
Hung et al.

Building containerized workflows using the
BioDepot-workflow-builder (Bwb)
Ling-Hong Hung1, Jiaming Hu1, Trevor Meiss1, Alyssa Ingersoll1, Wes Lloyd1, Daniel Kristiyanto1,

Yuguang Xiong2, Eric Sobie2 and Ka Yee Yeung1*

*Correspondence: kayee@uw.edu
1School of Engineering and

Technology, University of

Washington, Box 358426, 98402

Tacoma WA, USA

Full list of author information is

available at the end of the article

Abstract

We present the BioDepot-workflow-builder (Bwb), a software tool that allows
users to create and execute reproducible bioinformatics workflows using a
drag-and-drop interface. Graphical widgets represent Docker containers executing
a modular task. Widgets are then graphically linked to build bioinformatics
workflows that can be reproducibly deployed across different local and cloud
platforms. Each widget contains a form-based user interface to facilitate
parameter entry and a console to display intermediate results. Bwb provides tools
for rapid customization of widgets, containers and workflows. Saved workflows
can be shared using Bwb’s native format or exported as shell scripts.

Keywords: reproducibility of research; bioinformatics workflows; software
development; RNA-seq; Docker

Background
One of the key challenges for biomedical science is the rapidly increasing number

and complexity of analytical methods. Reproducing the results of a bioinformat-

ics workflow can be challenging given the number of components, each of which

having its own set of parameters, dependencies, supporting files, and installation

requirements. We present the BioDepot-workflow-builder (Bwb) as a solution to this

problem. Bwb allows users to construct a graphical pipeline that connects differ-

ent modules (widgets) together using a drag-and-drop interface. Instead of entering

multiple command line flags, each software widget uses a form-based interface that

allows users to enter and save parameters particular to that module. Users can edit

a workflow by dragging a different widget onto the canvas and changing the link-

ages between the widgets. The resulting workflow can be executed in Bwb, saved

in Bwb’s native format, or exported as a portable shell script that can be executed

outside of Bwb.

Unlike other Docker based applications, Bwb supports graphical output and

Graphical User interfaces (GUI’s), allowing for interactive tools such as Jupyter

notebooks, spreadsheets and visualization tools to be included in the pipeline. Bwb’s

workflows are portable with widgets that are self-contained and isolated from the

operating system. Software updates of the host system or of individual widgets do

not impact other widgets in the workflow. The modularity, portability and repro-

ducibility come from Bwb’s use of individual Docker software containers for each of

the software modules in the workflow. Most importantly, Bwb is open source and

is distributed as a simple Docker container. Hence, Bwb can be easily deployed on

any system (including Windows, Mac OS, Linux and any cloud provider) as long

as Docker is installed. On cloud platforms, account management systems such as

AWS Organizations can be used for sharing resources.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 2 of 19

Software containers encapsulate each individual executable and its supporting

libraries and software in isolated silos. This eliminates the possibility of conflicting

dependencies and facilitates installation of software. Installed modules do not affect

other modules or the host system. Version changes in any module are restricted to

that container. The workflows constructed from containers are thus reproducible

and portable. Docker is an application that manages these software containers on

Linux, MacOS, Windows and cloud platforms [1]. Docker containers share the core

hardware and operating system resources allowing them to be initialized in seconds.

Docker containers can be built on demand using a small text file (Dockerfile) to

define the components. Alternatively, Docker images can be downloaded from public

repositories such as Docker Hub. If the required image is not available locally, Docker

will even automatically download and install the image for the user.

Using Docker containers for individual modules in a workflow is an alternative to

approaches that attempt to ensure that all components are compatible with a single

computing environment. Software suites such as Bioconductor [2], BioPython [3],

and BioPerl [4], provide a set of member components that are inter-compatible and

ensure that the necessary dependencies for all components are installed. Ensuring

that software is compatible within one of these frameworks is a non-trivial task. For

example, Bioconductor requires that each component package compile and pass a

suite of tests on Linux, MacOS and Windows platforms before each release. As a

result, older software tools from research groups that lack the resources to publish,

maintain and update their packages may eventually become excluded in future

releases. Galaxy [5] takes the idea of a set of compatible modules a step further

and provides a common web interface for users to create and execute workflows in

a consistent hardware and software environment on a server or cluster. However,

as is the case with Bioconductor, workflows may fail if all the components are not

updated when Galaxy is updated.

As the numbers of software modules and dependencies continue to rise, the prob-

lem of some software components either failing or being deprecated with new re-

leases increases. Workflows that depend on these legacy components must stay with

older releases and older software or change to new unfamiliar software, which may

break in future updates. As a result, it is very difficult for biomedical researchers to

adopt state-of-the-art academic software. The problems associated with maintain-

ing a set of compatible modules has led to increasing adoption of container-based

tools such as Dockerstore [6], BioBoxes [7], BioShaDock [8], BioContainers [9], Bio-

Docklets [10]. As additional examples, Bioconductor and Galaxy are also available

in Docker containers [11, 12]. Packaging bioinformatics software in Docker contain-

ers has become increasingly common especially for cloud computing [13, 14] due to

the ease of deployment on cloud instances.

Another important consideration for using Docker containers is the ease with

which they can be stored without charge and made available for automatic down-

load on Docker Hub [15]. In addition, many of these images are linked to Dockerfiles

in GitHub source repositories [16] and rebuilt automatically as the code is updated.

Public repositories now provide a readily accessible pool of containers for the con-

struction of bioinformatics pipelines. BioContainers is one such repository currently

harboring numerous Docker images [9] mostly based on automated bioconda build

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 3 of 19

recipes. BioShadock [8] is another community driven registry of Docker-based bioin-

formatics tools [8] that also provides authentication, access control, container meta-

data, and search capabilities. Our group places all our containers in the BioDepot

[17].

Other containerization efforts provide additional tools to facilitate the construc-

tion of workflows. For example, BioBoxes [7] uses a YAML Ain’t Markup Lan-

guage (YAML) file to define the inputs and outputs of different containers [7].

NGSeasy, developed at the NIHR Biomedical Research Centre for Mental Health

and Biomedical Research Unit for Dementia in London, UK [18], places all of the

next generation sequencing (NGS) tools into one base image and encapsulates each

NGSeasy pipeline component in separate containers. Dockstore, developed by the

Cancer Genome Collaboratory [6], provides containers for their Toil scheduler [13]

which supports the Common Workflow Language (CWL) for defining bioinformat-

ics pipelines from the available component containers. As a demonstration, Toil was

used to re-process, in parallel, 20,000 RNA-seq samples from RNA-seq data reposi-

tories such as The Cancer Genome Atlas (TCGA) and Therapeutically Applicable

Research To Generate Effective Treatments (TARGET) on Amazon cloud instances

comprising 32,000 computational cores in just four days [14]. As another example,

Nextflow [19] provides scripting tools to design scalable and reproducible workflows

using containers.

The most similar application to Bwb is Seven Bridges, a commercial service for

conducting cloud-based bioinformatics analyses [20] which provides a GUI where

users drag multiple ”apps” onto a canvas and connect them together to define a

workflow. The Cancer Genomics Cloud (CGC), powered by Seven Bridges, is one

of the three platforms featured by the National Cancer Institute (NCI) Cloud Re-

sources program [21]. However, Seven Bridges CGC consists of a web portal and is

limited to the use of one cloud vendor (Amazon Web Services, AWS). On the other

hand, Bwb is open source, available as a Docker container, and hence, can be de-

ployed on any computer, any server and any cloud provider. Additional modularity

is provided by parameters, customizable GUI entry forms, and Dockerfiles that are

carried with the workflow themselves outside of the containers. Unlike Bwb, Seven

Bridges CGC does not support graphical output for all applications. Finally, shared

resources for a team must be set up via Seven Bridges. In contrast, Bwb is simply

a Docker container and can leverage billing organizations provided by any cloud

provider.

Galaxy [5] also provides similar functionality to Bwb and does have the ability to

execute containerized workflows, for example, by using Bio-Docklets [10]. However,

importing tools and containers from non-Galaxy sources is not trivial and requires

modifying a set of configuration files and scripts whereas Bwb provides specific

GUI tools for customizing existing workflows and can use containers from any of the

Docker repositories. Export of workflows as bash scripts that can be customized and

run without Bwb is also supported, whereas execution of Galaxy pipelines requires

Galaxy.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 4 of 19

Results
Overview

While the use of Docker alleviates many installation and reproducibility problems

when deploying and executing bioinformatics workflows, several challenges remain.

First, the command-line based interface used by Docker is not intuitive for biomedi-

cal researchers with limited programming experience. Secondly, software containers

are designed for encapsulating software and software libraries and are not meant for

storing parameters or data. While it is possible to hard code parameters and data

inside software containers, this makes them unwieldy and difficult to customize.

Third, Docker is designed for command-line pipelines and does not have graphical

support out of the box. Useful interactive visualization and documentation tools

such as Cytoscape [22] and Jupyter notebooks [23] can be difficult to incorporate

into Docker pipelines. Finally, Docker containers can be quite difficult to customize,

and versions of the containers can be difficult to track, especially with complex

workflows. Bwb addresses each of these limitations as follows.

Bwb provides a friendly graphical interface.

A graphical interface is provided through the use of our GUIdock-VNC [24] tech-

nology. Bwb is itself a container which is accessed through a browser. Instead of

writing a script, the workflow is completely defined by the widgets and the graph

that connects them. Construction of the workflow uses an intuitive drag-and-drop

interface from the OrangeML library [25]. Links between widgets indicate the flow

of data and order of execution. When a module has finished processing, it signals

downstream modules to begin execution. Bwb translates this graph of widgets into

a sequence of Docker commands which are then executed by the Docker engine.

The complexity is all hidden from the user who merely clicks on a start button and

observes the intermediate output on the widget consoles as the execution of the

analytical pipeline progresses. See Figures 1 to 3 for examples of the Bwb graphical

interface.

Bwb widgets promote reproducibility by using containers and facilitating data entry

and local file mapping

While the use of software containers virtually eliminates variation due to dependen-

cies, the reproducibility of results depends on more than just the software. Hidden

parameters and configuration files are also major factors contributing to the irrepro-

ducibility of results. A common solution is to include parameters and configuration

files in the container itself. However, this strategy makes it difficult to re-use and

customize the container. The best practice to maximize the portability of software

containers is to have data files and parameters outside of the container as much as

possible. Bwb provides form-based user interface for parameter values, which are

stored outside the container, in a human readable XML file that is saved with the

workflow. Data files are not included in the container but are obtained from the

local host files. Since manually mapping local files and directories to the internal

Docker file system can be an error-prone process, Bwb uses a simple default map-

ping system using the mounted volume that is defined when Bwb was launched.

The user can be queried to mount additional volume mappings if desired, but the

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 5 of 19

default mapping is sufficient for most use cases. This means that the user usually

does not have to mount volumes to access local files. Bwb automatically handles

the mapping of filenames transparently so that the user can choose files by simply

clicking through a directory tree without worrying about which path will be used

within each container

Bwb widgets are easily customizable

Bwb provides tools to allow users to easily create and customize new widgets.

Right-clicking and choosing ’edit widget’ brings up screens that allow the user to

define which parameters are queried, which volumes and ports are to be mapped,

which command should be run and the Docker container to be used. Parameters

are entered using a form based interface and Bwb auto-generates the widget user

interface (UI) based on the form entries. See Figure 2 for details of the widget panels.

To facilitate the construction of Docker containers we also include a tool called

BiocImageBuilder [26]. In addition, Docker files that specify container images can

be optionally stored with the widget definition to further facilitate customization of

the widget container. The widget definition is stored in 3 human readable JavaScript

Object Notation (JSON) files.

Bwb workflows are encapsulated, portable, shareable and reproducible

In Bwb, workflows are defined by a graph of widgets and their parameters. Natively,

Bwb stores workflows as a directory of widgets, and an XML file that describes the

connections and the parameters. As long as the containers used are available on in

a repository such as Docker Hub or defined in the widgets Dockerfiles, the workflow

directory contains a complete description of the workflow logic, with the possible

exception of parameter data files. However, even data files can be encapsulated

using download widgets as shown in the case studies. Workflow directories contain

human readable files and can be shared with other Bwb users. Finally, workflows

can also be exported as a bash script consisting of the Docker commands that Bwb

would execute on the host system. This script can be run without launching Bwb

though there are some caveats as to GUI export and filenames as detailed in the

Discussion section and in the user manual (Additional File 1).

Bwb supports export of graphics and GUI’s

Each widget contains a console tab that displays text output allowing the obser-

vation and logging of intermediate results. However, it is sometimes desirable to

pop-up a window and to provide additional graphical feedback or to prompt user

interaction. By checking a box, Bwb allows the widget to export graphics to the

browser window using the methodology described in GUIDock-X11 [27]. This al-

lows for commodity applications such as gnumeric (the gnu version of Excel) and

Jupyter that pop up their own windows and have a their own GUI to be con-

tainerized and made part of the pipeline. Graphical applications such as Jupyter

notebooks are especially useful for interactively monitoring the progress of execu-

tion or for customizing analyses and visualization of the final results. See Figure 3

for an illustration of graphical output in Bwb.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 6 of 19

Bwb adheres to the FAIR principles

We designed Bwb with core values that are compliant with the FAIR Guiding Prin-

ciples [28]. While the high-level FAIR Guiding Principles were primarily designed to

support the reuse of scholarly data, these principles define characteristics that are

also applicable to tools and infrastructures to facilitate scientific discovery and reuse.

In particular, Bwb demonstrates findability (“F”) by exploiting ability of Docker to

automatically download images from repositories. Bwb is able to use software com-

ponents that are readily available in our BioDepot repository and other searchable

container repositories. Bwb also provides tools to search and create containers from

the CRAN (Comprehensive R Archive Network) [29] and Bioconductor [2] reposi-

tories. Bwb itself is easily findable through GitHub and Docker Hub which provides

persistent record of current and past versions of Bwb source code and implementa-

tions. Bwb showcases accessibility (“A”) by providing a customizable drag-and-drop

user interface such that scientists with all levels of technical expertise can access

and interact with big biomedical data and software tools. Bwb uses Docker con-

tainers to encapsulate the computing environment for each task in bioinformatics

workflows, thus ensuring interoperability (“I”) and re-usability (“R”). In addition,

the entire workflow can be saved or exported, either as a template to be run with

different data or with the original data for a complete and reproducible description

of an analytical procedure, further encouraging re-usability.

Case studies

We demonstrate the utility of Bwb using 4 case studies. The first case study is

an example using Bwb to document and disseminate an existing workflow. The

second and third examples illustrate the use of Bwb in well-established RNA-seq

workflows using kallisto-sleuth [30, 31] and STAR [32]. In our final case study we

demonstrate how to integrate Jupyter notebooks into Bwb. The combination of

documentation, interactive dynamic code and graphics in Jupyter notebooks adds

highly desirable functionalities to a workflow building tool. We demonstrate these

functionalities by attaching a Jupyter notebook to the kallisto pipeline to run sleuth.

Furthermore, we provide a tutorial and video showing how to add a Python script

to this pipeline to trim the reads before processing (see video Additional file 3 in

Supplemental materials) The saved workflows and widgets from these case studies

are publicly available from GitHub and are included with the Bwb container. After

downloading the Docker image of Bwb, users can simply load these case studies

into the canvas and execute these workflows with one click.

Example 1: Reproducibly disseminating a Standard Operating Procedure using Bwb

The first case study is taken from the NIH-funded Library of Integrated Network-

Based Cellular Signatures (LINCS) program which provides large-scale expression

data from cell lines in response to genetic and drug perturbations [33]. The Drug

Toxicity Signature Generation Center (DToxS), one of the LINCS data generation

centers, studies the expression of human heart muscle cells under the influence

of different drugs. As part of the effort to document all procedures and increase

their reproducibility, laboratory and computational protocols for all experiments

performed by DtoxS are given in detailed standard operating procedure (SOP’s)

available on their website [34].

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 7 of 19

One of these SOP’s describes a RNA-seq data analysis workflow consisting of two

major steps - alignment using the Burrows-Wheeler Aligner (BWA) [35] and quan-

tification of differential gene expression using the R package edgeR [36]. We use this

DToxS RNA-seq pipeline as a test case for the creation and dissemination of repro-

ducible workflows using Bwb. This is an example of a SOP represented as a Bwb

workflow. It is a completely reproducible, executable and sharable representation

of the pipeline.

Figure 4 shows a demo of the DToxS RNA-seq workflow that can be run in a

few minutes. This workflow consists of 5 widgets. The first widget (downloadURL)

downloads the data and parameter files and sets up the directory structure. Note

that the widget has been renamed to provide more clarity as to the role in the

workflow. Renaming does not affect the program logic. The widget runs a custom

bash script that calls the Linux curl utility to download gzip or bzip2 to decompress

the files. The bash script also properly recognizes Google-drive URL’s. The docker

image uses the biodepot/bash-utils:alpine-3.7 container which is simply bash

with wget, curl using the lightweight Alpine Linux operating system. This widget

connects the output to the trigger of the next widget so that the second widget will

start once the download is complete.

The second widget is the DtoxSAlignment widget. Again based on Alpine Linux,

the container contains the BWA aligner and Python2.7 as these are necessary for

the original alignment script. The output is connected to the trigger of the third

widget to signal it to start once the alignment step is complete.

The third widget is another downloadURL widget. Normally we would connect the

DToxSAlignment widget to the DToxSAnalysis widget. However, this pipeline on

complete files takes over 12 hours and consumes 350 GB of space. For the demo, we

use partial input files with fewer reads so that the alignment step can be completed

in a few minutes. This will lead to an error in the subsequent analysis steps as

there are too few counts. So for the demo, we download the complete results of

the alignment using this widget. Again the output is connected to the trigger of

the fourth widget. The fourth widget analyzes the gene counts obtained from the

alignment step to determine which genes are differentially expressed. The script

runs under R and uses Bioconductor. The script and these supporting packages are

installed in a Ubuntu based image. In this case, when the widget is finished, it not

only transfers a trigger signal but also the name of the output file in the format of

CSV (comma-separated values) to the last widget so that it also knows which file

to open.

The final widget is gnumeric, a fully functional open-source spreadsheet that du-

plicates many of the functions of Excel. It is inside a Ubuntu container and exports

its own window and graphics. Note that the export graphics box in the widget

options panel is checked to enable this functionality. Gnumeric displays the genes

which are most likely to be differentially expressed (lowest p-values).

To start the demo, the user can double click on the first downloadURL widget

and the start button. Clicking on the console tab reveals the output. As each widget

finishes and triggers the next widget, we can follow the intermediate progress by

double clicking on widgets and examining the console. After about 5 minutes, the

final results should automatically pop up in the gnumeric spreadsheet which is

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 8 of 19

shown below the workflow in Figure 4. To save the workflow as a bash script, the

user checks off the ’Test mode’ checkBox in the downloadURL widget before pressing

start. Instead of executing the Docker commands generated by the workflow, Bwb

will print the docker commands on the console of the widgets and optionally save

the set of commands as a script.

Example 2: Kallisto-sleuth pipeline

In this second example, we illustrate the use of Bwb with a widely-used kallisto-

sleuth RNA-seq data processing pipeline. The kallisto pipeline is shown in Figures

1-3. Kallisto takes the reads in fastq files and quantifies them using a rapid pseudo-

alignment technique [30]. Sleuth then processes the pseudocounts to find the genes

that are differentially expressed [31]. This workflow is adapted from the introductory

sleuth-walkthrough from the Pachter group [37].

The first widget again is a downloadURL widget that sets up the base directory

and downloads two configuration files. One file defines which files are from the con-

trol and which files are from the treatment groups. The other file is used to map

transcript names to gene names. The method of downloading configuration files

rather than including them inside the containers makes the logic clearer and the

workflow more easily customizable. This workflow bifurcates into two branches: one

responsible for creating the indices and the other for downloading the fastq input

files. The lower branch uses the widget created using the fastq-dump utility from

the SRA toolkit to download the fastq files from the SRA (Sequence Read Archive)

repository [38]. By default, the download is set to 10,000 spots, instead of the com-

plete files, so that the demo can be completed in 20 minutes. The upper branch

of the workflow consists of a download widget that fetches the human reference

sequence and passes it to the kallisto index widget which produces the indices. The

two branches merge at the kallisto quant widget which waits for both the indices to

be made and the files to be downloaded before it can start. Sleuth then analyzes the

counts created by kallisto quant and determines which genes are differentially ex-

pressed. The table of differentially expressed genes is passed to the gnumeric widget

which pops up an interactive spreadsheet with the final results. The kallisto widgets

are based on the executable compiled from the source in the GitHub repository. We

could have used one widget for both the index and quant functions but the workflow

logic is clearer with two different widgets and the kallisto quant widget required a

wrapper script to handle multiple samples. Sleuth also uses a shell wrapper to pass

parameters to an R script. The other widgets used containers that were straight-

forward installations of existing software, and using the widget builder to pass the

flags and options to the user.

This workflow illustrates one of the key advantages of using Bwb - reproducible

and automatic installation. Sleuth can be challenging to install requiring differ-

ent (undocumented) supporting libraries and packages depending on the version

of sleuth, the operating system and the version of R and whether R is being run

with Jupyter. Using Bwb, the containers with all the necessary dependencies are

automatically downloaded, and run identically regardless of the user’s host setup.

Although the installation details are masked, they are accessible in the accompany-

ing Dockerfile.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 9 of 19

Example 3: STAR pipeline on a remote server

The STAR/DESeq [32, 39] pipeline in Figure 5 is another well-established workflow

for identifying differentially expressed genes from RNA-seq experiments. The struc-

ture of the pipeline is similar to the kallisto pipeline and the construction of widgets

similar, with a wrapper around STAR quant [32] to handle multiple samples. Again,

the workflow is fairly self explanatory with the entire workflow being present. With

STAR, there are literally pages of flags (shown in part in the scrollable panel in

Figure 5) with many different options so the Bwb’s use of a form based interface

to modify parameters is a very useful feature. STAR requires a large amount of

RAM (a minimum of 32 GB is recommended) and the generation of indices and

alignment steps are difficult to run on local hardware. This example is actually run

on a remote firewalled server that is accessed securely through an ssh tunnel. The

gnumeric spreadsheet pops up and works exactly the same as the other examples

run locally on a laptop. However, even without a larger server, one can start the

workflow at later stages as long as the necessary files are in place. The rest of the

pipeline with parameters in place for documentation, is executable if the user wishes

to use a larger local or cloud server at some point.

Example 4: Using Jupyter notebooks and customizing a workflow

In this example, we illustrate the integration of Jupyter notebooks into Bwb work-

flows by using Jupyter notebook to analyze and visualize the data produced by

kallisto. The notebook is a simplified version of the walkthrough from the Pachter

lab [30, 31] and uses sleuth. One widget runs the nbconvert function to execute

the Jupyter script. It then connects a second widget which opens the notebook

automatically so that users can edit, interactively run the code and visualize re-

sults using the native Jupyter GUI. This demo is illustrated in Figure 6 where the

notebook displays a box-plot of the expression of the top differentially expressed

gene in the control and treatment samples. Using Bwb to incorporate Jupyter note-

books has many advantages. First, a Jupyter notebook can contain dynamic code

for a single programming language, whereas a Bwb workflow can be constructed

with many modules consisting of notebooks using different languages. Second, the

use of containers ensures that the correct version of R is used with sleuth (3.4.4

and not 3.5.1.) and that the dependencies are pre-installed saving long installation

times when running notebooks. Using Jupyter notebooks is an example method

to customize Bwb workflows by allowing users to interactively modify the code

and visualize results. More generally, widgets can be created and dropped into any

workflow. We have included two videos as Additional File 2 and Additional File 3

involving this workflow. The video in Additional File 2 illustrates the steps involved

in loading and executing this workflow. The video in Additional File 3 illustrates

how to create a new widget that adds a custom Python script to trim the fastq files

before analyses, and how to incorporate this new widget into the workflow.

Discussion
The examples that we have presented highlight example typical use cases for Bwb.

The first use case is an important one - disseminating a protocol for an experiment

so that researchers can easily replicate and validate their results. Traditional meth-

ods such as written SOP’s are not always effective no matter how detailed. Our

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 10 of 19

example demonstrates how one can create a completely executable flowchart that

runs the techniques and exposes the parameters and data. No installation of addi-

tional software is required and the entire SOP can be replicated and tested using a

GUI.

The second and third use case demonstrates how Bwb can be used with standard

workflows that are commonly used in bioinformatics. These well-established work-

flows have been documented using Jupyter notebooks. However, even with these

protocols, modules requiring different computing environments and installation of

these modules can be challenging. Bwb captures all the steps in the workflow, ensur-

ing an independent computing environment through the use of Docker containers

enhancing reproducibility. Each step is modifiable, with the parameters outside of

the container, which promotes customization of the workflow.

The fourth use case demonstrates how Bwb’s support exporting GUIs can be

utilized to add Jupyter notebooks to a workflow. In this manner, interactive cus-

tomization of code and visualization of results can be added to any Bwb workflow.

We showcase enhanced encapsulation, flexibility and reproducibility of Jupyter note-

books when integrated in Bwb workflows.

Bwb has some limitations. First, iteration through a set of parameters (e.g. a set

of fastq files) and multi-threaded execution are currently possible using wrapper

scripts inside the container. We are actively developing a more portable scheduler

system to address these needs. Second, GUI support for the bash scripts depends on

having Bwb open, or having either native X11 or X11 emulation through GUIDock.

Furthermore, the bash scripts currently use the directory structure of the host ma-

chine that launches Bwb. We are working on adding additional tools to facilitate

mapping of filenames for use on different machines. We are also working on con-

verting the Bwb workflows into other workflow descriptors such as the Workflow

Description Language (WDL) [40] or Common Workflow Language (CWL) [41] to

enhance compatibility with other workflow execution engines such as and Seven

Bridges and the Broad Institute’s Cromwell [42]. Finally, we have done as much

as possible to containerize the pipelines and Bwb itself to isolate it from the host

platform. However, the interaction with Bwb is not completely independent of the

host, as it depends upon the installation of Docker and the support of HTML5 by

the web browser to render the graphics. HTML5 is still a relatively new standard

and browser support is still variable, but this should improve in the future. The

manual provided in Additional File 1, guides the user through the installation steps

for different platforms.

Conclusions
The BioDepot-workflow-builder (Bwb) project builds upon many of the ongoing

efforts to enhance the reproducibility of computational research using Docker con-

tainers. The user-friendly and open-source graphical user interface makes container-

ized workflows accessible to biomedical researchers who are not programmers. We

have also provided extensive tools to manage parameters, facilitate user data input

and the customization containers. The key aim of Bwb is to allow researchers with

varying levels of technical skill to deploy, reproducibly execute and test alterna-

tive algorithms with confidence. In this manner, workflows and analytical results

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 11 of 19

are made accessible to a large and varied set of users. Using Bwb, the biomedical

community can quickly vet, implement, and share new technical advances in data

analyses.

Methods
Bwb windowing environment

The Bwb container launches a mini-webserver on host that is accessed using the

browser. The server uses fluxbox [43], a compact windows manager to provide

a graphical user interface similar to Windows or the MacOS. Fluxbox provides

full graphical support using X11 to render the graphics internally on the server.

Bwb uses the GUIdock-X11 [44] system to allow containerized applications (such as

Jupyter, gnumeric) to export their graphics and GUI to the server’s internal screen.

The noVNC [45] protocol is then used to transfer the internally rendered screen

to the user’s browser which draws the graphics on the in browser window using

HTML5.

Minimizing or closing the startup Bwb window reveals the background screen.

Right clicking on the background brings up an application menu. For the basic

Bwb container, there are 3 menu options, the Bwb app, a terminal to enter system

commands, and the quit container option. Fluxbox provides 4 separate workspaces

that are available which act as independent screens. Multiple instances of Bwb can

be launched simultaneously. Windows can be resized, minimized, maximized as in

other windowing systems. Cut and paste is supported between windows inside the

container. Support will be added to allow cut and paste with the host system.

Drag-and-drop user interface: Widgets, Tool Dock and canvas

When Bwb is started, the Bwb application window pops up. On the left hand side of

the application window is a tool box (Tool Dock) with multiple tabs (drawers) which

contain different collections of widgets. Clicking on the tab expands the toolbox

drawer to reveal the contents. Drawers are organized by function. Bwb comes with

a set of 24 ready-to-use widgets. These are all linked to containers available on our

BioDepot repository on Docker hub. Any workflows constructed with these widgets

will automatically download the necessary containers the first time that they are run

and require no installation. Users can also create their own drawers. A new drawer

is created whenever a workflow is loaded. Also widgets can be added and removed

and drawers removed using the ToolDock Editor available from the menu bar. To

interact with a widget and include it in a workflow, the widget is dragged onto the

canvas. Multiple copies of the same widget definition can exist in a workflow with

different parameters. For example, the downloadURL widget is used twice in the

kallisto demo workflows to download different files at different stages in the pipeline.

Widgets on the canvas are then connected by dragging from the right side of the

source widget to the left side of the sink widget. This will transfer the output of

the source widget to the input of the sink widget during workflow execution.

The basic implementation of the Tool Dock and Canvas drag and drop UI is from

OrangeML using the python PyQT5 Quicktime (QT) library. Orange workflows

were connections of widgets that are given in the ToolDock, which once loaded, do

not usually change. Bwb extends the Tool Dock to have drawers for each workflow to

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 12 of 19

support custom widgets. Bwb provides the Tool Dock editor to allow for additional

dynamic manipulations to the widgets in the Tool Dock. These additions are also

implemented using PyQT5 and Python.

Widget UI and definition windows

After being dragged to the Canvas, double clicking on the widget brings up a tabbed

widget UI window, with tabs for entry of required and optional parameter values. A

third tab reveals the console which displays intermediate results from execution. At

the bottom of the window, a series of buttons and drop-down menus are available

to control the execution of the widget.

Right clicking on the widget and choosing edit, brings up the tabbed widget

definition window. Tabs are available for entry of values that define the UI window,

choose port and volume mappings, inputs, outputs, the command to be executed,

and the container to be used. In addition the user can access tools to build and

manage containers using the Docker tab.

Bwb widgets are loosely based on widgets found in Orange. The functionality of

Orange widgets reside in a Python script associated with the widget. With Bwb,

the functionality resides in the commands, parameters and Docker container and

not in the Python script. Accordingly Bwb stores these parameters in JSON files. A

small Python script is still required in order to maintain compatibility with Orange

routines such as the signal manager and widget manager that expect individual

Python scripts. This stub Python script is auto-generated by Bwb’s widget builder

module. The implementation of the forms in the UI and definition window is again

accomplished using Python and PyQT5.

Workflow storage and execution

The workflow is stored in a single directory. This directory contains widgets specific

to the workflow, the icon, and a Python script used to load the workflow into Bwb.

An XML file saves the connections between the widgets and all the parameter values

or settings This is different information than the JSON files for each of the widgets

which store information defining which parameters are queried and what and how

the widgets execute based on these parameters.

Bwb takes the values from the widgets forms and generates a Docker command

(or set of commands when there are multiple commands) for each widget. When the

widget begins execution, a QT QProcess is launched. The QProcess runs the Docker

command, prints the output to the console and checks for any signal sent by the user

(through the ’stop’ button) to abort the process. If the Docker command requires a

container that is not present, Docker will automatically search through the public

repositories and download the container if it is available (all containers used by

widgets are available from the BioDepot repository). The QProcess then sends a

signal when the Docker command has finished and a code to indicate whether

the command successfully executed. If the Docker command was successful, the

widget the sends out signals to downstream connected widgets. Upon receiving an

input signal, the downstream widget checks that all necessary parameters are set

and if execution is also triggered (or is automatic once parameters are set), its

execution starts. In this manner, execution progresses down connected widgets in

the workflow.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 13 of 19

The Bwb signals are based on the Orange ML signals and are managed by the

Orange signal manager. The XML connection files are also from OrangeML. The

rest of the workflow storage and execution process is new to Bwb.

Customizing workflows and containers

Customization of workflows can occur at different levels. The simplest is at the level

of parameters. We have discussed how Bwb facilitates this through the use of forms

and the separation of parameters from the Docker containers and through the use

of interactive widgets such as Jupyter.

Customization can also be accomplished by replacing a module with another

or adding an additional module such as a script. This would be accomplished by

inserting a new widget into a workflow. Most modules will not have the exact same

inputs and outputs, so this requires customization of widgets. We have already

discussed how Bwb facilitates widget construction through its form based interface

and provided a tutorial with a simple example.

Occasionally, the need will arise to customize Docker containers as well. Most

bioinformatics scripts can be run within an off-the-shelf Bash, Python, Perl, R

or Java containers that we have provided with Bwb. However, it is not uncom-

mon to need to install libraries, and while these can be placed inside the script, it

means that time consuming library installation steps using utilities like biocLite or

install.packages must be executed each time the pipeline is run. To avoid this, we

have provided our BiocImageBuilder tool [26] which allows users to specify packages

required from Bioconductor and CRAN. BiocImageBuilder will build the container

or provide a Dockerfile for the user to modify. In the future, we intend to expand

the tool to include other common installation methodologies based on Conda and

pip. Bwb also supplies files used to build its containers with its widgets in the Dock-

erfiles directory, to allow the user to easily customize the images if they wish to do

so without having to start from scratch. Our tutorial and video demonstrates how

these tools are used a new container and widget for an existing script.

Bwb code organization summary

The key components from OrangeML used by Bwb are the signal manager, Tool

Dock and Canvas routines The signal manager queues and manages signals between

widgets in workflows. The Tool Dock and Canvas modules handle the Tool Dock

and the drag and drop interface. The OrangeML code has been forked and stored

in a directory in the BioDepot-workflow-builder repository. Any modified Orange

routines are kept in a separate directory.

The major Bwb modules are the BwBase, WidgetBuilder, ImageBuilder, Docker-

Client, ToolDockEdit classes and WorkflowTools and CreateWidget packages. The

BwBase class handles the widget UI window. The WidgetBuilder class is responsible

for the widget definition window. The ImageBuilder class runs the BiocImageBuilder

tool for building Docker containers. The ToolDockEdit class adds tools to edit the

Tool Dock. These are all subclasses of the original orange widget class, largely to

ensure that they interact correctly with the other OrangeML routines. Finally there

are two new packages workflowTools and createWidget. WorkflowTools handles the

loading and saving of Bwb workflows and the createWidget package creates JSON

files and python files for the widgets.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 14 of 19

1 Availability of source code and requirements
• Project name: BioDepot-workflow-builder (Bwb)

• Project home page: https://github.com/BioDepot/BioDepot-workflow-builder

• Contents available for download: Docker Images, Dockerfiles, installation scripts, execution scripts and demo

videos.

• Operating system(s): Linux, Mac OSX, Microsoft Windows, Azure, AWS, Google Cloud Platform.

• Programming language(s): Python, HTML, JavaScript

• Other requirements: Docker version 1.13.1 or greater

• License: MIT License

2 Availability of supporting data and materials
Additional File 1: Bwb User Manual.

Additional File 2: Video of running Bwb, loading and executing the kallisto-sleuth-Jupyter RNA sequencing

workflow (case study 4). Publicly available at https://youtu.be/jtu-jCU2DU0.

Additional File 3: Video of creating a new widget in Bwb that adds a custom Python script to trim the input

fastq files before performing alignment using kallisto. This video also shows how to incorporate this new widget into

the kallisto-sleuth RNA sequencing workflow.

3 Declarations
3.1 List of abbreviations

• AWS = Amazon Web Services

• BWA = Burroughs-Wheeler Aligner

• Bwb = BioDepot-workflow-Builder

• DToxS = Drug Toxicity Signature Generation Center

• RNA-seq = RNA sequencing

• SOP = standard operating procedure

• VNC = virtual network computing

3.2 Competing Interests

The author(s) declare that they have no competing interests.

3.3 Funding

Ling-Hong Hung and Ka Yee Yeung are supported by NIH grants U54HL127624 and R01GM126019. Yuguang Xiong

and Eric Sobie are supported by NIH grant U54HG008098. We would also like to thank Microsoft Azure to

Ling-Hong Hung, Google Cloud Platform to Ka Yee Yeung, Amazon Web Services to Ling-Hong Hung, Wes Lloyd

and Ka Yee Yeung for computing resources.

3.4 Author’s Contributions

L.H.H is the primary developer for the Bwb project, wrote the existing code for the widgets and containers, adapted

the OrangeML code for the drag and drop interface and toolbox, and implemented the Bwb container. K.Y.Y.

coordinated the manuscript preparation. L.H.H. and K.Y.Y. drafted the manuscript. L.H.H. designed the framework

of Bwb and the case studies. J.H. and T.M. contributed code to early Docker-py implementations of Bwb. J.H.

designed and implemented the image building tool used by Bwb. L.H.H, J.H., T.M., D.K. and A.I. contributed to

testing and case studies of the project. L.H.H., D.K., J.H. and K.Y.Y. contributed to the writing of the user manual.

J.H., D.K. and L.H.H. made the videos in additional data files. L.H.H. and W.L. provided technical guidance to all

the students. Y.X., E.U.A., M.R.B. and E.A.S. developed the computational analysis pipeline at DToxS. All authors

tested Bwb, read and approved the final manuscript. . . .

4 Acknowledgements
We would like to thank Jayant Keswani and students who took TCSS 592 at University of Washington Tacoma for

contributing widgets and testing effort for earlier versions of the Bwb project. We would also like to acknowledge

the Student High Performance Computing Club and the eScience Institute, both at the University of Washington,

for providing technical assistance and computing resources to Jiaming Hu. . . .

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Engineering and Technology, University of Washington, Box 358426, 98402 Tacoma WA, USA. 2Icahn

School of Medicine at Mount Sinai,, 1468 Madison Ave, 10029 New York, NY, USA.

References
1. Boettiger, C.: An introduction to docker for reproducible research. SIGOPS Oper. Syst. Rev. 49(1), 71–79

(2015). doi:10.1145/2723872.2723882

2. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y.,

Gentry, J., et al.: Bioconductor: open software development for computational biology and bioinformatics.

Genome biology 5(10), 80 (2004)

3. Chapman, B., Chang, J.: Biopython: Python tools for computational biology. ACM Sigbio Newsletter 20(2),

15–19 (2000)

4. Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, G., Gilbert, J.G.,

Korf, I., Lapp, H., et al.: The bioperl toolkit: Perl modules for the life sciences. Genome research 12(10),

1611–1618 (2002)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 15 of 19

5. Afgan, E., Baker, D., Van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M., Chilton, J., Clements, D.,

Coraor, N., Eberhard, C., et al.: The galaxy platform for accessible, reproducible and collaborative biomedical

analyses: 2016 update. Nucleic acids research 44(W1), 3–10 (2016)

6. O’Connor, B.D., Yuen, D., Chung, V., Duncan, A.G., Liu, X.K., Patricia, J., Paten, B., Stein, L., Ferretti, V.:

The dockstore: enabling modular, community-focused sharing of docker-based genomics tools and workflows.

F1000Research 6 (2017)

7. Belmann, P., Dröge, J., Bremges, A., McHardy, A.C., Sczyrba, A., Barton, M.D.: Bioboxes: standardised

containers for interchangeable bioinformatics software. Gigascience 4(1), 47 (2015)

8. Moreews, F., Sallou, O., Ménager, H., Le bras, Y., Monjeaud, C., Blanchet, C., Collin, O.: Bioshadock: a

community driven bioinformatics shared docker-based tools registry [version 1; referees: 2 approved].

F1000Research 4(1443) (2015). doi:10.12688/f1000research.7536.1

9. da Veiga Leprevost, F., Grüning, B.A., Alves Aflitos, S., Röst, H.L., Uszkoreit, J., Barsnes, H., Vaudel, M.,

Moreno, P., Gatto, L., Weber, J., et al.: Biocontainers: an open-source and community-driven framework for

software standardization. Bioinformatics, 192 (2017)

10. Kim, B., Ali, T.A., Lijeron, C., Afgan, E., Krampis, K.: Bio-docklets: Virtualization containers for single-step

execution of ngs pipelines. bioRxiv, 116962 (2017)

11. Bioconductor Docker Page. https://www.bioconductor.org/help/docker

12. Galaxy Docker Page. https://galaxyproject.org/admin/tools/docker

13. Vivian, J., Rao, A.A., Nothaft, F.A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J., Narkizian, J., Deran,

A.D., Musselman-Brown, A., et al.: Toil enables reproducible, open source, big biomedical data analyses.

Nature biotechnology 35(4), 314 (2017)

14. Lachmann, A., Torre, D., Keenan, A.B., Jagodnik, K.M., Lee, H.J., Wang, L., Silverstein, M.C., Ma’ayan, A.:

Massive mining of publicly available rna-seq data from human and mouse. Nature communications 9(1), 1366

(2018)

15. DockerHub. https://hub.docker.com

16. https://github.com

17. BioDepot Page. https://hub.docker.com/u/biodepot

18. Folarin, A., Dobson, R., Newhouse, S.: Ngseasy: a next generation sequencing pipeline in docker containers

[version 1; referees: 3 approved with reservations]. F1000Research 4(997) (2015).

doi:10.12688/f1000research.7104.1

19. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., Notredame, C.: Nextflow enables

reproducible computational workflows. Nature biotechnology 35(4), 316 (2017)

20. https://www.sbgenomics.com

21. https://cbiit.cancer.gov/ncip/crdc-cloud-resources

22. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker,

T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome

research 13(11), 2498–2504 (2003)

23. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J.,

Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C.: Jupyter Notebooks – a Publishing Format

for Reproducible Computational Workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in

Academic Publishing: Players, Agents and Agendas, pp. 87–90 (2016). IOS Press

24. Mittal, V., Hung, L.-H., Keswani, J., Kristiyanto, D., Lee, S.B., Yeung, K.Y.: Guidock-vnc: using a graphical

desktop sharing system to provide a browser-based interface for containerized software. GigaScience 6(4), 1–6

(2017). doi:10.1093/gigascience/giw013

25. Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak,

M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: Data mining

toolbox in python. Journal of Machine Learning Research 14, 2349–2353 (2013)

26. Almugbel, R., Hung, L.-H., Hu, J., Almutairy, A., Ortogero, N., Tamta, Y., Yeung, K.Y.: Reproducible

bioconductor workflows using browser-based interactive notebooks and containers. Journal of the American

Medical Informatics Association 25(1), 4–12 (2018). doi:10.1093/jamia/ocx120

27. https://hub.docker.com/r/kristiyanto/guidock/

28. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten,

J.-W., da Silva Santos, L.B., Bourne, P.E., Bouwman, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon,

O., Edmunds, S., Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J., Groth, P., Goble, C., Grethe, J.S.,

Heringa, J., ’t Hoen, P.A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S.J., Martone, M.E., Mons, A.,

Packer, A.L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag,

T., Slater, T., Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,

Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B.: The fair guiding principles for scientific

data management and stewardship. Sci Data 3, 160018 (2016). doi:10.1038/sdata.2016.18. 26978244[pmid]

29. https://cran.r-project.org/index.html

30. Bray, N., Pimentel, H., Melsted, P., Pachter, L.: Near-optimal probabilistic rna-seq quantification. Nature

Biotechnology (34), 525–527 (2016)

31. Pimentel, H., Bray, N.L., Puente, S., Melsted, P., Pachter, L.: Differential analysis of rna-seq incorporating

quantification uncertainty. Nature methods 14(7), 687 (2017)

32. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras,

T.R.: Star: ultrafast universal rna-seq aligner. Bioinformatics 29(1), 15–21 (2013)

33. Keenan, A.B., Jenkins, S.L., Jagodnik, K.M., Koplev, S., He, E., Torre, D., Wang, Z., Dohlman, A.B.,

Silverstein, M.C., Lachmann, A., Kuleshov, M.V., Ma’ayan, A., Stathias, V., Terryn, R., Cooper, D., Forlin, M.,

Koleti, A., Vidovic, D., Chung, C., Schürer, S.C., Vasiliauskas, J., Pilarczyk, M., Shamsaei, B., Fazel, M., Ren,

Y., Niu, W., Clark, N.A., White, S., Mahi, N., Zhang, L., Kouril, M., Reichard, J.F., Sivaganesan, S.,

Medvedovic, M., Meller, J., Koch, R.J., Birtwistle, M.R., Iyengar, R., Sobie, E.A., Azeloglu, E.U., Kaye, J.,

Osterloh, J., Haston, K., Kalra, J., Finkbiener, S., Li, J., Milani, P., Adam, M., Escalante-Chong, R., Sachs, K.,

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 16 of 19

Lenail, A., Ramamoorthy, D., Fraenkel, E., Daigle, G., Hussain, U., Coye, A., Rothstein, J., Sareen, D., Ornelas,

L., Banuelos, M., Mandefro, B., Ho, R., Svendsen, C.N., Lim, R.G., Stocksdale, J., Casale, M.S., Thompson,

T.G., Wu, J., Thompson, L.M., Dardov, V., Venkatraman, V., Matlock, A., Van Eyk, J.E., Jaffe, J.D.,

Papanastasiou, M., Subramanian, A., Golub, T.R., Erickson, S.D., Fallahi-Sichani, M., Hafner, M., Gray, N.S.,

Lin, J.-R., Mills, C.E., Muhlich, J.L., Niepel, M., Shamu, C.E., Williams, E.H., Wrobel, D., Sorger, P.K., Heiser,

L.M., Gray, J.W., Korkola, J.E., Mills, G.B., LaBarge, M., Feiler, H.S., Dane, M.A., Bucher, E., Nederlof, M.,

Sudar, D., Gross, S., et al.: The library of integrated network-based cellular signatures nih program:

System-level cataloging of human cells response to perturbations. Cell Systems. doi:10.1016/j.cels.2017.11.001

34. DToxS Standard Operating Rocedures Page. https://martip03.u.hpc.mssm.edu/sop.php

35. H, L., R, D.: Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14),

1754–60 (2009). doi:10.1093/bioinformatics/btp324

36. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edger: a bioconductor package for differential expression

analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

37. Pachter Lab: Officially Supported Walkthroughs. https://pachterlab.github.io/sleuth/walkthroughs

38. Leinonen, R., Sugawara, H., Shumway, M., Collaboration, I.N.S.D.: The sequence read archive. Nucleic acids

research 39(suppl 1), 19–21 (2010)

39. Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome biology 11(10), 106

(2010)

40. Cromwell + WDL: A Pipelining Solution that Escalates to Your Ambitions.

https://software.broadinstitute.org/wdl

41. Amstutz, P., Andeer, R., Chapman, B., Chilton, J., Crusoe, M.R., Valls Guimera, R., Carrasco Hernandez, G.,

Ivkovic, S., Kartashov, A., Kern, J., et al.: Common workflow language, draft 3 (2016)

42. Cromwell. https://github.com/broadinstitute/cromwell

43. Fluxbox. http://fluxbox.org

44. Hung, L.-H., Kristiyanto, D., Lee, S.B., Yeung, K.Y.: Guidock: Using docker containers with a common

graphics user interface to address the reproducibility of research. PloS one 11(4), 0152686 (2016)

45. https://kanaka.github.io/noVNC

Additional File 1: Bwb Manual https://github.com/BioDepot/BioDepot-workflow-builder

Additional File 2: Introductory tutorial on using Bwb https://www.youtube.com/watch?v=jtu-jCU2DU0

Additional File 3: Tutorial on adding a Python script to a Bwb workflow https://youtu.be/r_03_UG1mBg

Figures

Figure 1 Screenshot of Bwb. The mini-windowing environment provided in the Bwb container is
shown being accessed using the Chrome browser. When the Bwb application is launched, a
window consisting of a canvas and a Tool Dock appears. The Tool Dock has multiple tabs which
contain ”drawers” of widgets from different categories and workflows. Widgets (the nodes) are
dragged from the Tool Dock onto the canvas and linked together to form a workflow, in this case,
the Kallisto-sleuth workflow. Widgets can also be added to the canvas by right-clicking on an
empty area, which brings up a Quickmenu version of the Tool Dock. When a workflow is opened,
its widgets are imported into separate drawer the tool dock. New widgets can be dragged onto the
Tool Dock to be mixed and matched into the workflow. These widgets are denoted by different
colors. In this case, the purple Perl and Jupyter widgets have been dragged from the standard
purple Bwb drawers of the tool dock. The pink deseq2 widget has been dragged from the STAR
drawer

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 17 of 19

Figure 2 Widget panels. Each widget has two tabbed panels. Double-clicking on the
kallisto-quant widget in the kallisto-sleuth pipeline brings up a data entry panel with a series of
tabs. The numerous optional parameters that control the way that kallisto performs its
quantifications are exposed by clicking on the ’optional’ tab. Right-clicking the kallisto-quant
widget and choosing edit brings up the widget definition panel. This reveals the settings that
define the widget itself. The blue highlighted selection in the parameters tab of the
kallisto:definition window shows the parameters defining the number of bootstraps option. The
user can enter new values into the definition:window to change the default number of bootstraps
for example. Finally, the black background window on the left is the console of the kallisto index.
It displays the messages being printed by the widget as it processes the data. The data remains in
the window for review until cleared.

Figure 3 Graphical output of kallisto-sleuth workflow. Sleuth has its output linked to the trigger
of the gnumeric spreadsheet. When sleuth is finished processing it sends the output to the trigger
which prompts the gnumeric application to read the output CSV file and display the results. The
window that is popped up is a normal gnumeric window and the user can interact with the
process and visualize the data.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 18 of 19

Figure 4 Screenshot of DToxS workflow demo. The DToxS RNA-seq workflow is implemented as
a demo for Bwb. The connected workflow consists of 5 connected widgets and processes RNA-seq
fastq files to obtain a list of differentially expressed genes. This list is displayed using the gnumeric
spreadsheet

Figure 5 STAR/DESeq2 RNA-seq workflow on remote servers. The Bwb workflow consists of 9
widgets and implements a RNA-seq differential gene expression pipeline. This is very similar in
structure to the Kallisto-sleuth pipeline. However, the STAR aligner requires more RAM (32 GB)
than available on our laptop and the screenshot is from our browser connecting to the Bwb
application running remotely on a local firewalled server. The connection is established using SSH
tunneling. However, the gnumeric application pops up a window (lower right window) to view the
final results and works identically when run remotely. The scrollable lower left window pops up
upon clicking the STAR align widget. It shows some of the many parameters that the STAR
aligner uses, that are carried along with the Bwb workflow and can be easily changed and
customized.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hung et al. Page 19 of 19

Figure 6 Kallisto with Jupyter-sleuth notebook: This workflow illustrates how simple it is to pop
in different modules. In this case, a Jupyter notebook with a sleuth recipe to analyze the the
kallisto data. The notebook itself is downloaded by the downloadURL utility at the beginning. The
final two widgets execute and open the executed notebook. The left panel shows the console of
the notebook being executed by calling the nbconvert function of Jupyter which creates a new
notebook with the code cells executed. When finished it passes the name of the new notebook to
the second instance of the Jupyter-sleuth widget which is configured to pop up the notebook. The
notebook is accessed through a Firefox instance in the Jupyter container. The user can use the
Firefox browser to fully interact with the container, including re-running the cells, adding cells and
saving the notebook and results to their host computer

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/099010doi: bioRxiv preprint

https://doi.org/10.1101/099010
http://creativecommons.org/licenses/by-nc-nd/4.0/

