pair	with	the	589	
highest	likelihood	of	interacting	functionally	as	our	top	candidate	gene	pair	for	the	interaction.		590	
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Figures	591	

	592	

Table	1.	Functional	enrichment	for	three	gene	expression	modules	found	by	WGCNA.	593	
	594	

	595	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2017. ; https://doi.org/10.1101/098681doi: bioRxiv preprint 

https://doi.org/10.1101/098681
http://creativecommons.org/licenses/by-nc/4.0/


Figure	1. Correlation	plots	for	all	phenotypes	used	in	this	study. Traits tend to be modestly correlated with each other. Physiological 596	
traits and expression traits are positively correlated within their groups, but negatively correlated between groups. Males	are	shown	597	
as	green	triangles	and	females	are	blue	squares.	Darker	shade	indicates	high-fat	diet	(HF).	598	
	599	
	600	

	601	

Figure	2.	Effect	sizes	of	each	strain	haplotype	on	Chr	11	on	five	traits:	lean	mass,	log	fat	mass,	cholesterol,	triglycerides,	and	the	602	
metabolism	expression	module.	Individual	haplotypes	have	distinct	effects	on	traits.	The	CAST	haplotype	on	distal	Chr	11	has	603	
pleiotropic	effects	on	all	traits	(green	boxes).	The	NZO	and	A/J	haplotypes	have	individual	effects	on	cholesterol	(blue	box)and	leptin	604	
(yellow	box)	respectively.	605	
	606	
	607	
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	608	

Figure	3.	Eigentrait	(ET)	selection	from	decomposition	of	traits.	A)	Traits	were	decomposed	by	singular	value	decomposition	(SVD)	to	609	
orthogonal	ETs.	The	gray	bars	show	the	proportion	of	the	total	variance	captured	by	each	ET,	and	the	heatmap	shows	relative	610	
contributions	of	each	trait	to	each	ET.	B)	Haplotype	effects	for	Chr	11	on	the	first	three	ETs.		611	
	612	
	613	
	614	
	615	
	616	
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	617	

Figure	4.	The	final	locus	interaction	network.	Main	effects	are	shown	in	gray	concentric	circles.	Significant	main	effects	are	colored	for	618	
the	haplotype	that	had	the	significant	effects.	Positive	(brown)	and	negative	(blue)	effects	are	only	shown	for	Sex	and	Diet.	Interactions	619	
are	shown	as	arrows	between	chromosomal	regions	and	are	colored	to	indicate	an	enhancing	effect	(brown)	or	a	suppressing	effect	620	
(blue).		621	
	622	

	623	

Figure	5.	Tabulation	of	allele	participation	in	epistatic	interactions.	A)	The	number	of	times	each	haplotype	was	the	source	of	an	624	
interaction	or	the	target	of	an	interaction,	and	the	total	number	of	interactions	each	haplotype	participated	in.	Rows	are	sorted	by	total	625	
number	of	interactions.	The	final	two	columns	indicate	how	many	markers	were	tested	in	the	pairwise	marker	tests	for	each	626	
haplotype,	and	how	many	chromosomes	these	markers	were	found	on.	Darker	blue	highlighting	indicates	higher	counts.	B)	A	detailed	627	
count	of	the	interactions	each	haplotype	participated	in	with	each	other	haplotype	and	each	covariate	(Sex	and	Diet).	Darker	blue	628	
squares	represent	higher	counts.	Counts	of	0	are	represented	by	dashes	for	visualization	purposes.	629	
	630	
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Figure	6.	Network	Motifs	A)	Cartoons	depicting	four	types	of	network	motif.	Each	motif	consists	of	two	markers	interacting	to	influence	632	
one	phenotype.	The	markers	can	either	have	the	same	(coherent)	or	different	(incoherent)	main	effect.	The	interaction	between	them	633	
can	be	either	enhancing	or	suppressing.	B)	Counts	of	each	different	motif	type	for	each	phenotype.	Darker	shades	of	blue	indicate	634	
higher	counts.	635	
	636	
	637	

	638	

Figure	7.	Phenotypic	effects	of	enhancing-incoherent	(left)	and	suppressing-coherent	(right)	network	motifs.	“Main1”	and	“Main2”	639	
show	the	average	deviation	from	population	mean	in	normalized	phenotype	for	animals	carrying	the	alternate	allele	at	marker	1	and	640	
marker	2	in	the	motif	respectively.	Marker	1	and	marker	2	are	sorted	such	that	marker	1	always	has	the	smaller	(more	negative)	effect.	641	
“Additive”	shows	the	predicted	additive	effect	given	the	Main1	and	Main2	effects.	“Actual”	shows	the	actual	deviation	from	the	642	
population	mean	of	animals	carrying	the	alternate	allele	at	both	marker	1	and	marker	2	in	the	motifs.	Lines	are	drawn	to	connect	dots	643	
from	individual	motifs.	Blue	lines	indicate	motifs	that	bring	phenotypes	closer	to	the	population	mean	than	predicted	by	the	additive	644	
model.	Brown	lines	indicate	motifs	that	drive	the	phenotype	farther	from	the	population	mean	than	predicted	by	the	additive	model.	645	
Red	lines	indicate	a	subset	of	motifs	that	create	more	extreme	phenotypes	than	predicted	by	any	additive	model.	646	
	647	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2017. ; https://doi.org/10.1101/098681doi: bioRxiv preprint 

https://doi.org/10.1101/098681
http://creativecommons.org/licenses/by-nc/4.0/


	648	

Figure	8.	Evidence	supporting	a	role	of	the	129	allele	of	Sorbs1	increasing	triglyceride	levels	through	increased	transcription.	A)	LOD	649	
score	(top)	and	haplotype	coefficients	(bottom)	for	expression	of	Sorbs1.	The	vertical	black	line	marks	the	position	of	Sorbs1	in	the	650	
genome	on	Chr	19.	B)	Expression	of	Sorbs1	in	male	and	female	DO	mice	(a.u.	=	arbitrary	units)..	C)	Correlation	between	triglyceride	651	
levels	and	Sorbs1	expression	(r	=	1.7,	p	<	2x10-16).	Female	mice	are	shown	in	blue,	and	males	are	shown	in	green.	652	
	653	

	654	

	655	
	656	

Figure	9.	Gene	prioritization	in	interacting	loci.	A)	Effects	of	an	interaction	between	Chr	9	locus	2	(Chr	9.2)	and	Chr	2	locus	2	(Chr	2.2).	657	
The	A/J	haplotype	on	Chr	9.2	and	the	CAST	haplotype	on	Chr	2.2	have	individual	negative	effects	on	the	Immune	Module.	Together,	658	
they	have	the	same	effect	as	the	CAST	allele	on	Chr	2.2,	indicating	a	redundant	interaction.	Error	bars	show	standard	error.	B)	The	659	
transcripts	of	Casp4,	on	Chr	9,	and	Il1b,	on	Chr	2,	are	both	correlated	with	the	Immune	Module.	The	transcripts	are	also	correlated	with	660	
each	other.	C)	The	functional	connections	between	Casp4	and	Il1b	from	the	IMP	network.	The	two	genes	are	predicted	to	interact	661	
functionally	with	high	confidence.	662	
	663	
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Figure	10.	Gene	prioritization	in	interacting	loci.	A)	Effects	of	an	interaction	between	Chr	9	locus	2	(Chr	9.2)	and	Chr	2	locus	2	(Chr	2.4).	665	
The	A/J	haplotype	on	Chr	9.2	has	a	negative	effect	on	the	Immune	Module	and	the	NOD	haplotype	on	Chr	2.4	has	a	positive	effect	on	the	666	
Immune	Module.	Together,	they	have	an	effect	similar	to	that	of	the	A/J	allele	on	Chr	9.2.	Error	bars	show	standard	error.	B)	The	667	
transcripts	of	Casp4,	on	Chr	9,	and	Src,	on	Chr	2,	are	both	correlated	with	the	Immune	Module.	The	transcripts	are	also	correlated	with	668	
each	other.	C)	Functional	connections	between	Src	and	Casp4	from	the	IMP	network.	The	two	genes	are	predicted	to	interact	669	
functionally	by	operating	in	related,	but	distinct	pathways.	670	
	671	
	672	
	673	
	674	
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Supplementary	Figure	1.	Analysis	pipeline	to	generate	co-expression	modules		676	
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