Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Potassium channels contribute to activity-dependent scaling of dendritic inhibition

View ORCID ProfileJeremy T. Chang, View ORCID ProfileMichael J. Higley
doi: https://doi.org/10.1101/098889
Jeremy T. Chang
Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute, Yale School of Medicine, New Haven, CT 06510
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeremy T. Chang
Michael J. Higley
Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute, Yale School of Medicine, New Haven, CT 06510
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael J. Higley
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

GABAergic inhibition plays a critical role in the regulation of neuronal activity. In the neocortex, inhibitory interneurons that target the dendrites of pyramidal cells influence both electrical and biochemical postsynaptic signaling. Voltage-gated ion channels strongly shape dendritic excitability and the integration of excitatory inputs, but their contribution to GABAergic signaling is less well understood. By combining 2-photon calcium imaging and focal GABA uncaging, we show that voltage-gated potassium channels normally suppress the GABAergic inhibition of calcium signals evoked by back-propagating action potentials in dendritic spines and shafts of cortical pyramidal neurons. Moreover, the voltage-dependent inactivation of these channels leads to enhancement of dendritic calcium inhibition following somatic spiking. Computational modeling reveals that the enhancement of calcium inhibition involves an increase in action potential depolarization coupled with the nonlinear relationship between membrane voltage and calcium channel activation. Overall, our findings highlight the interaction between intrinsic and synaptic properties and reveal a novel mechanism for the activity-dependent scaling of GABAergic inhibition.

Significance Statement GABAergic inhibition potently regulates neuronal activity in the neocortex. How such inhibition interacts with the intrinsic electrophysiological properties of single neurons is not well-understood. Here we investigate the ability of voltage-gated potassium channels to regulate the impact of GABAergic inhibition in the dendrites of neocortical pyramidal neurons. Our results show that potassium channels normally reduce inhibition directed towards pyramidal neuron dendrites. However, these channels are inactivated by strong neuronal activity, leading to an enhancement of GABAergic potency and limiting the corresponding influx of dendritic calcium. Our findings illustrate a previously unappreciated relationship between neuronal excitability and GABAergic inhibition.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted May 23, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Potassium channels contribute to activity-dependent scaling of dendritic inhibition
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Potassium channels contribute to activity-dependent scaling of dendritic inhibition
Jeremy T. Chang, Michael J. Higley
bioRxiv 098889; doi: https://doi.org/10.1101/098889
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Potassium channels contribute to activity-dependent scaling of dendritic inhibition
Jeremy T. Chang, Michael J. Higley
bioRxiv 098889; doi: https://doi.org/10.1101/098889

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4109)
  • Biochemistry (8812)
  • Bioengineering (6517)
  • Bioinformatics (23456)
  • Biophysics (11788)
  • Cancer Biology (9205)
  • Cell Biology (13318)
  • Clinical Trials (138)
  • Developmental Biology (7433)
  • Ecology (11407)
  • Epidemiology (2066)
  • Evolutionary Biology (15145)
  • Genetics (10433)
  • Genomics (14041)
  • Immunology (9169)
  • Microbiology (22152)
  • Molecular Biology (8808)
  • Neuroscience (47558)
  • Paleontology (350)
  • Pathology (1428)
  • Pharmacology and Toxicology (2491)
  • Physiology (3730)
  • Plant Biology (8079)
  • Scientific Communication and Education (1437)
  • Synthetic Biology (2220)
  • Systems Biology (6037)
  • Zoology (1252)